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Some inequalities will be presented, which give weighted norm estimates for derivatives of
functions defined on the half-line. These inequalities are related to Hardy’s inequality, and they
also generalize Hardy’s inequality to higher derivatives. The results presented here are also
analogous to some recently-derived inequalities for the derivatives of functions defined on the

interval [—1, 1], which have had important applications to the study of polynomial approximation
on[—1,1].
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1 INTRODUCTION

Differentiation of a function f (¢) defined on the half-line [0, co) corresponds
in a natural way to the differentiation of F (x) by t, where F(x) = f(x2), and
D;F(x) = (2x)"1F’(x). We will use this relationship and the generalized
Hardy inequality to obtain some estimates for derivatives by ¢ of even
functions of x on (—o0, 00) in terms of derivatives by x. Analogous results
for the 27 -periodic even functions have been developed in Kilgore and
Szabados [3] and in Kilgore [1], for differentiation by x <> cos6. These
results for periodic functions have been applied in Kilgore and Szabados [3]
and in Kilgore [2] to prove some very basic properties of algebraic polynomial
approximation on finite intervals, especially regarding the simultaneous
approximation of derivatives. It is expected that the inequalities proved here
will have similar applications in weighted spaces on the half-line.
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358 T. KILGORE

For 1 < p < oo, the function F (x) (defined on the real line) is in L? if

IFll, = ( / |F<x>|pdx>” < oo

—00

We also write
IFlloo = ess sup |F|.

Weight functions will be introduced by placing them inside the norm. All
weight functions used here will necessarily be even. To qualify as a weight, the
function V' will also be measurable, positive, and finite almost everywhere.
The corresponding weighted norm of a function F will be ||V F||p, this
includes the possibility that p = oo.

We will also need to consider norms defined on various subintervals of
(=00, ). If (¢, d) is a subinterval of (—o0, 00), then we define

’ ;
||F||p,<c,d)=( / IF(x)lpdx) .
C

In particular, the norm of any even or any odd function F can be described
on the interval [0, oo) or (0, 0o) only; for 1 < p < oo we have

1
IFllp =27 Fllp,(0,00)- 1)
We are now ready to state the main results:

THEOREM 1 Let1 < p < 00, and let V be an even weight function such that
with finite constant C the inequality

12x)" V@) fF @) lp,0.000 < CIV @) F @) p,0,00) 2
of Hardy type holds for every absolutely continuous function f such that
f(©) = 0. Let F(x) be an even function such that V (x)F @ (x) € L? and
F@-D(x)is absolutely continuous. Then for 1 < k < r — 1 the derivatives
Df‘ F (x) exist and are continuous. The derivative D] F (x) also exists and is
continuous at all x # 0. Furthermore

,
IVED;F@)llp, < Y Ajr IVEFED @), )
j=1
in which Aj , are nonnegative constants independent of F.
Conversely, suppose that (3) holds for every r, for every even function
F (x) for which F@ =D (x) is absolutely continuous. Then the inequality (2)
holds for the weight V.

Furthermore, for the constants A; , in Theorem 1 the proof will make clear
the following:
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CoroLLARY 1 The constants Aj , in (3) are of the form A; , = Cyr_1C2r—3
-+ C1Bj 2r. The constants Cor_1, ..., C1 depend only upon the weight V
and are all bounded above by C, the constant of (2). The constants Bj 2,
depend only upon j and r and are independent of V and of p.

More exact information about the constants Cj, ..., Cp,—1 may be found
in Lemma 2.

Note that Theorem 1 does not state as a conclusion that
Il V(x)Dgc F(x)|lp,0,00) < o for any particular value or values of k less than
r. Infact, this conclusion does not follow without some additional hypothesis:

THEOREM 2 Let 1 < p < 00, and let V be a weight function such that
VI, < 00 and such that with finite constant C' the inequality

IV ) f0)lp, 0,000 < C'NVE) ' (X)llp, 0,00 “

of Hardy type holds for every absolutely continuous function f such that
f(0) = 0. Let F(x) be an even function such that V (x)F*) (x) € L? and
F@r ‘1)(x) is absolutely continuous. Then for 0 < k < 2r the derivatives
F® are in LP with weight V, and also for 1 < k < r the derivatives Dl‘ F(x)
are in LP with weight V.

