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We obtain the superstability of the Pexiderized multiplicative functional equation f(xy)
g(x)h(y) and investigate the stability of this equation in the following form: 1/(1 + ¢(x,v))
fxy)/g(0)h(y) <1+¢(x,y).

IA I

1. Introduction

The superstability of the functional equation f(x + y) = f(x)f(y) was studied by Baker
et al. [1]. They proved that if f is a functional on a real vector space W satisfying |f (x +
y) — f(x)f(y)| < 6 for some fixed 6 > 0 and all x,y € W, then f is either bounded or else
f(xy) = f(x)f(y) for all x,y € W. This result was genealized with a simplified proof by
Baker [2] as follows.

Theorem 1.1 (Baker [2]). Let 6 > 0, S be a semigroup and f : S — C satisfying

|f(xy) = f0)f(y)| <6 (1.1)

forall x,y € S. Put B := (1 +v1+46)/2. Then |f(x)| < p forall x € S orelse f(xy) = f(x)f(y)
forall x,y € S.

A different generalization of the result of Baker et al. was given by Székelyhidi [3].
It involves an interesting generalization of the class of bounded functions on a group or
semigroup and may be stated as follows.
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Theorem 1.2 (Székelyhidi [3]). Let G be a commutative group with identity 1andlet f,m:S — C
be functions such that there exist functions My, M, : G — [0, o0) with

|f () = f)m(y) | < min{ M (x), M2 (y) } (1.2)

forall x,y € G. Then f is bounded or m is an exponential and f = f(1)m.

In this paper, we prove the superstability of the Pexiderized multiplicative functional
equation (PMFE)

f(xy) = 8(0)h(y). (1.3)

That is, we prove that if f, g, h are functional on a semigroup S with identity 1 satisfying
g(l)=1and

|f(xy) - g(0)h(y)| < p(x,y) (1.4)

for all x,y € S and for a function ¢ : S x S — [0, o0) with some coditions, then g is bounded
or else g is an exponential and h = h(1)g. This is a generalization of the result of Székelyhidi.
Also we investigate the stability of the Pexiderized multipicative functional equation (1.3) in
the sense of Ger [4].

2. Superstability of the PMFE

In this section, let (S, -) be a semigroup with identity 1and ¢ : SxS — [0, c0) a function with

) k+2 + k+1
Dy (x) = Z"’(w’x ) k"’(wx’x ) <o 2.1)
k=0 2
for all x,w € S and
klgr;o [0 (wx, zyk> exists (2.2)

forallx,y,z,w € S.
Example 2.1. The following functions satisfy conditions (2.1) and (2.2) above.

(a) p(x,y) = 6, for every x,y € Rand 6 > 0.
(b) ¢(x,y) = |t(x)], for every x,y € S and ¢ is a functional on S.
(c) p(x,y) =|x|+1/(1 +|y|), for every x,y € R.

)

(d) p(x,y) =1/(1 + |x| + |y|), for every x,y € R.



Journal of Inequalities and Applications 3

Example 2.2. Let (S,-) = ([0,0),+) and also g(x) = e*, h(x) = e**¢,

flx) = e+ % (2.3)

for all x € S and for some ¢ € S. Let ¢(x,y) = 1/(1 + x + y). Then f, g, h, ¢ satisfy the
conditions (1.4), (2.1), (2.2) and

1

|f(x+y) - g(x)h(y)| = Trxty (24)

In particular, we know that g(0) =1, g(x+y) = g(x)g(y), h = h(0)g, and f(x+y) # f(x) f (y).

Theorem 2.3. Let (S,-) be a semigroup with identity 1. If f,g,h :+ S — C are functions with
|g(m)| > max{2,2®;(m)/|h(m)|} for some m € S satisfying g(1) = 1 and condition (1.4), that is,

|f(xy) - gk (y)| <o(x,y), (2.5)
then
g(xy) = g(x)g(y) (2.6)

forall x,y € Sand h = h(1)g.

