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Approximation on the spherical cap is different from that on the sphere which requires us to
construct new operators. This paper discusses the approximation on the spherical cap. That is, the

so-called Jackson-type operator {J}", }Z’_l is constructed to approximate the function defined on the

spherical cap D(xp,y). We thus establish the direct and inverse inequalities and obtain saturation
theorems for {J{".}}° on the cap D(x, y). Using methods of K-functional and multiplier, we obtain

the inequality C1| ", (f) = fllpp < w*(f, k'l)D/p < Comaxysk || J375(f) = flp,p and that the saturation
order of these operators is O(k‘z), where w?( f.t) Dp is the modulus of smoothness of degree 2, the
constants C; and C, are independent of k and f.
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1. Introduction

In the past decades, many mathematicians dedicated to establish the Jackson and Bernstein-
type theorems on the sphere (see [1-9]). Early works, such as Butzer and Johnen [3],
Nikol’skii and Lizorkin [8, 9], and Lizorkin and Nikol’skii [5] had successfully established
the direct and inverse theorems on the sphere. In 1991, Li and Yang [4] constructed Jackson
operators on the sphere and obtained the Jackson and Bernstein-type theorems for the Jackson
operators.

Jackson operator on the sphere is defined by (see [4])

1
s )0 = o [ £ (arccos x- ) £ (v)dwo (), (11)
where k and s are positive integers,
_ /sin(k6/2)\*
Dys(0) = (m) (1.2)
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is the classical Jackson kernel, f is measurable function of degree p on the sphere S"! in R”",
dw(y) is the elementary surface piece, [S*!| is the measurement of S"!. For f € LP(S"}),
(1 < p < o) (L*®(S"?) is the collection of continuous functions on §"!), Li and Yang [4]
proved that

Ci||Jis(f) - f (1.3)

Sn-1 ,pl

k
S lp < w2<f/ k_1> <G k_zvz:;v”]"w(f) _f

and the saturation order for Ji s is k2, where C; and C; are independent of positive integer k
and f, and w?(f,t) is the modulus of smoothness of degree 2 on the unit sphere S"!.

Naturally, we desire to obtain the similar results on the spherical caps. To achieve the
goal, a key issue is to establish the inverse inequality on the cap.

Recently, Belinsky et al. [2] constructed mth translation operator Si when discussing
the averages of functions on the sphere. This inspires us to construct the mth Jackson-type
operator Ji” on the spherical cap. We then prove a strong-type converse inequality for ",
which helps us get the direct and inverse theorems of approximation on the spherical cap.
Also, we obtain that the saturation order for the constructed Jackson-type operator is k=2, the
same to that of the Jackson operator on the sphere.

2. Definitions and Auxiliary Notations

Throughout this paper, we denote by the letters C and C; (i is either positive integers or
variables on which C depends only) positive constants depending only on the dimension 7.
Their value may be different at different occurrences, even within the same formula. We will
denote the points in S” by x and y, and the elementary surface piece on S"™! by dw. If it is
necessary, we will write dw(x) referring to the variable of the integration. The notation a = b
means that there exists a positive constant C such that C™'b < a < Cb where C is independent
of a and b.

Next, we introduce some concepts and properties of sphere as well as caps (see [7, 10]).
The volume of S"! is

2/2
1= = . 21
Qu1 ISnldw T72) (2.1)
Corresponding to dw, the inner product on S"! is defined by
(f.8) = fs f3@dw(x). (22)

Denote by LP(S"!) the space of p-integrable functions on S"! endowed with the norms

£ Wes = 1l o @y += ess sup [ f(x)],

xeSn-1

" (23)
171 = WAl = { [ 1Pt} <o 15p<on
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We denote by D(xy, y) the spherical cap with center xo and angle 0 < y < or/2, that is,
D(xo,y) = {x eS"™!:x-xy > cos y}, (2.4)
and by D(y) the volume of D(xy, y), that is,

S"2{sin""204d6. (2.5)

D) = |

¥
0

Then for fixed xo and y, L? (D(xo, y)) is a Banach space endowed with the norm ||-||p, defined

by

[£llpe = ess sup |f(x)],

xeD(xp,y)
1/p (2.6)
oy = {f, Vool 1<pee
D(xo,y)
For any f € LP(D(xo,7)), we note
f(x), x€D(x,y),
frx) = (2.7)
0, X € Sn_l \ D(xO/ Y)/
and clearly, f* € LF(S"™!) and || f*|l, = ||fllp,- This allows us to introduce some operators on
spherical cap using existing operators on the sphere.
Definition 2.1. Suppose that T : LP(S*!) — LP(S"!) is an operator on S"™!, then
Ty : P (D(x0,7)) — L7 (D(x0,7)), 3)

ey (f) () =T(f*)(x), x€D(x0,)

is called the operator on D(xo, y) introduced by T. We may use the notation T instead of Ty,
for convenience without mixing up.