Now, inasmuch as Theorem 1 holds on the interval [0, 00), it also holds
with essentially the same proof on any finite interval [0, b). It will be seen
from Lemma 1 that, on the finite interval [0, b), the inequality (2) implies the
inequality (4). These observations are summarized in

CorOLLARY 2 Theorem 1 and Theorem 2 still hold if the domain is given as
a finite interval (0, b) for some b > 0 instead of (0, 00). Moreover, in this
case the inequality (2) implies the inequality (4).

2 TOOLS

Muckenhoupt [4] has given a necessary and sufficient condition on two weight
functions V1 (x) and Vj(x) for the generalized Hardy inequality

120~V @) fF @) p, @b < CIVE) F'Olp, @b (&)
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to hold for some finite C on an interval (a, b), with —00 < a < b < 00,
for every absolutely continuous function F which is zero at a. The necessary
and sufficient condition is that

B:= sup IVi®)lp, | (Vox) ™ g @) < 00, ()

a<c<b

in which p and ¢ satisfy p™' +¢~! = 1and 1 < p, ¢ < 0o. The values of
B and C are related by

B<C<prqiB, @
with B = C if p = 1 or p = 00. Thus, (5) holds with finite C if and only if
(6) gives a finite value of B.

Here we choose in particular Vo = V, where V is the given, even weight,

and we will almost invariably use a = 0. We further define not only V; but
also a sequence of weights Vi fork = 1,2, ... by

Vi(x) 1= 20 Vi1 (). ®
The following results are needed:
Lemma 1 Let V satisfy the inequality

1)V ) @)l 0.8) < CIV @) F @ p,0.0)
for every absolutely continuous function f such that f(0) = 0. Then b < oo
implies
IV @) f ) lp,0.6) < CNIV @) ' lp.0.6)
for every absolutely continuous function f such that f(0) = 0.

Proof If b < oo, then we have

1 _
%HV(X)f(x)IIp,(o,b) < 1@)'VE FOllp.0.6) < CIVE) F @Ellp.0.5)-
The lemma is proved with C' < 2bC. m]

Lemma 2 Let Vy, V1, ... be constructed according to (8). Let Vo and V
satisfy (5) on the interval [0, b), implying that (6) is satisfied with a finite
constant B. Then fork = 1,2, ...

By :=sup [lleHp,(c,b) ||Vk‘_11 "q,(O,c)] < B < 0. 9
Indeed, B= By > By, > ....fork=1,2,.... Also
IViFllp.0.6) < Cill V=1 F' llp.10,6) (10

for every function F which is absolutely continuous on [0, b) and satisfies
F(0) = 0. Furthermore, C;, < 2B; < 2B.
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Proof Thelemmaisobviousifk = 1. Tocomplete the proof,let0 < ¢ < b.
Then fork > 1

IViellp, e 1V g 0,0 = 12%) T Vet () llp e, 122 Vi s (0 g, 0,0)
< Q) MVictllp.eh - CONV L g 0.0

< IVe-tllp. et Vi lg.0.00
and (9) follows immediately by induction for all k > 1. The other conclusions
follow then, too, from (7). This concludes the proof of the lemma. O

Now, it is helpful in the proof of the Theorem to prove a weaker version
first. We have

Lemma 3 Let F(x) € C¥[—b, b] be an even function. Let D, F (x) signify
its derivative with respect tot = x2. Then forr > 1 the derivative D] F (x)
exists. It is in C[—b, b], and

r
ID;F) <> B IFP,
=1
in which F( signifies the j® derivative of F by x and in which B; , are
i
nonnegative constants independent of F.

Proof Fork < r, the derivative Df F (x) is computed in terms of the first k
derivatives of F(x) by x. Therefore, since F(x) € C* [—b, b], the derivative
DfF(x) clearly exists and is continuous for all x € [—b, b], such that x # 0.