Proof. If we replace x by m and also y by m in (1.4), we get
|£ (m?) - m)h(m)| < p(m, m). (27)

Also we replace x by 1 in (1.4), then we have

|f(y) -h(y)| <o(Ly) (2.8)

for all y € S. An induction argument implies that for all n > 2,

n-2

| £ = g(m)" " h(m)| < g (m,m' ) + 3| g(m)|* (@ (L") + g (m,m* 1)), 29)

k=1
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Indeed, if inequality (2.9) holds, using inequality (1.4) and (2.8) we have

|f (m1) = g(m)"h(m) |
< | fomm") = g(m)h(m™)| + [g(m)||h(m") = f (m")]
+ [gm)| f(m") - g(m)" " h(m)|

< @(m,m") +|g(m)|p(1,m") (2.10)

n-2

+|g(m)| <tp<m, mn—1> + |g(m)|k<q)<1/mn—k> +(P<m,mn—k—1>>>

k=1

= p(m,m") + §|g(m)|k<¢<1,m"+l_k> + (p<m, m"‘k>>
k=1

for all n > 2. By (2.9), we have

‘ f(m") _1(
n-1
g(m)""h(m)

1 p(m, m”‘l) n-2 1 N .

= TG g m)] < g & gmy (o1 m™) + o (™ 1>>>
1 1

< W((‘P<l,m2> +<P(m,m)> + §(<p(1,m3) n <P<m,m2>> .

s (o (1) i (mon )+ (e (mo™)) )
o))

O

= 1 k+2 k+1
|h(m)||g(m)|< 2_k p(1,m"2) + g (m 1)) +
Z

1 . .
|h<m>||g<m> z_k@’( %)+ g (mm))
L %am 1
h(m)[|g(m)] = 2

(2.11)

Thus we can easily show that |f(m")| — oo from |g(m)"_1h(m)| — oo asn — oo and thus
|h(m™)| — cwasn — oo. By (1.4),

f(xm™) < plx,m")

oy~ 809] < i (212
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and thus we have

g(x) = lim DACL)

Jim 2 (2.13)

forall x € S. Then, by (2.2),

[8(x) - )W) = im G| £ (rym) — ) (ym)|
(n)|(|f(xym”) §h(ym")| +|g()||h(ym") - f (ym")])

o h

< J%M(‘P(% ym") +|g(x)|p(1,ym")) =0,

(2.14)
and so
g(xy) =8(x)g(y) (2.15)
forall x,y € S. Thus we have |g(m")| = |g(m)"| — oo asn — oo. Since
f(xm™) ~ p(x, m") .
2 h(x )| < Tgm] 0 (2.16)
asn — oo, we can define h by
f(xm™)
h(x) = Jﬂo 20 (2.17)
for all x € S. Then
h(Dg(x) = lim {;Emi Fon) = g(Dhx) = h(x) 218)
forall x € S. U

Corollary 2.4. Let (S, +) be a semigroup with identity 0 and f,g,h : S — C functions satisfying
the inequality

|f(x+y) - gx)h(y)| < p(x,v) (2.19)

forall x,y € S.If g(0) = 1, then g is bounded or else g is exponential and h = h(0)g.
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Theorem 2.5. Let (S,-) be a semigroup with identity 1 and f,g,h : S — C functions satisfying
condition (1.4), that is,

|f(xy) - g(@)h(y)| <o(x,y). (2.20)

If g satisfies that g(s)#0 for some s € S and |g(sm)| > max{2|g(s)|,2Ds(m)/|h(m)|} for some
m € S, then

g(sxy) = ﬁg(sx)g(sy) (2.21)

forall x,y € S and h(x) = (h(1)/g(s))g(sx).
Proof. Let?(x) = f(sx), g(x) = g(sx)/g(s) and E(x) = g(s)h(x) forevery x € Sand p(x,y) =
¢(sx,y). Then

|7 (xy) - 30h ()| < 9(x,y) (222)
forall x,y € S, |g(m)| > max{Z,Zal(m)/lﬁ(m)H and g(1) = 1 where @, (m) = Oy(m). By
Theorem 2.3, we complete the proof. O

Corollary 2.6. Let (S,-) be a semigroup with identity 1. If f,g,h : S — C are nonzero functions
satisfying condition (1.4), that is,

|f(xy) —g(h(y)| < p(x,y), (2.23)
then either g is bounded, or else
1
g(sxy) = @g(sx)g(sy) (2.24)

forall x,y € S and h(x) = (h(1)/g(s))g(sx).

Proof. Let g(s) #0 for some s € S. If g is unbounded, then there exists m such that |g(sm)| >
max{2|g(s)|,2®s(m)/|h(m)|}. By Theorem 2.5, we complete the proof. O

3. Stability of the PMFE

In 1940, Ulam gave a wide-ranging talk in the Mathematical Club of the University of
Wisconsin in which he discussed a number of important unsolved problems [5]. One of those
was the question concerning the stability of homomorphisms.

