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1. Introduction

Let (an)
∞
n=1 be a nonzero sequence of nonnegative numbers and let f be a measurable function

on [0,∞). In 1934, Carlson [1] proved that the inequalities

( ∞∑
n=1

an

)4

< π2

( ∞∑
n=1

a2
n

)( ∞∑
n=1

n2a2
n

)
, (1.1)

(∫∞

0
f(x)dx

)4

≤ π2
(∫∞

0
f2(x)dx

)(∫∞

0
x2f2(x)dx

)
(1.2)

hold and C = π2 is the best constant in both cases. Several generalizations and applications in
different branches of mathematics were given during the years. For a complete survey of the
results and applications concerning the above inequalities and also historical remarks, see the
book [2]. In particular, some multiplicative inequalities of the type

(∫∞

0
f(x)dx

)4

≤ C

(∫∞

0
w2

1(x)f
2(x)dx

)(∫∞

0
w2

2(x)f
2(x)dx

)
(1.3)
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are known for special weight functions w1 and w2, where usually w1 and w2 are power func-
tions or homogeneous. In this paper, we prove a refined version of (1.3) for a fairly general class
of weight functions (see Corollary 3.2). In particular, this inequality shows that (1.2) holds with
the constant π2 for many infinite weights beside the classical ones w1(x) = 1 and w2(x) = x.
Our method of proof is different from the other proofs (e.g., those by Larsson et al. presented
in the book [2]) and the basic idea is to first prove a more general multiplicative inequality for
inner products (see Theorem 2.3). Some similar improvements and complements of (1.1) are
also included.

The paper is organized as follows: in Section 2 we prove our general multiplicative in-
equality for inner products. In Section 3 we deduce an integral inequality of the Carlson type
for general measure spaces and prove some corollaries for the Lebesgue measure and the
counting measure, which are improvements of inequalities (1.2) and (1.1). Section 4 is devoted
to an inequality for an inner product defined on a space of square matrices, which is a general-
ization of known discrete inequalities.

2. A multiplicative inequality for inner products

Let (X,+, ·) be a vector space over a scalar field R or C and let F : X × X → C be an inner
product on X. First, we formulate the following Lemma.

Lemma 2.1. Let x, y ∈ X be such that x, y /= 0. Then there exists λ ∈ C, λ /= 0 such that
Re((λ/λ)F(x, y)) = 0 and |λ|2 =√F(y, y)/F(x, x).

Proof. Let x, y ∈ X be such that x, y /= 0. Then F(x, x), F(y, y) > 0, and F(x, y) = |F(x, y)|eiϕ
for some ϕ ∈ [0, 2π). If F(x, y) = 0, then ϕ is arbitrary. Set λ = 4

√
F(y, y)/F(x, x)ei(±π/4−ϕ/2).

Then |λ|2 =
√
F(y, y)/F(x, x) > 0, λ/λ = ei(±π/2−ϕ), and (λ/λ)F(x, y) = |F(x, y)|e±i(π/2), so

Re((λ/λ)F(x, y)) = 0 and the proof is completed.

Remark 2.2. It is observed that the same result can be achieved also with λ =
4
√
F(y, y)/F(x, x)ei(±3π/4−ϕ/2). Thus, for F(x, y) ∈ R, we have λ = p ± pi, where p2 =

(1/2)
√
F(y, y)/F(x, x).

Our multiplicative inequality of the Carlson type reads as follows.

Theorem 2.3. Let x, y, v ∈ X be such that x, y /= 0 and let λ be any of the numbers satisfying the
conditions of Lemma 2.1. Then the inequality

∣∣∣∣F
(
λx +

1
λ
y, v

)∣∣∣∣
4

≤ 4F(x, x)F(y, y)F2(v, v) (2.1)

holds.

Proof. By using Schwarz inequality, we find that

∣∣∣∣F
(
λx +

1
λ
y, v

)∣∣∣∣
2

≤ F

(
λx +

1
λ
y, λx +

1
λ
y

)
F(v, v)

=
(
|λ|2F(x, x) + 1

|λ|2F(y, y) + 2Re
(

λ

λ
F(x, y)

))
F(v, v).

(2.2)
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By, now, applying Lemma 2.1 and our assumptions on λ, we find that the right-hand side of
(2.2) is equal to 2

√
F(x, x)

√
F(y, y)F(v, v) and (2.1) follows.