To consider the situation at the special point 0, we can proceed inductively.
Assuming for k < r that D;“l F (x) exists and is continuous at x = 0, we
note that by definition

D! 'F(x) — DF1F(0)

D¥F(0) =)}i_1)1% o (11)
D, DFIF
—iim 2P FO) i prE . 12)
x—0 2x x—0

Thus (11) shows that DZ‘F (x) is continuous at zero provided that it exists
there, and furthermore (11) provides a way to investigate its existence.

In view of (11), the lemma follows immediately if » = 1. To handle the
more general case, we need first a formula which more explicitly gives the
derivative Df F (x) in terms of derivatives by x. By induction, one may obtain

Y aj @) FD (x)

DfF(x) = (2x)2k—1 ’

13)
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valid for all x # 0 and k < r. Furthermore, in (13) the coefficients a;  (x)
are polynomials which are independent of F', depend only upon j, k, and can
be recursively computed. Specifically, if it is agreed that a; ; is zero if j < 1
orif j > k, we can write

aje+1(¥) = 2x(a} 1 () + aj-1,k(x)) — (2k = Daj i (x), (14)

starting with a;,; = 1. In general it is seen that the degree of a; ;. is bounded
by k — 1, and a; ;. is even if j is odd and odd if j is even. From these two
observations it also follows that the degree of a; i is bounded by k — 2 in
case that k is even and j is odd and in case that k is odd and j is even, that
is, if k and j disagree in parity.

Let us show the lemma first under the stronger assumption that Dj F (0)
exists. By (11) and (13) we have fork < r

i aj k() FD (x)
(2x)2k—1 ’
implying that the numerator of the fraction within the limit is zero when

x = 0. Thus, using the mean value theorem of Cauchy we can rewrite (13)
as

DFF(0) = lim
xX—>

Yitila) (1) + a1k GDIF D (xp) 5)
2k — D) @x)P2 (

for some x; between x and 0. If k = 1 the denominator on the right in (15)
is 2, so that

D‘F(x) =

2
1 .
DiF(x) = 3 Y [a} 1(x1) + aj—1,1x1)IF Y (xy).
25

In view of (14) we note that this gives
1 1
IDF@)| = SIFPG)] < SIFP-p,01-

‘We proceed under the assumption that £ > 1. Since Dl‘F (0) is the limit
of the fraction on the right in (15) as x; — 0, the numerator must in turn
be zero when x; = 0. If j is odd, we know that F)(0) = 0. Therefore,
independently of F

[kt

> a5 (0 + a2j_1,£(O)1F ) (0) = 0.
im1
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Now in particular the functions x¥" wherem = 1,2, ... satisfy

D% x™|,_0=0 for j <m,

while
D)%m x2m|x=0 = (2m)! # 0.
Successively choosing F(x) = x*" form = [¥}1], ..., 1 therefore shows
that o
aéj,k(O) +a2j_1xk(0) =0 for j=1,..., [T]'

Recalling that a;  is even when j is odd and odd when j is even, we see from
this argument that, when j is even, the expression aj’-, £ (X) +aj-1,k(x) (which
is an even polynomial) is zero at x = 0 and thus contains a factor of 2x2. And
when j is odd, then aj’., «(*¥) + aj—1,k(x) is odd and because of its oddness
must contain a factor of 2x. Therefore we may write for j = 1,...,k+ 1

a},k(x) +aj_1,k(x) = 2x bj x+1(x). (16)
We further note that the degree of b; 1 is not more than k — 2, and if j and

k + 1 disagree in parity, then the degree of bj x41 is not more than k — 3.
Thus we may also write

Y b a1 G FD (x1)
2k —D)@)2x*3

D¢F(x) = (17)
in which bj 41 is odd if j is even and even if j is odd, and is of degree not
more than k — 3 if j and k + 1 disagree in parity.