Let Gy be a group and let Gy be a metric group with a metric d(-,-). Given ¢ > 0,
does there exist a 6 > 0 such that if a mapping h : Gi — G, satisfies the inequality
d(h(xy), h(x)h(y)) < 6 for all x,y € Gy, then there exists a homomorphism H : G; —
G, with d(h(x), H(x)) < e forall x € G;?
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In the next year, Hyers [6] answered the Ulam’s question for the case of the additive
mapping on the Banach spaces Gi, G,. Thereafter, the result of Hyers has been generalized
by Rassias [7]. Since then, the stability problems of various functional equations have been
investigated by many authors (see [6, 8-18]).

Ger [4] suggested another type of stability for the exponential equation in the
following type:

flx+y) ‘S 31)

f@)f(y)

In this section, the stability problem for the Pexiderized multiplicative functional equation in
the following form:

1 Sy
L+¢(xy) g(x)h(y)_

+¢(x,y) (3.2)

will be investigated.
Throughout this section, we denote by (S, ) a commutative semigroup and by ¢ :
Sx S — [0,c0) a function such that

i 1 n n
Y(x,y,z,w)=> —In(1+¢(xz",yw”)) < oo (3.3)
$ (a2 )
forall x,y,z,w € S. Also we let
u(x,y) =In(1+¢(xy))(1+¢(y,x)(1+¢xx)1+¢(y,y)) (3:4)

for all x, y € S. Inequality (3.3) implies that

(a) forallx,z € S

gzl—nu<xz2",xz2”> = izll (1 + (p<xz ", xz” >>4 =4%¥(x,x,z,z) < oo, (3.5)

n=0

(b) forallx,z€ S
gzl (x = >=izl <1+<P(x z >><1+lp<z X 2))
: <1 + qr(xz,xz» (1 + (P<Zzn/zzn>> (3.6)

= ‘P(xz, 1, 1,z> + qf(l,xZ, z,1> + ‘P(xz,xz, 1, 1) +¥(1,1,z,2) < oo,
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(c) forallx,z€ S

wl 4 2"\ _ 4 4 4 4
§2nu<x,z> 1I‘<x,1,1,z>+‘I’<1,x,z,1>+‘P<x,x,1,1>+‘P(1,1,z,z)<oo, (3.7)

(d) forall x,y € S for

. 1 on on
i ()
_ . 1 2Yl 2" 27[ 27[ 27[ 27[ 2" 2" _
= Jim e (Lo (o y7)) (10 (v ) - (Lo () ) (Lo (v 97)) =0,
(3.8)
because
¥(1,1,x,y)+¥(1,1,yx)+¥(1,1Lxx)+¥(1,1,y,y) <co. (3.9)
Example 3.1. The following functions satisfy condition (3.3) above.
(a) ¢g(x,y) =6, forevery x,y € Rand 6 > 0.
(b) ¢g(x,y) =1/(1 +|x| +|yl), for every x,y € R.
Example 3.2. Let (S,-) = ([0,0),+) and also g(x) = e*, h(x) = e**¢,
f(x) = e"”(l + ! ) (3.10)
- 1+x '

forall x € S and for some c € S. Let ¢s(x,y) =1/(1+x+y). Then f, g, h, ¢ satisfy condition
(3.3) and

1 fxry)
L+¢(xy) ~ g(x)h(y)

<1+¢(x,y). (3.11)

In particular, we know that if we let T (x) = e* then

CTW e T T .

o
—F < Ser, =1, =e 3.12
2 = 7 £ ) 1

Theorem 3.3. If f,¢g,h : S — (0, o0) are functions such that
! < fxy) <1+¢(x,y) (3.13)

L+¢(xy) ~ g(x)h(y)
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forall x,y € S, then there exists a function T : S — (0, 0o) and there exists a constant M such that

T(xy) =T(x)T(y) forall x,y € S and

forall x € S. Moreover, if ¢ is bounded, then

eiM] S m S eM1
g(x)

7

-Mi < m < M
S ) S

for all x € S and for some constant M;.