We now make a brief introduction of projection operators Y;(-) by ultraspherical
(Gegenbauer) polynomials {G;‘ }21 (A = (n - 2)/2) for discussion of saturation property of
Jackson operators.

Ultraspherical polynomials {G?}]?'Zl are defined in terms of the generating function
(see [11]):

1 = i
——— = > Gj()7, 2.9
(1-2tr +r2)* ]EO ! (2.9)

where |r| <1, [t| < 1.
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For any A > 0, we have (see [11])
Gj(t) = 2At,

%G;(t) = 20G}*| (#).

When A = (n-2)/2 (see [7]),

Gty = B _puy 01,2
;()—m;()/ J=Y4L2s...

where P?(t) is the Legendre polynomial of degree j. Particularly,

Aeas r(2r+7j) . r(21+7j) .
G](l)—mp](l)—m, ]—0,1,2,....
Therefore,
NC

Besides, forany j =0,1,2,..., and [f| <1, [P!(t)| <1 (see [10]).
The projection operators is defined by

TW(n+1)
o

() = [ Gl waw).

It follows from (2.10) and (2.13) that

1-(Pr0)"  j(j+2y)
tl%lq_(p{«(t))m 20 +1

In the same way, we define the inner product on D(xy, y) as follows:

Fgho= [ fwEEIRE.

D(x0,y)

We denote by A the Laplace-Beltrami operator

;o 8= f(%)

- naZ()
Af::Z Eicf

i=1 i

|x|=1

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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by which we define a K-function on D(xy, y) as
K(f,6)p, = inf{ I - gllp, + 6||/~3g||D,p . g, Ag e IP(D(x0,7)) } (2.18)
For f € LY(D(xo,Y)), the translation operator is defined by

So(f)(x) = | f(y)dw'(y), (2.19)

: j
Sn-2 | sin""29 x-y=cos 6

where dw'(y) denotes the the elementary surface piece on the sphere {y € D(xp,y) : x -y =
cos 0}. Then we have

f f(x)dw(x) = f So(f)(x0) S"2|sin"264d6. (2.20)
D(xg,y) 0
The modulus of smoothness of f is defined by
w(f,6), = sup [|Se(f) = flIp,,- (2.21)
P 0<oss P
Using the method of [3], we have
C1*(f,6)p, < K(f, 62)% < Co?(£,6) ., (2.22)

We introduce mth translation operator in terms of multipliers (see [6, 7, 12])

© /G cos@)\ " o m
Sé"(f)=2<¥> Y;(f) =, (Pr(cos ) Yi(f), felF(D(xy)). (223)

j=0 G}\(l) j=0

It has been proved that (see [7])

SN0 = g S @) = X eose (1)
X-1Yy=COs j=

|S”‘2|sin (224)

= Sp(f) ().

With the help of S, we can construct Jackson-type operator on D(xo, y)-

Definition 2.2. For f € LP(D(xo,y)), the mth Jackson-type operator of degree k on D(xy,Y) is
defined by

Y -
Jis(f)(x) = LS? (f) (%) Dy,s(8)sin* 6046, (2.25)
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where A = (n - 2)/2, and Dy 4(6) = AL (sin® (k6/2) /sin*7! (8/2)) satistying [!Dys(0) x
sin?'0d6 = 1.

Remark 2.3. We may notice that f)k,s (0) is a bit different from classical Jackson kernel

sn0/2)) 229

Dis(0) = < sin(0/2)

This difference will help us to prove the converse inequality for J".. For sake of ensuring that
the converse inequality for J;" holds, y has to be no more than /2. Particularly, for m =1,
we have

Jos(f)(x) = IZSZJ (f)(x) Dy s(6)sin?*0d0

Y 1 5
=| =52, *(y)dw' (1) Dy s (0)sin**0d6
[ ). S @De)

(2.27)

1 s e
= WID(xO,y)f (y)Dx,s(arccos(x - y))dw(y)

1

15721 ) D(xoy) A D)

f () Dics (arccos (x - y) ) dewo (y)..

Finally, we introduce the definition of saturation for operators (see [13]).

Definition 2.4. Let @(p) be a positive function with respect to p, 0 < p < oo, tending
monotonely to zero as p — oo. For p > 0, I, is a sequence of operators. If there exists
K S LP(D(xp,7)) such that:

() I 1L,(f) - fllop = 0((p)), then I,(f) = f:
(ii) I1,(f) - flloy = O((p)) if and only if f €

then I, is said to be saturated on L” (D (xo, y)) with order O(¢(p)) and KX is called its saturation
class.