3. Inequalities of the Carlson type

Let (Ω, dμ) be a measure space and let f, g : Ω → C be measurable functions. We define

F(f, g) =
∫
Ω
f(t)g(t)dμ (3.1)

which is a standard inner product on L2(Ω, dμ). Now, we state and prove the following new
Carlson-type inequality.

Theorem 3.1. Let f : Ω → C and w1, w2 : Ω → R be such that w1f,w2f /= 0 a.e.,f ∈ L2
w2

1
(Ω, dμ)

⋂
L2
w2

2
(Ω, dμ) and |λ|2w2

1 + (1/|λ|2)w2
2 > 0, where

λ = p ± pi, p2 = (1/2)

√√√√∫Ωw2
2(x)f(x)dμ∫

Ωw
2
1(x)f(x)dμ

. (3.2)

Then

∣∣∣∣
∫
Ω
f(x)dμ

∣∣∣∣
4

≤4
(∫

Ω

dμ∣∣λw1(x)+(1/λ)w2(x)
∣∣2
)2(∫

Ω
w2

1(x)
∣∣f(x)∣∣2dμ)(∫

Ω
w2

2(x)
∣∣f(x)∣∣2dμ).

(3.3)

Proof. In the inner product defined in (3.1)we substitute fw1 and fw2 for respectively f and g
and observe that in this case the number F(fw1, fw2) =

∫
Ωw1(x)w2(x)|f(x)|2dμ is real. Since

ImF(w1f,w2f) = 0, by arguing as in the proof of Lemma 2.1 we find that λ = p ± pi, where

p2 = (1/2)
√∫

Ωw
2
2(x)|f(x)|2dμ/

∫
Ωw

2
1(x)|f(x)|2dμ fulfills the conditions of Theorem 2.3, so the

inequality (3.3) follows from the inequality (2.1) by taking v(x) = 1/(λw1(x) + (1/λ)w2(x)).
The proof is complete.

The following corollary of the above theorem is an improvement of [3, Theorem 2.1].

Corollary 3.2. For a ∈ R, let f : [a,∞) → C be an integrable function and let w1, w2 : [a,∞) → R+

be two continuously differentiable functions such that 0 < m = infx>a(w′
2(x)w1(x)−w2(x)w′

1(x)) <
∞ and limx→∞w2(x)/w1(x) = ∞. Then

∣∣∣∣
∫∞

a

f(x)dx
∣∣∣∣
4

≤

⎛
⎜⎝π

m
− 2
m
arctan

w2(a)
√∫∞

a w2
1(x)

∣∣f(x)∣∣2dx
w1(a)

√∫∞
a w2

2(x)
∣∣f(x)∣∣2dx

⎞
⎟⎠

2

×
(∫∞

a

w2
1(x)

∣∣f(x)∣∣2dx)(∫∞

a

w2
2(x)

∣∣f(x)∣∣2dx).
(3.4)
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Remark 3.3. For the special case when a = 0, w2(0) = 0, andm = 1, the inequality (3.4) reads

∣∣∣∣
∫∞

0
f(x)dx

∣∣∣∣
4

≤ π2
(∫∞

0
w2

1(x)
∣∣f(x)∣∣2dx)(∫∞

0
w2

2(x)
∣∣f(x)∣∣2dx) (3.5)

and also this generalization of (1.2) seems to be new (see [2] and the references given there).

Proof. Let Ω = [a,∞) and μ be the Lebesgue measure in inequality (3.3).
Easy calculations show that our assumptions imply that

∣∣∣∣λ2 + w2(x)
w1(x)

∣∣∣∣
2

= |λ|4 + w2
2(x)

w2
1(x)

,

1
m

(
w2(x)
w1(x)

)′
≥ 1
w2

1(x)
.