Proof. If we define functions F,G,H : S — Rby

F(x) =In f(x), G(x) =Ing(x), H(x) =Inh(x)

for all x € S, then equality (3.13) may be transformed into

In Tromy) - F(xy) - G(x) - H(y) <In(1+¢(x,v)),

and thus
[F(xy) - G(x) - H(y)| s In(1+¢:(x,y)),
for all x, y € S. For the case of x = y, the above inequality implies

|F(x?) - G) - H)| < In(1 + gr(x, )

and so
[2F (e - () = F(v*)]
<|F(xy) - G(x) - H(y)| + |F(xy) - G(y) - H(x)|

+ |G(x) +H(x) - F<x2>| + |G(y) +H(y) - F<y2>|

<SIn(l+¢(oy)T+¢(y,x)) (L+g0,x)(1+¢(y,y)) =u(x,y)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

for all x, y € S. Putting xz instead of x and yz instead of y in (3.20), respectively, we get

|2F <xzzy> - F<x222> - F<y222> | <u(xz,yz).

(3.21)



10 Journal of Inequalities and Applications

Letting x by x? and y by z* in (3.20), we have

u(xz, zz>, (3.22)

and also

< %u<y2, zz>. (3.23)

F(2) - 3P (/) - 57 (=)

From (3.21), (3.22) and (3.23),

or(a) - 1r(x) - 1) £()

<u(xz,yz) + %u<x2, zz> + %u(yz, z2> (3.24)

for all x,y,z € S. Now replacing x by xz and y by yz, respectively, we have

oozt - Sr(e) - Lr() - £(2)

< u(xzz,yz4> + %u(xzzz, zz> + %u<y222,22>

(3.25)

forall x,y,z € S. Replacing x by xz and y by yz in (3.21), (3.22), and (3.23), respectively, one
obtains

< %u(x z°,z >, (3.26)

(3.27)
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forall x,y,z € S. Thus we have

(2 2) )+ (o)

for all x,y, z € S. For arbitrary positive integer n, putting z*" instead of z in (3.24) and 2
instead of z in (3.28), respectively, we see that

2P (x2"y) - F(*7)
<o ) e qu( ) ¢ qu( 7)o P ()] PG,

‘21—’ <xzz"” y> - %F(zzm> - P(%””)‘ (3.29)
<u(xz,yz") + %u<x222n,zzn> + %u<y2zzn,z2n>

=) Bt ) L) L)

forall x,y,z € S. By (3.29) withx = y,

< et sF () - F ()|
< 23” <|F<zzm> - 2F<x22 x>| + 2F<x22 x> - —F(ZZM) - F<22 )D (3.30)
< 2’}” <2u<xzzn xz? ) + u<x2 z? > + u<x222 z? )




12 Journal of Inequalities and Applications

for all x, z € S. By (3.30), for every positive integer k, m with k > m > 2, we have

F(=")  pE)

om+k 2m
k |F(22"")  F(z22""
< ; <2m+i ) a <2m+1—1 >
< izml_l <2u<x22 ,xz? H) + u<x2/ z 1) +”<xzzzm R 2) (3.31)

as m — oo. This proves that {F(z?")/2"} is a Cauchy sequence in R. Thus we can define a
function L : S — Rby

L(z) = lim FE) (332)

n—oo 2N

for all z € S. Then, by (3.20) and (3.31), we have

F(x*y*) F(x*) F(y”)
on T on T opnm

|L(xy) - L(x) - L(y)| < lim

< nlgrc}o 23+1 oF <x2ny2n> B F<x2n+l> B F(yznﬂ)'
ne ne (3.33)
+ lim F<x211> CFC L i Fv™) RV
n— oo 21+ n n— oo on+l on

< lim ! u(xzn,y2n>+0+0=0

n— oo 2N+1
for all x,y € S. Thus

L(xy) = L(x) + L(y) (3.34)
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for all x,y € S. Now replacing x by xz and then y by yz in (3.20), respectively, we obtain

|2F(xyz) - F(x222> - F(y2> | <u(xz,vy),

(3.35)
|2F(xyz) - F<x2> - F<y2z2> | <u(x,yz)

and so
|F<x2> - F<y2> + F<y222> - F<x222> ' <u(xz,y) +u(x,yz) (3.36)
forall x,y,z € S. By (3.22), (3.23), and (3.36), we have

F(2) =P () - 57 () # 57 (+)

<u(xz,y) +u(x,yz) + %u(xz, zz> + %u<yz, Zz>,
(3.37)

and thus

'F<x4> - 2F<x2>| <2u(xz,y) +2u(x,yz) + u<x2, z2> + u(yz, z2> + |F<y4> - 2F<y2>| < oo

(3.38)
for all x € S and for fixed y, z € S. By (3.3) and (3.30),
(=) - r(2)| -4l - FG2 < [ - 5
2 p(zz’“) F<sz+1> (3.39)
- 41112‘%0; o2 g |

for all s € S. By (3.20), (3.38) and (3.39), for all z € S with x = zw, there exits a constant M
such that

