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Some inequalities will be presented, which give weighted norm estimates for derivatives of
functions defined on the half-line. These inequalities are related to Hardy’s inequality, and they
also generalize Hardy’s inequality to higher derivatives. The results presented here are also
analogous to some recently-derived inequalities for the derivatives of functions defined on the
interval [- 1, ], whichhave had important applications to the study ofpolynomial approximation
on [-1, 1].
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1 INTRODUCTION

Differentiation of a function f (t) defined on the half-line [0, cx) corresponds
in a natural way to the differentiation of F(x) by t, where F(x) f (x2), and
DtF(x) (2x) -1Ft(x). We will use this relationship and the generalized
Hardy inequality to obtain some estimates for derivatives by of even
functions of x on (-cxz, x) in terms of derivatives by x. Analogous results
for the 2rr-periodic even functions have been developed in Kilgore and
Szabados [3] and in Kilgore [1], for differentiation by x cos0. These
results for periodic functions have been applied in Kilgore and Szabados [3]
and in Kilgore [2] to prove some very basic properties ofalgebraic polynomial
approximation on finite intervals, especially regarding the simultaneous

approximation of derivatives. It is expected that the inequalities proved here
will have similar applications in weighted spaces on the half-line.
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358 T. KILGORE

For 1 < p < cx, the function F(x) (defined on the real line) is in Lp if

IIFIIp IF(x)lPdx < c.

We also write
F I1 ess sup FI.

Weight functions will be introduced by placing them inside the norm. All
weight functions usedhere will necessarily be even. To qualify as a weight, the
function V will also be measurable, positive, and finite almost everywhere.
The corresponding weighted norm of a function F will be VFllp, this
includes the possibility that p cxz.
We will also need to consider norms defined on various subintervals of

(-, cx). If (c, d) is a subinterval of (-x, cxz), then we define

(reIIFIIp,(c,d) IF(x)lPdx

In particular, the norm of any even or any odd function F can be described
on the interval [0, cz) or (0, c) only; for 1 < p < cx we have

IlFIIp 27 IlFllp,(0,. (1)

We are now ready to state the main results:

TrIorM 1 Let 1 < p < x, and let V be an even weightfunction such that
with finite constant C the inequality

ll(2x)-lV(x)f(x)llp,(o,) < CIIV(x)f’(x)llp,O,) (2)

of Hardy type holds for every absolutely continuous function f such that

f (O) O. Let F(x) be an even function such that V(x)F(2r)(x) Lp and
F(2r-1)(x) is absolutely continuous. Thenfor 1 < k < r- 1 the derivatives

Dt F(x) exist and are continuous. The derivative DF(x) also exists and is

continuous at all x O. Furthermore

IIV(x)DF(x)llp <_ Aj,rllV(x)F2J(x)llp, (3)
j=l

in which Aj,r are nonnegative constants independent of F.
Conversely, suppose that (3) holds for every r, for every even function

F(x) for which F(2r-1) (x) is absolutely continuous. Then the inequality (2)
holdsfor the weight V.

Furthermore, for the constants Aj,r in Theorem 1 the proof will make clear
the following:
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COROLLARY 1 The constants Aj,r in (3) are oftheform Aj,r C2r-1 C2r-3
CIBj,2r. The constants C2r-1 C1 depend only upon the weight V

and are all bounded above by C, the constant of (2). The constants Bj,2r
depend only upon j and r and are independent of V and of p.

More exact information about the constants C1 C2r-1 may be found
in Lemma 2.

Note that Theorem 1 does not state as a conclusion that
V(x)Dt F(x)IIp, (0,) < for any particular value or values of k less than

r. In fact, this conclusion does not follow without some additional hypothesis:

THEOREM 2 Let 1 <_ p <_ cx, and let V be a weight function such that
V lip < o and such that withfinite constant C the inequality

IIV(x)f(x)llp,(O,oo C’llV(x) f’(x)llp,(O, (4)

of Hardy type holds for every absolutely continuous function f such that

f (O) O. Let F(x) be an evenfunction such that V(x)F(2r)(x) E Lp and
F(2r-1)(x) is absolutely continuous. Then for 0 < k < 2r the derivatives

F(1) are in Lp with weight V, andalsofor 1 < k < r the derivatives DtF(x)
are in Lp with weight V.