(3.6)

Hence, we get that

∫∞

a

dx∣∣λw1(x) + (1/λ)w2(x)
∣∣2 =

∫∞

a

|λ|2/w2
1(x)∣∣λ2 + (w2(x)/w1(x)

)∣∣2dx

=
∫∞

a

1/|λ|2w2
1(x)

1 +
(
w2(x)/|λ|2w1(x)

)2dx

≤ 1
m

∫∞

a

(
w2(x)/|λ|2w1(x)

)′
1 +
(
w2(x)/|λ|2w1(x)

)2dx
=
[
1
m
arctan

w2(x)
|λ|2w1(x)

]∞
a

=
π

2m
− 1
m
arctan

w2(a)
√∫∞

a w2
1(x)

∣∣f(x)∣∣2dx
w1(a)

√∫∞
a w2

2(x)
∣∣f(x)∣∣2dx

(3.7)

and, by using Theorem 3.1, the proof follows.

Remark 3.4. As in [4], we can prove that the condition limx→∞w2(x)/w1(x) = ∞ cannot be
weakened, it is also necessary for our inequality.

Let, now, Ω = N and

X = l2(w) =
{
a =
(
an

)∞
n=1 : an ∈ C,

∞∑
n=1

∣∣an

∣∣2wn < ∞}, (3.8)

where w = (wn)
∞
n=1 is a nontrivial sequence of nonnegative real numbers. Then the functional

F(a, b) =
∞∑
n=1

anbnwn (3.9)

is obviously an inner product on l2(w). Now, we are able to state the following result which is
a direct consequence of Theorem 3.1.
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Corollary 3.5. Let (αn)
∞
n=1, (βn)

∞
n=1 be two nontrivial sequences of complex numbers. Then

∣∣∣∣∣
∞∑
n=1

anwn

∣∣∣∣∣
4

≤ 4

( ∞∑
n=1

wn∣∣λαn + (1/λ)βn
∣∣2
)2( ∞∑

n=1

|α|2n
∣∣an

∣∣2wn

)( ∞∑
n=1

|β|2n
∣∣an

∣∣2wn

)
(3.10)

for any sequence (an)
∞
n=1 ⊂ C of complex numbers, where

λ = p ± pi, p2 = (1/2)

√√√∑∞
n=1α

2
n|an|2wn∑∞

n=1β
2
n|an|2wn

. (3.11)

Proof. The proof follows by using Theorem 3.1 with Ω = N and dμ =
∑∞

i=1wiδi.

Finally, we also include another discrete Carlson-type inequality for complex sequences,
which in particular generalizes [3, Theorem 3.1].

Corollary 3.6. Let (an)
∞
n=1 be a sequence of complex numbers and let α(x), β(x) be two positive con-

tinuously differentiable functions on [0,∞) such that 0 < m = infx>0 (β′(x)α(x) − β(x)α′(x)) < ∞.
Suppose also that α(x) is increasing, limx→∞β(x)/α(x) = ∞ and limx→0β(x)/α(x) = 0. Then the
following inequality holds:

∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣
4

≤
(

π

m
− 2|λ|2

∞∑
n=1

|λ|4α(cn)α′(cn) + β
(
cn
)
β′
(
cn
)

(|λ|4α2
(
cn
)
+ β2
(
cn
))2

)2

×
( ∞∑

n=1

∣∣an

∣∣2α2(n)

)( ∞∑
n=1

∣∣an

∣∣2β2(n)
)
,

(3.12)

for some numbers cn ∈ (n − 1, n), n ∈ N, where λ ∈ C is such that

|λ|2 =
√√√√∑∞

n=1β
2(n)
∣∣an

∣∣2∑∞
n=1α

2(n)
∣∣an

∣∣2 . (3.13)

Remark 3.7. For the special case when m = 1 (i.e., when infx>0β′(x)α(x) = 1), the inequality

∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣
4

≤ π2

( ∞∑
n=1

∣∣an

∣∣2α2(n)

)( ∞∑
n=1

∣∣an

∣∣2β2(n)
)

(3.14)

and also the generalization of inequality (1.1) in this simple form seem to be new.

