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We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior
penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element
spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson
method. We adopt an appropriate elliptic-type projection, which leads to optimal £ (L?) error

estimates of discontinuous Galerkin approximations in both spatial direction and temporal
direction.

1. Introduction

Let Q be an open bounded domain in R4, d > 2 with smooth boundary 0Q, and let 0 < T <
oo be given. In this paper, we consider the problem of approximating u(x, t) satisfying the
following nonlinear Sobolev equations:
ur— V- {a@)Vu+bu)Vu} = f(u) in Qx(0,T],
(a()Vu+b(u)Vu) -n=0 on 0Q x (0,T], (1.1)
u(x,0) =up(x) on Q,
where n denotes the unit outward normal vector to 0Q and uy(x) is a given function defined

on Q. The initial data ug(x), f, a, and b are assumed to be such that (1.1) admits a solution
sufficiently smooth to guarantee the convergence results to be presented below. For details
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about the physical significance and various properties of existence and uniqueness of the
Sobolev equations, see [1-6].

Early, in [7-9] the authors constructed the Galerkin approximations to the solution of
(1.1) with periodic boundary conditions in one-dimensional space and obtained the optimal
convergence in L? normed space and superconvergence results. Recently, Lin [10] constructed
the Galerkin approximation of (1.1) with d = 2 using Crank-Nicolson method and proved
the optimal convergence of error in L? normed space. In [11] the authors constructed the
semidiscrete finite element approximations of (1.1) with nonlinear boundary condition and
obtained the optimal L2-error estimates.

In this work we will approximate the solution of (1.1) using a discontinuous sym-
metric Galerkin method with interior penalties for the spatial discretization and extrapolated
Crank-Nicolson method for the time stepping. By implementing the extrapolated technique,
we induce the linear systems which can be solved explicitly, and thus obviate the order
reduction phenomenon which occurs when the system involved is nonlinear.

Compared to the classical Galerkin method, the discontinuous Galerkin method is
very well suited for adaptive control of error and can deliver high orders of accuracy when the
exact solution is sufficiently smooth. In [12] Riviere and Wheeler formulated and analyzed a
family of discontinuous methods to approximate the solution of the transport problem with
nonlinear reaction. They construct semidiscrete approximations which converge optimally
in h and suboptimally in r for the energy norm and suboptimally for the L?> norm. They
also constructed fully discrete approximations and proved the optimal convergence in the
temporal direction. Furthermore to solve reactive transport problems Sun and Wheeler in
[13] analyzed three discontinuous Galerkin methods, namely, symmetric interior penalty
Galerkin method, nonsymmetric interior penalty Galerkin method, and incomplete interior
penalty Galerkin method. They obtained error estimates in L?(H') which are optimal in h
and nearly optimal in p and they developed a parabolic lift technique for SIPG which leads
to h-optimal and nearly p-optimal error estimates in L*(L?) and negative norms. Recently
in [14, 15] Sun and Yang adapted discontinuous Galerkin methods to nonlinear Sobolev
equations and obtained the optimal H' error estimates. The main object of this paper is
to obtain the optimal ¢*(L?) error estimates in both the spatial direction and the temporal
direction by adopting an appropriate elliptic-type projection.

This paper is organized as follows. In Section 2, we introduce some notations and
preliminaries. In Section 3, we construct appropriate finite element spaces and define an
auxiliary projection and prove its convergence. In Section 4, we construct the extrapolated
discontinuous Galerkin fully discrete method which yields the second-order convergence in
the temporal direction. The corresponding error estimates of the approximate solutions are
also discussed.

2. Notations and Preliminaries

Let &, = {Ey, Ey, ..., En,} be a regular quasi-uniform subdivision of Q where E; is a triangle
or a quadrilateral if d = 2 and E; is a 3-simplex or 3-rectangle if d = 3. Let h; = diam(E;)
and h = maxi<j<n, hj. Here, the regular requirement is that there exists a constant p > 0 such
that each E; contains a ball of radius ph;. The quasi-uniformity requirement is that there is a
constant y > 0 such that

h
ng forj=1,2,...,Np. (2.1)
]
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We denote the edges (resp., faces for d = 3) of &, by {e1,ez,...,ep,, ep+i,-..,en,} where
ex has positive d — 1 dimensional Lebesgue measure, ex C Q, 1 < k < Pp, and ex C 0%,
Py +1 < k < Nj. With each edge (or face) ex, we associate a unit normal vector ny to E; if
ex = OE;NOE; and i < j. For k > Py, + 1, ny is taken to be the unit outward vector normal to
0Q.