Now, inasmuch as Theorem 1 holds on the interval [0, cx), it also holds
with essentially the same proof on any finite interval [0, b). It will be seen
from Lemma 1 that, on the finite interval [0, b), the inequality (2) implies the
inequality (4). These observations are summarized in

COROLLARY 2 Theorem 1 and Theorem 2 still hold ifthe domain is given as

a finite interval (0, b)for some b > 0 instead of (0, o). Moreover, in this

case the inequality (2) implies the inequality (4).

2 TOOLS

Muckenhoupt [4] has given a necessary and sufficient condition on two weight
functions V1 (x) and V0 (x) for the generalized Hardy inequality

11(2x) -1v(x)f(x)llp,(a,b) CllV(x) f’(x)llp,(a,b) (5)



360 T. KILGORE

to hold for some finite C on an interval (a, b), with -cz < a < b < cx,
for every absolutely continuous function F which is zero at a. The necessary
and sufficient condition is that

B "= sup IIVl(x)llp,(c,b)ll(Vo(x))-lllq,(a,c) < c, (6)
a<c<b

in which p and q satisfy p-1 + q-1 1 and 1 < p, q < o. The values of
B and C are related by

B < C < pTqB, (7)

with B C if p 1 or p cxz. Thus, (5) holds with finite C if and only if

(6) gives a finite value of B.
Here we choose in particular V0 V, where V is the given, even weight,

and we will almost invariably use a 0. We further define not only V1 but
also a sequence of weights Vk for k 1, 2 by

Vk(X) :-- (237)-1Vk-1 (X). (8)

The following results are needed:

LEMMA 1 Let V satisfy the inequality

11(2x)- V(x)f (x)llp,(O,b) <_ CllV(x)f’(x)llp,(O,b)
for every absolutely continuousfunction f such that f (0) O. Then b < cx
implies

IIV(x)f(x)llp,(O,b) < C’llV(x) f’(x)llp,(O,b)
for every absolutely continuousfunction f such that f (0) O.

Proof If b < cxz, then we have
1

2-- [IV(x)f(x)llp,(O,b) < ll(2x) -1v(x)f(x)llp,(0,b) < CllV(x) fZ(x)llp,(O,b).

The lemma is proved with C < 2bC. []

LEMMA 2 Let Vo, V1 be constructed according to (8). Let Vo and V1
satisfy (5) on the interval [0, b), implying that (6) is satisfied with a finite
constant B. Thenfor k 1, 2

nk := sup [[IWk[lp,(c,b)[[w_ll[[q,(O,c)] <_ n < oo. (9)

Indeed, B B > B2 > for k 1, 2 Also

[[VkF[[p,[O,b) < Ck[[Vk- Ff[lp,[O,b) (10)

for every function F which is absolutely continuous on [0, b) and satisfies
F(O) O. Furthermore, C < 2B < 2B.
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Proof The lemma is obvious ifk 1. To complete the proof, let 0 < c < b.
Then for k > 1

V Ilp,(c,b)II Vk-2111q,(0,c) (2x)-1Vk-1 (x)Ilp,(c,b)112x Vk-_12 (x)[Iq,(0,c)
< (2c) -111Vk-111p,(c,b)" (2c)llV_121lq,(O,c)
_< V-I IIp,c,b V_2 Ilq,(0,c),

and (9) follows immediately by induction for all k > 1. The other conclusions
follow then, too, from (7). This concludes the proof of the lemma. []

Now, it is helpful in the proof of the Theorem to prove a weaker version
first. We have

LEMMA 3 Let F(x) E c2r[-b, b] be an even function. Let DtF(x) signify
its derivative with respect to x2. Thenfor r > 1 the derivative DF(x)
exists. It is in C[-b, b], and

IIDF(x)ll <_ flj,rllf(2J)[[,
j=l

in which F(j) signifies the jth derivative of F by x and in which flj,r are

nonnegative constants independent of F.

Proof For k < r, the derivative DtgF(x) is computed in terms of the first k
derivatives of F(x) by x. Therefore, since F(x) c2r[-b, b], the derivative

DtkF(x) clearly exists and is continuous for all x I-b, b], such that x 0.
To consider the situation at the special point 0, we can proceed inductively.