IL(x) = F(x)| = [L(zw) = F(zw)|

F(zw) - %F<22> - %F<w2>

= ) E)
O O O o I
)2 ()

<M.
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Now we define a function T : S — (0, o0) by

T(x) := ™ (3.41)
forall x € S. Then
T(xy) = et = LW = T ()T (y) (3.42)
for all x, y € S. By (3.40), we have
-M<L(x)-Inf(x) <M, (3.43)

and thusforallx € S

e < ——=<e". (3.44)

If ¢ is bounded, there exist constants M, M; such that

|G(x) = H(x)| £ |G(x) + H(yo) = F(xyo) | + |F(xy0) = G(yo) — H(x)| + |G(y0) = H (o)
<In(1+¢(x, y0)) +In(1+¢(yo,x)) +|G(yo) — H(yo)| < Mo,

(3.45)
and so
1 5 5 1 2 1
IL(x) - G(x)| < E|L(x ) - F(x )) + E|1f<x ) - H(x) - G()| + 5 /H(x) - Gx)|
. (3.46)
< E(M +ln(1 + q,r(x,x)) + Mo) <M,
and by the same method above, we have
IL(x) - H(x)| < My (3.47)
for all x € S. Therefore, we have
i} T(x) - T(x)
e M < =L <My Mi ¢ 222 < oM 3.48
5@ h) (349

forall x € S. O



Journal of Inequalities and Applications 15

References

[1] J. A. Baker, J. Lawrence, and F. Zorzitto, “The stability of the equation f(x +y) = f(x) + f(y),”
Proceedings of the American Mathematical Society, vol. 74, no. 2, pp. 242-246, 1979.
[2] J. A. Baker, “The stability of the cosine equation,” Proceedings of the American Mathematical Society, vol.
80, no. 3, pp. 411-416, 1980.
[3] L. Székelyhidi, “On a theorem of Baker, Lawrence and Zorzitto,” Proceedings of the American
Mathematical Society, vol. 84, no. 1, pp. 95-96, 1982.
[4] R. Ger, “Superstability is not natural,” Rocznik Naukowo-Dydaktyczny WSP Krakkowie, vol. 159, no. 13,
pp. 109-123, 1993.
[5] S. M. Ulam, Problems in Modern Mathematics, chapter 6, John Wiley & Sons, New York, NY, USA, 1964.
[6] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Acadenty of
Sciences of the United States of America, vol. 27, pp. 222-224, 1941.
[7] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American
Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978.
[8] G. L. Forti, “Hyers-Ulam stability of functional equations in several variables,” Aequationes
Mathematicae, vol. 50, no. 1-2, pp. 143-190, 1995.
[9] D. H. Hyers and Th. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44,
no. 2-3, pp. 125-153, 1992.
[10] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress
in Nonlinear Differential Equations and Their Applications, 34, Birkhéduser, Boston, Mass, USA, 1998.
[11] K. W. Jun, G. H. Kim, and Y. W. Lee, “Stability of generalized gamma and beta functional equations,”
Aequationes Mathematicae, vol. 60, no. 1-2, pp. 15-24, 2000.
[12] S.-M. Jung, “On a general Hyers-Ulam stability of gamma functional equation,” Bulletin of the Korean
Mathematical Society, vol. 34, no. 3, pp. 437446, 1997.
[13] S.-M. Jung, “On the stability of gamma functional equation,” Results in Mathematics, vol. 33, no. 3-4,
pp- 306-309, 1998.
[14] G. H. Kim and Y. W. Lee, “The stability of the beta functional equation,” Babes-Bolyai. Mathematica,
vol. 45, no. 1, pp. 89-96, 2000.
[15] Y. W. Lee, “On the stability of a quadratic Jensen type functional equation,” Journal of Mathematical
Analysis and Applications, vol. 270, no. 2, pp. 590-601, 2002.
[16] Y. W. Lee, “The stability of derivations on Banach algebras,” Bulletin of the Institute of Mathematics.
Academia Sinica, vol. 28, no. 2, pp. 113-116, 2000.
[17] Y. W. Lee and B. M. Choi, “The stability of Cauchy’s gamma-beta functional equation,” Journal of
Mathematical Analysis and Applications, vol. 299, no. 2, pp. 305-313, 2004.
[18] Th. M. Rassias, “The problem of S. M. Ulam for approximately multiplicative mappings,” Journal of
Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352-378, 2000.