For an s > 0 and a domain E C R%, we denote by H*(E) the Sobolev space of order
s equipped with the usual Sobolev norm || - ||, . We simply write || - [|; instead of || - |, o if
E=Qand |- | instead of || - || ¢ if s = 0. And also the usual seminorm defined on H*(E) is
denoted by | - [, -

Now for an s > 0 and a given subdivision &, we define the following space:

H5 (&) = {v e LX(Q)[vl;, € H(E), i= 1,2,...,Nh}. (2.2)

For ¢ € H*(&p,) with s > 1/2, we define the average function {¢} and the jump function [¢]
such that

1 1
(8} = 5(@Ble)le, + 5(Ple, ey VX €er, 1Sk<Py,

(2.3)
[#] = (Ble)le, = ($l5, )loyy VxEer, 1SS Py,
where ex = OE; N OE; with i <j.
We associated the following broken norms with the space H®(&y,):
2 &y
ligll™ = 2Nl
i=1
(2.4)
2 _ ¥ 2 peflvzg |l o
Mgy = 2 (N9l g, + = ”V ‘;b”E +J5 (6, 9),
i=1 ‘
where
P
@) = 525 lllas, p>0 @9
k=1 lex|” e

is an interior penalty term and o is a discrete positive function that takes the constant value
ok on the edge ey and is bounded below by oy > 0 and above by ¢* > 0.

3. Finite Element Spaces and Convergence of Auxiliary Projection

For a positive integer r, we construct the following finite element spaces:
D, (&) = {v e LX(Q)|ol, € P.(E), i=1,2,. ..,Nh}, (3.1)

where P, (E;) denotes the set of polynomials of degree less than or equal to r on E;.
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Now we state the following hp-approximation properties and trace inequalities whose
proofs can be found in [16, 17].

Lemma 3.1. Let Ej € &, and ¢ € H*(E;). Then there exist a positive constant C depending on s,
Y, and p but independent of ¢, r, and h and a sequence z' € P,(E;), r = 1,2, ... such that, for any
0<gc<s,

|0
<C-
O red

|¢ - =

Illsz 520

u-1/2

j 1
]
O — C 75172 ”(i)”s,gj s> 5 (3.2)

|o - =

u-3/2

h
||¢_Zr

oSGl s> 3

where p = min(r + 1, s) and e; is an edge or a face of E;.

Lemma 3.2. For each E; € &y, there exists a positive constant C depending only on y and p such that
the following trace inequalities hold:

2 1,.2 2
1915, < C(lol o miolls ). veer(e),

2 (3.3)

o
on j

1
<c(lols il ). vpe (e

0,6]'

where ej is an edge or a face of E; and n; is the unit outward normal vector to E;.

Now we introduce the following bilinear mappings A(p;-,-) and B(p;-, ) defined on
HS(&p) x H(&y,) as

Ap:d,¢) = (alp) Ve, V) -gj‘ {a(p) Ve - mic}[y] - gf {a(p)Vy - nc}[¢] + T3 (. ¢),

B(p;d,¢) = (b(p)V, V) - SJ {b(p) V- ni} o] —gf {b(P)Vy -} [P] + T3 (d. ).
(3.4)

Using the bilinear mappings A and B, we construct the weak formulation of problem (1.1) as
follows:

(ue(t),0) + A(u(t); u(t), v) + B(u(t);ue(t),v) = (f(u(t)),v), Yo € H*(&).  (35)
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Now for a A > 0 we define the following bilinear forms A, (p;-,-) and By (p;-,-) on H*(&p) x
H?* (&) such that

Av(pd ) = Alp; b, gp) + M, ¢),

(3.6)
Bi(p; ¢, ) = B(p: p, ) + A (9, ).