3. Some Lemmas

In this section, we show some lemmas on both Sg' and J”', as the preparation for the main
results. For S, we have the following.

Lemma 3.1. For f € LP(D(xo,y)), 1<p <00, 0<0 <,
(i) for1 <my <m, S = S Sg™™;
(i) for m 2 1, [ISg"(H)llop < I fllpp:

(iii) for m 2 1, ISg'(f) = fllpp < mlISe(f) = fllpp

(iv) form > 2([n/2] +3)/(n-2),0 < 6 < x/2, ||ZSS¢(f)||D,p < Cm9‘2||f||D,p, where
Cn — 0,a3m — oo;

(v) for m > 1, and f which satisfies Af € LP(D(xo, 7)), |AST(F)lpp < 1A fllp,-
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Proof. (i), (ii) and (iii) are clear. Using [2, Remark 3.5], we can obtain (iv). For (v), we have

ESo(f) = -3i(j+20) P cos 0)Y;(£) = Sa(&f), (3.1)

j=0

which implies

A qm _ A qgm-1 A qgm-1 . A
|3szoll,, = |se@si )], < [8si D], < < [ar,, 62
O
We need the following lemma.
Lemma 3.2. For p>-2,2s>f+2\A+1,0<y<a,n2>3,and k > 1, one has
Yoo
f 6P Dy (0)sin*'0 dO = k7P, (3.3)
0
where A = (n—2)/2.
Proof. A simple calculation gives, for > -2,
Y@ﬂ Sinzs(ﬂsinﬂgdg <C wﬂ 4O ) 25— (2A+p+2)
0 sinZs—l (6/2) - 0 625—(2)L+ﬂ+1) ’
; (3.4)
H S 4 . S
Y SN (KO/2) g of (TS0 N e eupe
0 sinZS—l (9/2) - 0 925—(2)L+ﬁ+1)
Therefore,
Yo Y0Psin (kO /2) /sin**71(0/2)sin*'0d0O
f 6° Dy 4 (0)sin**0d6 = Jo — (k0/2) —— ( ), -~ =~ kP (3.5)
0 j051n *(k0/2)/sin*~"(0/2)sin“"0d0O
O

For Jackson-type operator, we have the following lemma.
Lemma 3.3. For f € LP(D(xo,Y)), 1 < p < oo, there hold

@ TNy < 1l ps

(ii) for f which satisfies A f € LP(D(x0,7)), |AT.(f)llpp < 1A fllpp:

(iii) for n >3, m > 2([n/2] +3)/(n=2), and 0 <y < /2, | AJ7.(f)llpp < Cuk?llf -
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Proof. From the definition and (ii) and (v) of Lemma 3.1, (i) and (ii) are clear. We just have

to add the proof of (iii). In fact, using Minkowski inequality, (iv) of Lemmas 3.1 and 3.2, we
have

|350],, < f:((ﬁs’;(f)((Dlpﬁk,s(e)smzede
< Call o [ 07 Drs(@sin*ea0 36
0

= Coyk* | fllp,r

where the constant in the approximation is independent of m and k. O

The following lemma is useful in the proof of the converse inequality for Jackson-type
operator.

Lemma 3.4 (see [14]). Suppose that for nonnegative sequences {0k }i=q, {Tk } 1oy with o1 = 0 the
inequality

k\?
0&(;) ok+T, p>0,1<k<n, (3.7)
is satisfied for any positive integer n. Then one has

oy < Cpn‘ka”‘lrk. (3.8)
k=1

The following lemma gives the multiplier representation of J;".(f), which follows from
Definition 2.2 and (2.23).

Lemma 3.5. For f € LP(D(xo,7)), J;',(f) has the representation

JE () (x) = Z(;ézi" (NYi(f) ), (3.9)
<
where
V. m
&) = f Dis(0) (P (cos0)) "sin™0 d6, j=0,1,2,.... (3.10)
0

The following lemma is useful for determining the saturation order. It can be deduced
by the methods of [13, 15].
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Lemma 3.6. Suppose that {Ip}p>0 is a sequence of operators on LP(D(xo,y)), and there exists

function series {1, (j) }]f‘il with respect to p, such that
L () () = 20 ()Y (f) (%) (3.11)
j=0

or ever e’ Xo,Y)). If forany j =0,1,2,..., there exists — 0+ — pg) such that
for every f € LP(D(xo,)). If for any j h 9(p) (p — po) such th

1-43) _

lim =1 #0, (3.12)

Ph (o)

then {1, }p>0 is saturated on LP(D(xo,y)) with the order O(¢p(p)) and the collection of all constants
is the invariant class for {Ip}p>0 on LP(D(xo,Y)).