Using these observations, we may again apply the mean value theorem
of Cauchy to (17), obtaining a fraction on the right which is evaluated at a
point x; lying between 0 and x;. If k = 2 the denominator on the right side
of (17) is reduced to a constant times 2x,, and the coefficient polynomials
bj 3 are zero if j is even, constants if j is odd. One application of Cauchy’s
theorem, followed by a norm estimate, completes the argument. If on the
other hand k > 2, we may remove a common factor of 2x, from numerator
and denominator. In general, it is possible to complete k — 1 like steps,
the £th of which consists of two actions. The first action in the £th step is
to apply Cauchy’s mean value theorem, giving the evaluation at a point x;
lying between 0 and x;—; of the right side of the equation obtained from the
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completion of the previous step. The second action in the £th step is to cancel
the factor of 2x, In each of these k — 1 like steps, a factor of 2x2 is removed
from the numerator and denominator. After the £th step, it is possible to write

TNt bsere (xe) FO (xg)
2k — 1)(2k — 3) ... 2k — 2£ + 1)(2¢)(2xp)2k—2t-1°
in which the coefficient functions b; r4¢ are defined for j =1, ...,k + £ by
bj kto—1 %) + bj—1,k+0-1(x) = 2% bj pte(x). (19)

Note that after this reduction it necessarily follows that the polynomial b; ¢
is of degree at most k — £ — 1, and furthermore that if j disagrees in parity
with k + £ the degree is not more than k — £ — 2. Finally, after these k — 1
steps, a single power of 2x remains in the denominator, and we have

Z}i}l bj 2k—1(xk) FY) (k1)
Ck— DRk -3)...3)@2H(2x)’

in which the coefficient polynomials b; y;1 are in fact all constants, and
furthermore they are zero if j is even.

This permits one more application of the mean value theorem of Cauchy,
and using the notation

bj ok —1(¥) + bj—1,26—1(x) = bj 2, (21)

we can write the result as

DfF(x) = (18)

DYF(x) =

(20)

Yoh1 b2y FO (i)
Rk —1DRk—3)...03)2%’
in which x; lies between x;_1 and 0. This enables us to write

DYF(x) = (22)

k k
IDFF() <) Bl FP @I <D Bkl Fll—p 1,
j=1 j=1

in which

2,2k
2k —1D(2k —3)...(3)(2%)°
The lemma is now established for all functions F € C? for which D} F (x)
is known to exist at 0. But then, since the behavior of the coefficient
polynomials a; x is completely independent of the function F(x), and since
D¥F(0) = lim,_,0 D¥F(x), it follows that D¥ F(0) exists if the limit exists.
If F € C%, then (22) demonstrates that the appropriate limits do exist.
Therefore Df F (x) exists and is continuous at all values of x, for the indices
k=0,...,r,and the proof of the lemma is completed. O

Bik =
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Proof of Theorem 1 Let F be any even function such that F ~D js
absolutely continuous. While proving Lemma 3, we used the representation
(13) for the derivative Df F (x). It follows by inspection from (13) that Df F
is defined and continuous for x # 0 for the indices k = 1, ..., r. Lemma 3
shows immediately that D,(k) F(x)isalsocontinuousatOfork =0, ...,r—1.

‘We will now show that (2) implies (3). Note that because of (1) we can
work entirely on the interval (0, co). Therefore, in this proof we will not
distinguish notationally whether the norm is taken on the half-line or whole
line; the expression || F(x)||, can henceforth mean either, or both of these,
provided that the use is consistent within a formula, equation, or inequality.

We show first that (3) is true when » = 1. We have D; F (x) = %’Q, and
F’ is odd and absolutely continuous, whence

Fl(x) = fo F"(y) dy.

Now, with Vy = V and with Vi(x) = (2x)" 1V (x) we immediately have
from (2) that

VD F@)lp = Vi) F' 0)llp < CIVo)F (D). (23)

Our theorem follows for the case that r = 1.