A, and B, satisfy the following boundedness and coercivity properties, respectively. The
proofs can be found in [18, 19].

Lemma 3.3. Fora A > 0, there exists a constant C > 0 satisfying

[Ax(ez b, )| < Clllll Ml

(3.7)
|Ba(pi . ) [ < CllIoll MMl v ¢ € H (&)
Lemma 3.4. Fora \ > 0, there exists a constant ¢ > 0 satisfying
Aupidd) 2 <l
(3.8)

Bi(p; ¢, ¢) > cllplll} Vb € H*(&n).

Wheeler [20] introduced an elliptic projection to prove the optimal L*-error estimates
for Galerkin approximation to parabolic differential equations. Adopting this idea we
construct a projection u(t) : [0,T] — D, (&) such that

Ay(w,u—1u,v)+ By(w; uy — Uy, v) =0 Yo € D, (&),
(1(0),v) = (u(0), v).

(3.9)

By Lemmas 3.3 and 3.4, u(t) is well defined.

4. The Optimal ¢~ (L?) Error Estimates of
Fully Discrete Approximations

In this section we construct fully discrete discontinuous Galerkin approximations using
extrapolated Crank-Nicolson method and prove the optimal convergence in L? normed
space.

For a positive integer N > 0 we let At = T/N and for 0 < j < N and we define t; =
j(At)and g; = g(x,t;). For0 < j < N-1,wedefine 0;g; = (gj+1—&j)/ At, tjv1/2 = (1/2)(tj+tj11),
and gji1/2 = (1/2)(g(t;) + g(tj+1))-
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The extrapolated Crank-Nicolson discontinuous Galerkin approximation {U;} ]-]io C
D, (&) is defined by

(8tllj,v) + A(EU] : u]'+1/2,‘0) + B(EU], atl,l,-,v) = (f(ElI]),v), Yo € Dr(c‘.h), (41)

where ELI] = (3/2)11] - (1/2)ll]_1, l,l]-+1/2 = (1/2) (U] + U]-+1).
To apply (4.1), we need two initial stages Uy and U; to be defined in the following;:

(0o, v) + A(U1/2; U1 /2,v) + B(U1/2;0:Uog,v) = (f(U1/2),v), @2)
Up = i(0), '

where U1/2 = (1/2)(UO + lll)

To prove the optimal convergence of u(t;) —U; in L* normed space we denote 7(x, ) =
u(x,t) —u(x,t) and é(x, t;) = u(x,tj) —Uj(x),j=0,1,..., N.

Now we state the following approximations for # whose proofs can be found in [18,
19].

Theorem 4.1. If u; € L*(H®) and uy € H®, then there exists a constant C independent of h and At
satisfying

(@) [Mlelll + Rlllellly < Che (el s + lluoll)
(i) [l + Rlllnllly < CheNuellc2 sy + lluolls)-

Theorem 4.2. If u; € L*>(H®), uy € H®, uyy € H® and uy € H? then there exists a constant C
independent of h and At satisfying

(@) Mlmeellly; < CR Il o sy + aaaells + Nlusolls
(i) Mlmeellly < ChZ {Ilnaell 2 grrsy + otsell + Nl + Ilnsoll
provided that p > 1/(d - 1).

By simple computations and the applications of Theorem 4.2 we obtain the following
lemmas.

Lemma 4.3. If p satisfies
atﬁj - ﬁt(tj+1/2) = (At)p]-+1/2, (4.3)
then there exists a constant C independent of h and At such that

|||P]'+1/2”| < CAt(””O”s + luell 2 ey + el oo sy + ||uttt”L°°(H5)>r
(4.4)

lpjerzlll, < CAt<||u0||S + \well 2 sy + et Lo sy + N2ttt |l oo (prsy ) -



Journal of Inequalities and Applications 7

Consequently from Lemma 4.3 there exists a constant C independent of At and h such
that

lorarall <cat, gz, < car 5)

if u is sufficiently smooth.