Proof. Let wn = 1 for any n ∈ N, αn = α(n) and βn = β(n) in Corollary 3.5. We have also

∞∑
n=1

1∣∣λαn + (1/λ)βn
∣∣2 =

∞∑
n=1

|λ|2/α2
n

|λ|4 + β2n/α
2
n

. (3.15)
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Fix N ∈ N. Since the function ϕ(x) = (|λ|2/α(x)2)/(|λ|4 + β2(x)/α2(x)) is decreasing, we have
that

∞∑
n=1

|λ|2/α2
n

|λ|4 + β2n/α
2
n

<

∫∞

N

ϕ(x)dx +
N∑
n=1

ϕ(n)

=
∫∞

0
ϕ(x)dx −

(∫N

0
ϕ(x)dx −

N∑
n=1

ϕ(n)

)

≤ 1
m

[
arctan

β(x)
|λ|2α(x)

]∞
0
−
(

N∑
n=1

∫n

n−1

(
ϕ(x) − ϕ(n)

)
dx

)

≤ π

2m
+
1
2

N∑
n=1

ϕ′(cn),

(3.16)

where cn are points between n − 1 and n from the Lagrange mean-value theorem. By differen-
tiating, we find that

∞∑
n=1

1∣∣λαn + (1/λ)βn
∣∣2 ≤ π

2m
− |λ|2

N∑
n=1

|λ|4α(cn)α′(cn) + β(cn)β′(cn)(|λ|4α2
(
cn
)
+ β2
(
cn
))2 , (3.17)

where

|λ|2 =
√√√√∑ β2(n)

∣∣an

∣∣2∑
α2(n)

∣∣an

∣∣2 (3.18)

which, by letting N → ∞ and using (3.10), implies (3.12), and the proof is complete.

4. Multiplicative inequalities for matrices

Let n ∈ N and X be the vector space of n × n complex matrices. We denote by tr(A) the trace
of the matrix A and by A∗ the Hermitian adjoint of A, that is, A∗ = At. It is well known that
(AB)∗ = B∗A∗ and (A∗)∗ = A; see, for example, [5]. Moreover, a matrix A is called unitary if
AA∗ = In, where In is the unity matrix (see, e.g., [5]). We define

F(A,B) = tr
(
B∗A

)
(4.1)

which is an inner product on X since F(A + B,C) = tr(C∗(A + B)) = tr(C∗A) + tr(C∗B) =
F(A,C) + F(B,C). We have also that

F(A,B) = tr
(
B∗A

)
=

n∑
j=1

n∑
k=1

akjbkj =
n∑
j=1

n∑
k=1

akjbkj = tr
(
A∗B

)
. (4.2)

The other properties of the inner product are obvious. The inequality (2.1) becomes in this case∣∣∣∣tr
(
C∗
(
λA +

1
λ
B

))∣∣∣∣
4

≤ 4tr2
(
C∗C

)
tr
(
A∗A

)
tr
(
B∗B
)
, (4.3)

where λ is one of the complex numbers satisfying the conditions of Lemma 2.1. We can now
formulate the following result.
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Proposition 4.1. Let P,W1,W2 be n × n complex matrices such thatW1P,W2P /= 0. Then

∣∣tr(P)∣∣4 ≤ 4tr2
((

λW1 +
1
λ
W2

)−1((
λW1 +

1
λ
W2

)−1)∗)
tr
(
P ∗W∗

1W1P
)
tr
(
P ∗W∗

2W2P
)
, (4.4)

where λ ∈ C is the parameter defined in Lemma 2.1 (related to the matrices W1P and W2P ), such that
λW1 + (1/λ)W2 is a regular matrix.

Proof. If we substituteA = W1P , B = W2P ,C = ((λW1 + (1/λ)W2)
−1)

∗
in (4.3), we get inequality

(4.4).

Remark 4.2. If W1 = W2 = (
√
2/2)W where W is a unitary matrix, then λ =

√
2/2 + (

√
2/2)i

satisfies the conditions of Lemma 2.1. Since λ + 1/λ =
√
2, the inequality (4.4) becomes

∣∣tr(P)∣∣2 ≤ ntr
(
P ∗P
)

(4.5)

and it holds for any n × n complex matrix P . In particular, for diagonal matrices P =
diag(a1, . . . , an), we get the well-known inequality

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣
2

≤ n
n∑

k=1

∣∣ak

∣∣2 (4.6)

for ak ∈ C, k = 1, . . . , n.

Acknowledgments

The authors thank the referees for some valuable comments and remarks. They also thank one
of the referees for the generosity to even suggest simplifications of one of the proofs.

References

[1] F. Carlson, “Une inégalité,” Arkiv för Matematik, Astronomi och Fysik B, vol. 25, no. 1, pp. 1–5, 1934.
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