Assuming for k < r that Dt-1F(x) exists and is continuous at x 0, we
note that by definition

Dt F(0) x--,01im
Dt-1F(x)

x- Dt- F(0)
(11)

lim
DxDt-lF(x)

lim DtF(x). (12)
x--,0 2x x0

Thus (1 1) shows that DtF(x) is continuous at zero provided that it exists
there, and furthermore (1 1) provides a way to investigate its existence.

In view of (1 1), the lemma follows immediately if r 1. To handle the
more general case, we need first a formula which more explicitly gives the
derivative Dt F(x) in terms of derivatives by x. By induction, one may obtain

DtF(x) ff=l aj,k(x)F((x)
(2x)2_1 (13)
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valid for all x # 0 and k _< r. Furthermore, in (13) the coefficients aj, (x)
are polynomials which are independent of F, depend only upon j, k, and can
be recursively computed. Specifically, if it is agreed that aj, is zero if j < 1
or if j > k, we can write

aj,+l (x) 2x(aj,(x) + aj-l,k(X)) (2k- 1)aj,(x), (14)

starting with al, 1. In general it is seen that the degree of aj,k is bounded
by k 1, and aj,k is even if j is odd and odd if j is even. From these two
observations it also follows that the degree of aj, is bounded by k 2 in
case that k is even and j is odd and in case that k is odd and j is even, that
is, if k and j disagree in parity.

Let us show the lemma first under the stronger assumption that D" F(0)
exists. By (11) and (13) we have for k < r

DtF(O) lim EJk’=x aj,k (x F(J) (x
x0 (2x)2k-1

implying that the numerator of the fraction within the limit is zero when
x 0. Thus, using the mean value theorem of Cauchy we can rewrite (13)
as

x-,k+l

Dt F(x)
/-.,j-1 [aj,k(Xl) -]- aj-l,k(Xl)]V(J)(xl)

(2k- 1)(2)(2x)2-2
(15)

for some x between x and 0. If k 1 the denominator on the fight in (15)
is 2, so that

2

Dt F(x) - E[aj,1 (Xl) + aj-l,1 (xl)lF(j) (Xl).
j=l

In view of (14) we note that this gives

1 1
[DtF(x)l-- [f(2)(Xl)[ < [[f(2)ll[-b,b].

We proceed under the assumption that k > 1. Since DtF(0) is the limit
of the fraction on the right in (15) as X --+ 0, the numerator must in turn
be zero when Xl 0. If j is odd, we know that F(j) (0) 0. Therefore,
independently of F

[k+l

E [at2j,k (O) -b a2j-l,k(O)]F(2j) (0) O.
j=l
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Now in particular the functions X2m where rn 1, 2 satisfy

D2xj x2rnlx--O 0 for j < m,

while

D2xm x2m Ix=0 (2m)! O.

Successively choosing F(x) x2m for rn [k___21] 1 therefore shows
that

k+l
a2j,k(O) +a2j_l,k(O) 0 for j 1 [

2
]"

Recalling that aj,k is even when j is odd and odd when j is even, we see from
this argument that, when j is even, the expression aj,. (x) + aj_ 1,k (x) (which
is an even polynomial) is zero at x 0 and thus contains a factor of 2x2. And
when j is odd, then aj,k (x) + aj-l,k(X) is odd and because of its oddness
must contain a factor of 2x. Therefore we may write for j 1 k + 1

aj,k (x) -I-- aj 1,k (x) 2x bj,k+ (x). (16)

We further note that the degree of bj,k+ is not more than k 2, and if j and
k + 1 disagree in parity, then the degree of bj,k+l is not more than k 3.
Thus we may also write

jk+l bj k+l (X1) F(j)=1 (Xl)
DtF(x)

(2k- 1)(2)(2x)2k-3
(17)

in which bj,+l is odd if j is even and even if j is odd, and is of degree not
more than k 3 if j and k + 1 disagree in parity.