Lemma 4.4. If rj,1/2 = u(tj11/2) — Ujs1/2, then there exists a constant C independent of h and At
such that

7172l < CCAB (llolly + el ey + il o). .
4.6

7y /2lll, < CCAB? (lutoll + otz rzey + otill ooy )

Consequently from Lemma 4.4 there exists a constant C independent of At and h such
that

lrpsall < CCALZ, el < CCan? @7)

if u is sufficiently smooth.
Lemma 4.5. If we let @12 = u(tj1/2) — ((3/2)u(t;) — (1/2)u(tj-1)), then there exists a constant
C independent of h and At such that

llpseaalll < Ca8 (ol + latllzqagey + Nttelegers )
(4.8)

2
lipsenralll, < CCAB> (lutolly + tellzagrrey + Mot o ety + latell oz ) -

Consequently from Lemma 4.5, we induce that there exists a constant C independent
of At and h such that

llgjs1.2]ll < C(AL), llojs2lll, < C(AL? (4.9)

if u is sufficiently smooth.

Theorem 4.6. For 0 < A <1and 6 >0, if uy € L*(H?®), uy € L*(H?), then there exists a constant
C > 0 independent of h and At such that for j =1,2,..., N

Mty = uill < (R + AH2) (lsoll, + latll ey + 120l + Wil o + ot o)
(4.10)

hold where s =d/2+1+ 6 and y = min(r + 1, s).
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Proof. From (4.1) and (1.1), we have

(ue(tjs1/2) = 0Uj,0) + Ay (u(tjsrj2);u(tjnn2),v) = Ay(EUj; Ujsa 2, v)
+ By (u(tjs1/2); ut(tjs1/2),0) = By (EUj;0:U;, 0)
= (f(u(tjs/2)) = f(EU;),v) + A(u(tjsr/2) = Ujeasz,0) + M (tja2) - 0U;, 0).
(4.11)

By the notations of 7 and ¢, we get

ut(t]'+1/2) - 6tll] = ut(t]-+1/2) - atﬁ] + atﬁ] - atu] (4 12)
= nt(tj+1/2) + Atpj+1/2 + 6t§]

By the definition of 77, we obtain

Ay(u(tjsay2);u(tiag),v) — AW(EUj;Ujay2,0)
= Ay (EUj;¢j41/2,0) — Ay (EUj; Tijs12,0) + Ay (u(tjns2); u(tisie), o)
= AL(EUj;¢j1/2,0) + Ar(ultjnn2)i Nt 2), 0) + Av(u(tjas2); t(tjas2) - jas2,0)
+ Ay (u(tjr/2); tjs1/2,0) — Ay(EUj; Hija /2, 0).

(4.13)

From the definition of 77, we have

Bi(u(tjn/2);w(tjn 2),0) = Bu(EUj; 0,Uj, v)
= By (EU;;0¢¢j,v) + By(u(tjs1/2); ut(tjs1/2),v) — By(EUj; 04ij, v)
= By (EU;;0¢¢j,v) + By (u(tjs1/2); us(tjs1/2) — 04, v) + By (u(tjs1/2); Osij, v)
- By (EU;; 04iij,v)
= B\(EUj;0i8j,0) + Ba(u(tjs1/2); M (tjs1/2) — Atpjaasa, v) + By (u(tjsay2); 04lj, v)
- By(EUj; 04iij, v).
(4.14)
Substituting (4.12)—(4.14) in (4.11) and choosing v = ¢;;1/2 + 0:¢; imply that

(01, &j+1/2 + 0udj) + AL (EUj;&j41/2, &j41/2 + 01j) + By (Euj; atgj,éju/z + 5t§j>
= —(n(tjs1/2) + Atpjarya, &jvrya + 0iéj) — An(u(tjn/2); n(tje1s2), &je1/2 + 0ej)
— Ay (u(tjvr/2); /2, &2 + 0e8j) — An(u(tjer/2); ljar /2, &ja1/2 + 0ej)