4. Main Results and Their Proofs

In this section, we will discuss the main results, that is, the lower and upper bounds as well
as the saturation order for Jackson-type operator on L” (D(xy,Y)).
The following theorem gives the Jackson-type inequality for J"..

Theorem 4.1. For any integer m > 1 and 0 < y < /2, {J" }{2, is the series of Jackson-type

operators on LP(D(xo,y)) defined previously, and g € L;(,Z) (D(x0,7)) = {f € LP(D(x0,7)) : Zf €
LP(D(x0,7))},1 <p < o0.
Then

o) =]l < Cmr 7 3] ., @
Therefore, for f € LP(D(xo,Y)),

)= 11l < Conr 2 (£57),,, 42)

P

where C is independent of k and f.

Proof. Since g € L;,z)(D(xo,y)), we have (see [13])

v

0
Se(g)(x) - g(x) = f sinz‘"vf sin" 7S, (Z g) (x)dr dv, (4.3)
0

0
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and it is true that

0 v
sup{@‘zf sinz_"vf sin"2rdr dv} < oo. (4.4)

6>0 0 0

Therefore (explained below),

V.
7=, = ”foDkls(@)(SE” (8)(x) - g(x))sin" 206

D,p

Y 0 v -
< mf Dy s(0)sin" 20 <I sinz‘”v’[ sin™ 2t ST(Ag)” dev>d9
0 0 0 Dp

0 v B r o
< msup { G’ZI sinZ*”vJ' sin"27dr dv} |135], f 62Dy (0)sin™20 do
PJo

0>0 0 0

<cuklis],,
(4.5)

where the Minkowski inequality, (4.3), and Lemma 3.1 are used in the first inequality, and
the second and third one are deduced from (3.3) and Lemma 3.1. From (2.22) and (i) of
Lemma 3.3, it is easy to deduce (4.2). O

Next, we prove the Bernstein-type inequality for Ji” (f)(x) for f € LF(D(xo, y)).

Theorem 4.2. Assume that {]1?,15 Yooy, m > 2([n/2] +3)/(n - 2) are mth Jackson-type operators on
D(xo,7). For f € LP(D(x0,y)), 0 < y < ar/2, then there exits a constant C independent of k and f
such that

W(fkT),, < Cmaxl () = £, (46)

holds for every f € LP(D(xy,y)) and every integer k.

Proof. Li and Yang [4] have proved the Marchaud-Steckin inequality for Jackson operator on
the sphere. Following the method in [4], we first prove the Marchaud-Stetkin inequality for

T
k
W*(f, k‘1>Dp < Cik2Y ol () = £l (4.7)
! v=1

Let

o= k|3, = -, (48)
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then for v = 1,2,..., k, by Lemma 3.3,
o = k2| A7) = AJL UL + AR5,
= k2|7 - 1|, + | A azon|,,
<k (CRlf - F Pl + |BI2 0], )

=Cllf = I, + K| BT,

2
:Cn+<%)ow

so we can deduce from Lemma 3.4 (where p is set to be 2) that

k
ok < Ck"ZZvTv,

v=1

that is,
|35, <c ilvllfﬁfs(f) ~fllp,

Since there exists k/2 < r < k such that

” rr'tis(f)_f”D,P: min ” Z}s(f)_f“D,p

k/2<v<k

then,

K(£K2), < I = Fllop + K2 B2,

k
<4 3 o) = Fllp, + Ok D0l ) - £,
v=1

k/2<v<k
k
<Ck2 30015 () = fllp,-
v=1
By (2.22), we obtain that

W(f, k‘1>D,p < CK(f,k?)

Dyp

k
< Ck? Yol 15 () = fllp,
v=1

11

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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So (4.7) holds, and it implies that

k
2 -1 -1-1/2 1/2 ym _
W (fk )D/p < Cik ;v 172 =l (4.15)
In order to prove (4.6), we have to show that

W (f K —maxvzll N = Fllp,
Dp

X (4.16)
k2+1/4 1< a<)li‘()2+1/4”]v s(f) f”Dp'
We first prove
w2<f, k‘1> —2{3%02” ()= Fllp, (4.17)
It follows from (4.2) and (4.15) that
W (fK7), <Ok Zklfzzlv*”( 22 (F) = o)
k
<k (max () - fll,, ) (k”Zv*’”)
v=1
< Csk*max o*|| 17 (f) - fll
sosk ’ (4.18)

< Cik*max v* w (f v‘1>
1<v<k Dyp

e\ 2
-2 2 k 2 -1
SC5<k 1rnsvagliv <1+ <v> >>w <f,k >D,p

<205 (f, k‘1>D,p.