Using these observations, we may again apply the mean value theorem
of Cauchy to (1 7), obtaining a fraction on the right which is evaluated at a

point X2 lying between 0 and xl. If k 2 the denominator on the right side
of (17) is reduced to a constant times 2x2, and the coefficient polynomials
bj,3 are zero if j is even, constants if j is odd. One application of Cauchy’s
theorem, followed by a norm estimate, completes the argument. If on the
other hand k > 2, we may remove a common factor of 2x2 from numerator
and denominator. In general, it is possible to complete k- 1 like steps,
the th of which consists of two actions. The first action in the th step is
to apply Cauchy’s mean value theorem, giving the evaluation at a point xe
lying between 0 and xe_ of the right side of the equation obtained from the
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completion of the previous step. The second action in the th step is to cancel
the factor of 2xe In each of these k 1 like steps, a factor of 2x2 is removed
from the numerator and denominator. After the th step, it is possible to write

k+, bj, (x,)F(j)
j=l k+eDtF(x)

(2k 1)(2k 3)... (2k 2 + 1)(2e)(2xe)2k-2e-l’
(18)

in which the coefficient functions bj,k+e are defined for j 1 k -t- by

b),k+-I (x) --]- bj-l,k+e-1 (x) 2x bj,k+e(x). (19)

Note that after this reduction it necessarily follows that the polynomial bj,k+e
is of degree at most k 1, and furthermore that if j disagrees in parity
with k + the degree is not more than k 2. Finally, after these k 1
steps, a single power of 2x remains in the denominator, and we have

_,k-l bj,2k-1 (xk)F(j) (Xk-1)
OktF(x)

(2k 1)(2k 3)... (3)(2k-1)(2x)
(20)

in which the coefficient polynomials bj,zk-1 are in fact all constants, and
furthermore they are zero if j is even.

This permits one more application of the mean value theorem of Cauchy,
and using the notation

b,2k_ (X) bj,2k (21)I(X) -- bj-l,2k-1

we can write the result as

jk.= b2j,2k F(j) (xk)
(22)DktF(x)

(2k 1)(2k 3)... (3)(2k)
in which Xk lies between Xk-1 and 0. This enables us to write

k k

IOt F(x)l <_ E j,klF(J)(xk)l <_ E flj,kllF(J)ll[_b,b],
j=l j=l

in which
Ib2j,2kl

flj,k
(2k l)(2k 3)... (3)(2k)"

The lemma is now established for all functions F C2r for which D’; F(x)
is known to exist at 0. But then, since the behavior of the coefficient

polynomials aj,k is completely independent of the function F(x), and since

Dtk F(0) limx0 DtkF(x), it follows that DtkV(0) exists if the limit exists.
If F C2r, then (22) demonstrates that the appropriate limits do exist.

Therefore DtkF(x) exists and is continuous at all values of x, for the indices
k 0 r, and the proof of the lemma is completed. []
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Proof of Theorem 1 Let F be any even function such that F(2r-l) is

absolutely continuous. While proving Lemma 3, we used the representation
(13) for the derivative Dt F(x). It follows by inspection from (13) that Dt F
is defined and continuous for x 7 0 for the indices k 1 r. Lemma 3
shows immediately that D}k) F(x) is also continuous at 0 for k 0 r- 1.
We will now show that (2) implies (3). Note that because of (1) we can

work entirely on the interval (0, oe). Therefore, in this proof we will not

distinguish notationally whether the norm is taken on the half-line or whole
line; the expression [[F(x)l[p can henceforth mean either, or both of these,
provided that the use is consistent within a formula, equation, or inequality.

F’(x) andWe show first that (3) is tree when r 1. We have Dt F(x) 2--,
F is odd and absolutely continuous, whence

X

F’(x) F"(y) dy.

Now, with V0 V and with Vl(x) (2x)-1V(x) we immediately have
from (2) that

IlV(x)DtF(x)llp IIVl(x)F’(x)llp CllVo(x)F"(x)llp. (23)