+ Ay (EUj; Tjs1 /2, 8012 + 06éj) — Ba(u(tjnn2); M (tiea2), Eje1 /2 + 06j)
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+ By (u(tjs1/2); Atpjaisa, éje1/2 + 01j) — Bu(u(tjs/2); Osiij, v)
+ By (EUj; 04}, &js1/2 + 0i&j) + (f (u(tjsrs2)) — f(EU}), &je1/2 + )

+ Mu(tis2) = Ujsisz, &jase + 0iéj) + Mue(tje1/2) — 0, Ejar sz + ;).
(4.15)

By Cauchy-Schwarz’s inequality clearly we have
1 2 2
@15 &7 > 5 (gl - 1 17): (4.16)

By the definition of A, we have
AA(EUJ'§J+1/2f té]) = (a(EU )V§J+1/2/V(at§1)) Z_[ a(ELI )V§1+1/2 ”k}[a@]]
€k

Dy
- Zj {a<Eu]')V(af§f) ’ nk} [§j+1/2] + ]g<§j+1/2, 6t§j) + )L(éjﬂ/z, atéj)
k=17 €k
1 1
> a7 (1985l = 9E) + 55515 € 850) - J5 5,80
1
R j+1 ] j+1/2 ° t6j
g (Ml = W) - X {aCe) 932 05

- kZ_:jg {a(EU;)V (0:) - i} [&j41/2]-
- (4.17)

For the definition of By we get
B, (EUj; atéj, ¢iv1/2)

> o [ao (8l = IV IE) + (5 @) = 5 @8)) + A (el - 1 17)]

_ Zh:J‘E {b(EU;)V¢ji12 - mic} 0] - zjj‘e (b(EU)V(8:&)) - mic} [&41/2] -
(4.18)

Applying (4.17) and (4.18) in (4.15) we conclude that

1
AL [+ 20 (Merall® = M&l%) +2a0 (MY ) I1* = V&) + 200 Gonr &) = T @)

2 2 2
011 + clll gzl + cllloes; Iy
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< =(me(tjsas2) + Atpjarsa, &aajn + 0edj) + (f (utjnas2)) — f(EU;), &jv1/2 + 0idj)
+ AMu(tjv/2) = Ujiaa, &jeasa + 0edj) + A1 (t1/2) + Atpjaaa, &jaaa + 0edf)
— Av(u(tjs1y2);tie1/2, je172 + 0i8) — An(u(tie1/2); tjr1/2, &je1/2 + Okd;)
+ Ay (EUj; Tijs1/2, 0172 + 0iéj) + Bu(u(tjsi2); Atpjiasz, &jviy + 0id))
= By (u(tj+1/2); 04tlj, &1 /2 + 0ué;) + By (EUj; 04, &1 /2 + O1)

Py Dy
[ {a(BU) ez m) 0] + 35 ((EU) Va2 (0]
k=17 ek k=1" €k

+ i’[e {a(EU;)V (04¢)) - nic} [éj+1/2] + :ZZJ‘E {(b(EU;)V (3i;) - i} [E+1/2]
= iL

(4.19)

For sufficiently small € > 0 by applying Lemma 4.3 there exists a constant C > 0 such that

1< (et r2) T+ Ml AzRj /201D (g2l + Nll0e5; )
2 2 2 2 2 2
< C(lllms ta ) I + A0 [lpgaall* + Mg I + N 117) + el (4.20)

< Clllme I+ @0+ gl + M lI7) +elllog I
Applying Lemmas 4.3 and 4.4, I, can be estimated as follows:

|2l < Cllla(tjsarz) = EUG{I[ 20l + 011

21)
2 2 2 2 2
< C(MnCtaa) I + a0+ I+ Mg ll® + g 117) + ello 1™
We obtain the following estimates of I; for each3 <i < 5:
1| < A(llm(Eer2) I+ Mrgarzlll+ M2l 2l + 106 111
2 2
<C(MnCtia) I+ A0 + NI+ g ll”) +elllog ™
1Ll < A(lllme i 2) I+ A pja 2 1) Clllgga 2l + Mlf0es; 1) (4.22)