Turning now to the case that r > 1, we again employ (13). Using this
representation for the derivative, we can carry out a sequence of k — 1 like
steps which are very similar in construction to those in Lemma 3 which lead
from (13) to (20). The only difference is that in the £th step we use the norm
estimate (10) instead of using Cauchy’s mean value theorem, and then, as
the parity conditions on the coefficient polynomials and as the construction
of the coefficient polynomials obtained after using (10) is identical to that
obtained from Cauchy’s theorem, we can follow up with a cancellation of a
common factor of 2x from numerator and denominator. Specifically, using
the same notations for the coefficient polynomials as in Lemma 3:

The numerator on the right in (13) is a continuous odd function and thus

zero at 0. Thus, using (10) with weight functions V,_; and V;_3, we can
obtain

Zfill [ () + a1 (DIF D (x)

(2)(2x)*-2 "
(24)

IV@)DEF )|y < Cor1llV (x)
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in which ag x and a1« are both set equal to zero.

If k = 1 the denominator on the right is now 2, and we can go directly to
(27).1f 1 < k < r, we must continue the argument. Exactly as in Lemma 3,
we can cancel from the fraction on the right in (24) a common factor of 2x,
obtaining

Y b ) FD (x)
(2x)2k“3

IV@)DFFx)p < Cora |V (x) llp, (25)
in which the coefficient polynomials bjx41(x) are given in (16). This
completes the first of the k — 1 like steps. In general, in the £th step of
the mentioned k — 1 like steps,we begin with the output of the previous step,

apply (10) with weights Vpi—2¢+1 and Vo_2¢, cancel the common factor of
2x from numerator and denominator, and end with

k+e o @)

21 bjart W FD ()
=1 Yj,k+
IVOODEF )l < Cotmt CokaCoraent IV @) == Sl

(26)

in which the coefficients b; ;¢ (x) are given in (19).

After k — 1 steps, each consisting of an application of (10) followed by a
cancellation of a factor of 2x, we reach

Y b1 () FD (x)
IV@DFF@lp < Coke1Cats -+ Cs | V (1) = :
p
in which b1 24—1, ..., bax—1,2¢—1 are polynomials of degree zero, and each

of the polynomials b, 21 is odd and therefore equal to zero.

After one more application of the argument leading to (23) we therefore
reach

k
IV&)DFF ()l <Cok—1Cak—3 -+ C1 |V(x) D boj ok F*(x)
j=1 )
k .
<Co1Coi—3 -+ C1 Y Bj sk IV FPD @),
j=1 (27)

in which the coefficients b2 > are as defined in (21), and

Bjox = |b2j, 2.
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Finally, with the help of (27) we may define the constants A; , in (27) by
Ajr = Coy_1Cy_3---C1|Baj2r|.

To prove the converse statement in the theorem, it suffices to notice that,
in case r = 1, the equation (3) is simply a restatement of the requirements
that must be satisfied by Vp and V; in order for (2) to hold for the absolutely
continuous odd function F’(x) on the interval [0, 00).

The proof of the theorem is now completed. o

Proof of Theorem 2 First we note that F = F O ..., F@-D are all
absolutely continuous and ||V F?")|| < oo by hypothesis. From (4) we obtain,
as the odd derivatives of F' are odd functions and therefore zero at x = 0

IV @) F*Dx0)1p,0,000 < C' IV &) FP® (x0)11,0,00)
fork =1, ..., r.Because of (1), the inequality
IVEFH* D)), < CIVEFP @),

also follows. Also, for every even derivative F% fork =0, ..., r — 1 there

is a constant cp; such that F@ (0) = c;. Therefore, according to (4) and
(1) we have

IV @)(F® (x) — ca)llp < CIIVx)FHFD ()], (28)
Since || V||, < o0, it now follows that

IVE)F @), < IVE)E@ (x) — cx)llp + llezx V)l
< C'NIVE FED @), + leal VI (29)

fork = 0,...,r — 1. Now, in view of the fact that |V F?")| < oo, the
combination of (29) and (28) demonstrates ||V F® || < cofork =0, ..., 2r,
and since (2) implies (3) it also follows that ||V(x)DfF @) < oo for
k=0,...,r. u]
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