Our theorem follows for the case that r 1.
Tuming now to the case that r > 1, we again employ (13). Using this

representation for the derivative, we can carry out a sequence of k 1 like

steps which are very similar in construction to those in Lemma 3 which lead
from (13) to (20). The only difference is that in the th step we use the norm
estimate (10) instead of using Cauchy’s mean value theorem, and then, as
the parity conditions on the coefficient polynomials and as the construction
of the coefficient polynomials obtained after using (10) is identical to that
obtained from Cauchy’s theorem, we can follow up with a cancellation of a
common factor of 2x from numerator and denominator. Specifically, using
the same notations for the coefficient polynomials as in Lemma 3:
The numerator on the fight in (13) is a continuous odd function and thus

zero at 0. Thus, using (10) with weight functions V2k-1 and V2k-2, we can
obtain

V(x)Dt F(x)llp C2k- ill V (x)
j=l [aj,k(X) -b aj-l,k(x)]F(J) (x)

(2)(2x)2k_2 lip,

(24)
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in which aO,k and ak+1,k are both set equal to zero.
If k 1 the denominator on the right is now 2, and we can go directly to

(27). If 1 < k < r, we must continue the argument. Exactly as in Lemma 3,
we can cancel from the fraction on the right in (24) a common factor of 2x,
obtaining

V(x)Dt F(x)llp C2k-11V (x)
Ejk+l bj k+l=1 (x) F(j)

(2x)2k-3
lip, (25)

in which the coefficient polynomials bj,k+l (X) are given in (16). This
completes the first of the k 1 like steps. In general, in the tth step of
the mentioned k 1 like steps,we begin with the output of the previous step,
apply (10) with weights Vzk-Ze+l and Vzk-ze, cancel the common factor of
2x from numerator and denominator, and end with

-,k+ bj k+e(x)F(j)

IIV(x)DF(x)llp < C2k--lC2k--3""f2k--2e+lllV(x)
/---,j=l (X)

(2x)2k_2e_ lip

(26)
in which the coefficients bj,k+e(x) are given in (19).

After k 1 steps, each consisting of an application of (10) followed by a
cancellation of a factor of 2x, we reach

IIV(x)Dt F(x)llp C2k-lf2k-3 C3 V(x) -k-l bj,2k-1 (x)F(j) (x)
2x

in which bl,2k-1 b2k-l,2k-1 are polynomials of degree zero, and each
of the polynomials bzj,Zk-1 is odd and therefore equal to zero.

After one more application of the argument leading to (23) we therefore

IIV(x)Dt F(x)llp <C2k-lf2k-3 C1

reach

V(x) E b2j,2kF(2j) (X)
j=l

P
k

<_Czk-l Czk-3 C1 E Bj,zkll g(x)v(ZJ) (x)llP’
j=l (27)

in which the coefficients b2j,2k are as defined in (21), and

Bj,2k Ib2j,2kl.
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Finally, with the help of (27) we may define the constants Aj,r in (27) by

Aj,r C2r-lC2r-3 CIlB2j,2rl.

To prove the converse statement in the theorem, it suffices to notice that,
in case r 1, the equation (3) is simply a restatement of the requirements
that must be satisfied by V0 and V1 in order for (2) to hold for the absolutely
continuous odd function F (x) on the interval [0, o).
The proof of the theorem is now completed. []

Proof of Theorem 2 First we note that F F() F(2r-l) are all
absolutely continuous and VF(2r) < by hypothesis. From (4) we obtain,
as the odd derivatives of F are odd functions and therefore zero at x 0

IlV(x)F(2k-1)(x)llp,(O,) < C’llV(x)F(2k)(x)llp,(O,)
for k 1 r. Because of (1), the inequality

IlV(x)F(Zk-1)(x)lip < C’llV(x)F(Zk)(x)llp
also follows. Also, for every even derivative F(2k) for k 0 r 1 there
is a constant czk such that F(2k) (0) c2k. Therefore, according to (4) and
(1) we have

]IV(x)(F(Zk)(x) C2k)l]p <_ Ctllg(x)V(Zk+l)(x)llp. (28)

Since V lip < cx, it now follows that

IlV(x)F(2k)(x)l[p < IlV(x)(F(2k)(x) -c2k)llp -+-]lc2kg(x)llp

< CtllV(x)V(Zk+l)(x)llp "l- ICZklllV[[p (29)

for k 0 r 1. Now, in view of the fact that VF(Zr)[I < cx:, the
combination of (29) and (28) demonstrates VF < for k 0 2r,
and since (2) implies (3) it also follows that ]lV(x)DtF(x)ll < cxz for
k--0 r. []
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