< C(lmeCtiaa2) 1+ A0* + g + N l17) +elldng I

2 2
1151 < Cllrgoaally (Mg alll + M2l ) < CCAD* + eflgraall; + a7
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From the definition of Is, we can separate I as follows:
Is = ((a(EU;) — a(u(tjs1/2))) Viije1/2, V(&ja1/2 + 0eg)))

Dy
- ZI {a(EU;) = a(u(tjs1/2)) Vidjeyz - ik [E1/2 + 0k

D (4.23)
-3 Ha(ew) - a(ution )V o + 0y) ) ol
k=17 €k

3
= L.
i=1
By applying Lemma 4.5, Is; can be estimated in the following way:

I < ClIVitgasall, (M) I+ @87 + gl + M) - Vel + T va i)

2
< C<|||’1(fj+1/2) 17+ Aty + [l llI* + |||§f|||2> +ellgmally +ellog I
(4.24)

Similarly there exists a constant C > 0 such that

Dy
2 < CX | Vitgasoll,, (10172 o, + N95e17200, + Wil + 5l
k=1
< (11720 lloe, + 11021, )
Ny
<CYlIVigapll,,
i=1

x (K20t ) o, + B2V o g, + 1 logeallys, + B2
A28 o) - (Mggearnll, + ol ) - P72
2
< (It I + B2 NVl 117+ @t* + 17 + g1

2
el +ello I
(4.25)

By applying the trace inequality we have
Py
1o < (I @172 ey + 17 @)
k=1

x (i) o, + Noisaralloe, + 1&illoe, + 1811l ) - il N,
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Ny,
<> (IVG) .. p, + 170,z )H 2
i=1

x [||71(t7+1/2)”0,5,- +h|[Vr(tje2) ||0,Ei + ”‘PJ'+1/2“0,E,- + ”éfllo,Ei + ”éf—lllo,E,-]

d2(lgasallos, + 21Vl 5, )
Ny
< cg(||v<¢f+1/z> o, + 1701l )

x (It o, + 1IVAC2) o, + Noirallos, + 1illoz, + 18-11l5,)
2 2 2 2
< C(lmtiar) P + 2 IVnCts) I+ @8+ gl + g 11°)

2 2
+efllgarallly + ellloe -

From the estimation of Is;, 1 <i < 3, we have

16l < €Mt 2) I + B NTnCEea/2) I+ 7 + gl + (A0)*)

2 2
+ 3|82 lly + 3l -

By applying Lemma 4.3 we obviously obtain

2

171 < C@Dlpgarallly (g2l + Mol ) < CAD* +elllgeall + elllow -

Now we can separate Ig as follows:

Is < ((b(EU;) = b(u(tjs1/2))) V (Oeit;), V (&1/2 + 0df))

_ kﬁ‘; f ) {b(EU;) = b(u(tjs12))V (34dh;) - i} [&41/2 + Oeéj]
_ kZ_hl’L {b(EU;) = b(u(tjs1/2))V (&j1/2 + 0e&j) - mic } [0idj]

3
= > Is;.

j=1

h—l—d/2+s

(4.26)

(4.27)

(4.28)

(4.29)



Journal of Inequalities and Applications 13

Since

1

£
EJ‘ Vi (t)dr

tj

<V oo ()

V@], - \
- (4.30)

< Cllill ey < C (e = el qerey + el ngere )

Ig; can be estimated as follows

Isy < CI[V (@) ||, (Mt 2) M+ Mgzl -+ M5+ - D NV a2l + M Vo)

2 2 2 2 2
< C<|||’Z(tf+1/2) 17+ &+ gl + (Af)4> + e[[|g1/2 [ + elll 0e; Il
(4.31)

We apply Lemma 3.2 to estimate Ig, as follows:

Dy
I < CY V@) Ly o, (1Ctio1/2) o + 05017200, + Wil + 21 1l,)
k=1
x (g2l Mg, + 110 M, )
Ny
< IV@aN g - H () llog, + 1Y) o, + Ipiasalloe
i=1

Heillos, + Néiallor,) - B2l + Mo,
< (Il I + B2 Nt I+ WP + e lP +@n?)