Then we prove

_ 1
(L), = max e N ~ fl, (419)
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In fact, the proof is similar to that of (4.17)

wZ(f/k—1>D, < C k—2 1/4k3/4ZU_7/4< 2+1/4“]vs(f) f”DP)

k=1
<Gk (pﬂayg VAT - f IID,p> <k3/ 4;10‘7/ 4)
< Cok ™ rmax A 4 1) - £,
< Gk 1/411‘212’((02*1/4 2(]’ v >D/p
<Cs <k‘2-1/4g%>](< 2 1/4 <1 + <§>2>>w2 (f, k_1>D,p < 2Cgw? (f, k‘l)D,p.
(4.20)
Hence,
WH(fKT), = plrlgagfll ~fllp, = k2+11/4 max o> AT (F) = flp, (4210)
Now we can complete the proof of (4.6). Let
max o™ V4 [ (f) = £l = k4| ) - f”D,p, 1<k <k (4.22)
It follows from (4.16) that
2k - 1|, < K max ol -
< omax () - (423)
= g e 7,
Thus, C9‘4k < kj. Since ki < k, then k = k1, we obtain from (4.16) that
(S, S Cok ™ max o D - Fl,
= Cypk >/ (k%+1/4||]lz’11,s (f) - f”D,p) w2

2-1/4 241/4
< Crok™ krnaxkv || S(f) - f”Dp

< Comax [|15(f) = £l
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Noticing that k = k;, we may rewrite the previous inequality as
4 <f’ k_1>D,p <Cn r?ka“]’Ts(f) - f”D,p' (4.25)

This completes the proof. O
We thus obtain the corollary of Theorems 4.1 and 4.2.

Corollary 4.3. Suppose that {] ,Z’/’s Yooy, m > 2([n/2] +3)/(n - 2), are Jackson-type operators on the
spherical cap D(xo,y), 0 < y < or/2, then the following are equivalent for any f € LP(D(xo,Y)),
a>0,

@) IZ(f) = flipp = O(k™), k — oo;
(ii) w?(f,6)p, = O(6%), 6 — O+

Theorem 4.4. Suppose that { J;" }iZ1, m > 1 are Jackson-type operators on the spherical cap D(xo, ),

0 <y < /2 Then {J'}{, are saturated on LP(D(xo,y)) with order k=2 and the collection of
constants is their invariant class.

Proof. We obtain from Lemma 3.2 that, forv =1,2,...,

Y GMcos0)\ " Y
1-¢g0(1) = J‘ Dy5(6) <1 - <ﬂ> >sin2)‘6 do = f Dkls(G)sin2§sin2’\6 de = k2.
0 0

Gi(1)
(4.26)
By Lemma 3.6, if it is true that for j = 0,1,2,...,
1-g0G) G2y
Jim 73— ) - 2h+1 (427)
then the proof is completed.
In fact, for any 0 < 6 <y, it follows from (3.3) that
Y Y 70\° ~
f Dys(0)sin?*0 dO < f <5> Dy.+(8)sin?6 do
0 0 (4.28)

Y ~
< 6-3f 60 3Dy s(0)sin*'0 dO < Cs k>,
0

We deduce from (2.15) that, for any ¢ > 0, there exists 6 > 0, for 0 < 6 < §, it holds that

T
'(1 ~ (Prcos9))") - ](2];—+1)(1 (Pr(cos0)™)| < e(1- (PI(cos®))™).  (4.29)
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Then it follows that
a-zo- 1 a-ww)
Y m
= || Drs(0)(1-(P"(cos® in*'6 do
Uo ks )< < ](cos )> )sm

kas(Q)(l (Pr(cos0)") LU 2N i de‘

21 (4.30)
¥
(B ’ " , JGH2) N o
= ,[ODk’S(G)<<1 - (P] (cosG)) ) (1- (P} (cos0))™) ——= TS >sm 0 do
5 5 Y .. 2.)L
< f Drs(6) e sin®0 do +2J Bea@sino 1+ 192V Y 4
0 5 20 +1
< ek™ + Csek°.
So,
1- ] 24
i L7 8(G) _jG+2Y) 40, (431)
k—wl—&(1) 21
Therefore, we obtain by Lemma 3.6 that the saturation order for J ,’;‘S isO(1-¢"(1)) =
k2. O
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