2 2
+ e[| g1/ II + elll 0es Il
(4.32)

From the result of approximation of 77 of Theorem 4.1

Py,
Iss < C X (V1220 o + 1V0 N ) (1 CEr/2) o o + 0120l 0, + NEillo ey + g1 110,
k=1

[ (tas2) + Atgjae] ||,
Ny,
<CY (198172l + V0 )1
i=1
X <||71(t]'+1/2)"0,15,- + hllvﬂ(tj+1/2) “0,E,- + ||(PJ'+1/2||0,E,- + ”g]'”o,E,- + ”gj—l”o,g,-)

B2 ([l (ters2) o e, + IV Ers2) o, + AORII Vg2l )
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C( Mgzl + Morgilll, ) (MaCtions2) ll + Al CEns2) I+ lepensell + il + gD
2 2 2 2

< C(lllnCtra)I* + BN Vatta) 117+ Nl + g1 + an)*)

2 2
+efllgarallly + ellloe

IN

(4.33)
Therefore we get
Is < C(lllnCta ) 1P + Va2 I+ N+ Mgl + an®) i)
2 2 .
+3e (|12l + 3ell| 0 I
Similarly, Iy and Iy are estimated as follows:
Py
< 32 {(@(BU) +b(E)) Va2 ) [03)
k=1" €k
Dy
<C kZIIVsijﬂ/zllo,Ek Il 0651 1l
=1
N,
< CY Vgl g Mloeill,
i=1
2 2 2 4.35
< C(Iveall? + 195 1I7) +llo I (439
Ph
hos 32| {(@(EU) + b(EW)) V(@) - i) grrr]
k=17 ex
Py
< CZ”V(G@-) ||0,ek ” [§j+1/2] ||0,ek
k=1
o (o} 2
<C(J5 @i i) + J5 (458 +elllag I
Substituting the estimates of I;, 1 <i < 10 into (4.19), we get
1 2 2 2 2
A [(egalll® = M) + (9 @) I = W9GI*) + U @ensgon) = T2 8))]
2 2 2
+ 10 Il + (&5 2llly + [ll06&; 113 (436)

2 2 2 2 2
< Clllme e/ I+ AO*+ gall* + M7 + Mt s2) I+ Mggal

2|Vt s2) 1P+ V&l + 1IVEIE + T (@ giea) + T (§5,8)]-
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If we sum both sides of (4.36) from j = 0 to N — 1, then we obtain

MNP = ol + 1IVEnIIP = Vel + T(En, én) + T (Eo, &)

N-1
2 2 2
+ ZAtZ(]) (Maxi I + Mg 2l + Marei 111
i-

N-1 (4.37)
< c{ 80 3 [llnCtra ) I + o roas) I + BTt ) IF + (A0
=0
ol 2 2
+(At)§.(|||§j||| +J(.8) + V&l )}
p=
which implies
= 2 2 2
ENTIE + VeI + T @ én) +288 S (01 + g2l + 0 1)
i=0
<|lloll* + IV éoll* + T (o, o)
38)

N-1
+ €80 X [t I + M Cron ) IF + T a/2) P + (1)
=0

N
@S (I + I8 +1:4)).

where At is sufficiently small. By applying the discrete version of Gronwall’s inequality, we
have

N-1
HEN P+ IVanIIP + @ ) + At Y (ol + gl + el
j=0
< C{ [1Zolll” + IV &olll* + J (o, &) (4.39)

N-1
ALY ([l Coas2) I+ et 2) (1P + W2Vt 2) I + (a5 }

j=0
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Therefore by applying the result of Lemma 4.7 we have

18l c2) + IV Eleoy < C(R° + (A07),
lelllo=iz) < C(h* + (AD?), (4.40)

llelleaery < C(R + (A1),

which proves the optimal £ (L?) error estimation of the fully discrete solutions. O
Lemma 4.7 can be proved by the similar process of Theorem 4.6. as follows

Lemma4.7. For0 <A < land 6 >0, if uy € L*(HY?**1%9), uy € L*(HY?*1), and h™%/2 At < C,,
for some constant Cq then there exists a constant C > 0 independent of h and At

gillz: + V&l < C(he + (an?),
(4.41)

llerlll> < C(h* + (a?).
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