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ABSTRACT

The paper is devoted to It type stochastic differential equations (SDE’s)
with "small" perturbations. Our goal is to present strong results showing how
"close" are the 2m-order moments of the solutions of the perturbed SDE’s and
the unperturbed SDE.
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1. Introduction. Statement of the Problem

The object of this study are stochastic differential equations (SDE’s) of the following type

Xt-XtO+ J a(s, Xs)ds+ / b(s, Xs)dws, t>_t0>_0.
o o

(1)

Here w (wt, t >_ 0) is a standard Wiener process defined on a given probability space (a, if, P),
a(t,x) and b(t,x), t_> to, x E 1, are measurable real-valuedt functions, and Xto is a random

2variable (r.v.) independent of w with E{Xto} < oc. Finally, f b(. )dws is the well-known stoch-
o

astic integral in It sense.

Under general conditions, the SDE (1) has a unique (strong) solution X (XI, t >_ to) which
is a diffusion Markov process with a drift coefficient a and a diffusion coefficient b. Let us adopt
the following classical conditions" For some constants K1 > 0 and K2 > 0 and all t >_ to, x, y E N1
we have

a(t, x)- a(t, y)] + ]b(t, x)- b(t, Y) <_ tt’l x Y]

a2(t, x) + b2(t, x) <_ K(1 + x2).
(2)

Notice that standard references in the area of SDE’s are the books by Gihman and Skorohod
[4], Arnold [1], Liptser and Shiryaev [5] and Gard [3]. We shall systematically use basic facts
from these sources without mentioning.

Now, along with (1), we consider another SDE:
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X X -I- " (8, X, eil )dS Zr- b (s, Xs, e2)dws, t >_ to.

o 0

Here e0, (rl, (r 2 are "small" positive parameters, e.g., each is in the interval (0,1] and stands for

o Xto,(0,1,2); X , and b are as a, and b above; w is the same Wiener process. Thus the

SDE (3) has also a unique (strong) solution X- (X, t >_ to).
Our goal is to compare the solutions X and X of (3) and (1) in the case when their coeffi-

cients are related as follows:

(t,x,l) a(t,x) +c(t,x,l)
(4)

(t, ,) (t, )+ s(t, , ).
The terms c(. and fl(. are called perturbations of the coefficients a(. and b(. which

explains why (3) is called a "perturbed SDE" while the name "unperturbed SDE" is kept for (1).
Let us suppose that for some fixed natural number rn we have E{(X)rn} <

E{(Xto)2m} < oo and let for all t >_ to,

E{ XO Xto ’} < 50(e0)

sup c(t,x, el) _< 51(t,1) (5)

sup fl(t, ,) <_ e(t, ).

Thus we can expect that if the quantities 60(0) 61(t,(r1) 2(t,(r2) are small for small 0,
then the process X is close to X. Recall that X and X are 2rn-integrable in the sense that for
each t >_ to the r.v.’s xl - and xtl 2’ are P-integrable. Thus, the following quantity

is well-defined and we are interested in conditions guaranteeing that A-0 as --+0. This means
that for a fixed t, the 2m-order moments of X and X are close. Furthermore, we describe a few
cases when A-0 as e-0 on intervals whose length tend to infinity.

2. Preliminary Result

Let us prove first a result which is of independent interest. This result plays a key role for
the statements in the next section.

Theorem A:
for any t >_ to,

Suppose conditions (2) and (5) are satisfied for the SDE’s (1) and (3). Then

A _< 5/m(o)exp M(t- to)+ 2 5l(S, el)dS
o

[25l(S, el) + (2m- 1)5(s, e2)]exp M(t- s)+ 2 1(7, el)d7 ds

(6)



Quantitative Results for Perturbed Stochastic Differential Equations 257

where M 2K + 2(2m- 1)K2 (K max[K1, K2] and K1 and K2 are the constants from (2)).
Proof: If we write explicitly the difference Z- X-Xt, t >_ to, apply the It formula to

(Z)2m and take expectations, we find that

where

c E{(Zto } + 2mE{Ii(t)) + m(2m- 1)E{I2(t)} - 2mE{I3(t)} (7)

II(t)- i [’ (s’Xes’Cl)-a(s’Xs)](Zs)2m-lds’
o

o

The existence of the 2m-order moments of X and Xt, t >_ to and the conditions on b (.) and b(.
allow us to use one of the properties of the stochastic integrals, thus concluding that

E{I3(t)} -0.

Let us estimate Ii(t) and I2(t). In view of (2), we see that

Ii(t)<_K j IX;-XI IZ;l-d+ j 51(s, e1) lZsi2m-1ds.
o o

Now we take the expectations of both sides of the last inequality and applying HSlder’s
inequality to { zE l- 1}/se Shiryaev [7]) we find that

E{II(t)} - i Aesds - J 51(s’<1)(As)(2m-1)/(2m)ds"
o o

Similar arguments imply that

E{I2(t)} <- 2K2 / Asds + S 5(s, 2)(A;)(m-1)/mds.
o o

Therefore, from (7), (8) and (9), we get

(9)

50(%) + mM i Asds + 2m / 51(8 Cl)(i)(2m- 1)l(2m)ds

o o

+ m(2m 1) i 52(s’ %)(A)(m 1)lmds"

o

(10)

Now we use the following elementary inequality
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r
V 2 <Vrl-t-V

which is valid for any nonnegative number v and 0 < r1 < r2 < 1. Setting

rI (m- 1)/rn, r2 -(2rn- 1)/(2rn), and v Aes
we find that

(A;)(2m 1)/(2m)
_
(A)(m 1)/m -t-/es

and hence (10) takes the form

h < 50(c0) + m i [M + 251(8, t51)]Asds
o

+ i [2ml(S’ (1) + m(2m 1)522(s, 2)](/k;)(m- 1)/’ds.
o

(11)

The last tool we need is the following generalized Gronwall-Bellman inequality (see Filatov and
Sharova [2])"

If a nonnegative function u(t), > to, satisfies the integral inequality

o o

where C > O, 0 < 3’ < 1, and functions A(t) and B(t), t > to, are nonnegative and continuous’,
then

t(t) cl-’)’exp (1-7) A(s)ds +(1-’) B(s)exp (1-7) A(7)dr ds

to to s

1/(1

Obviously, it remains to apply this inequality to (11) by letting

u(t) A, C 5o(eo), 7 -(m- 1)/m,

A(s) m[M + 251(s, el)I,

B(s) 2m51 (s, el) -t- m(2m 1)5(s, c2)"

Thus we arrive at the desired relation (6). Theorem A is proved.

3. Basic Results. Proofs

Since the magnitude of the perturbations of SDE (1) is determined by the quantities 50(e0)
51(t,l) and 52(t, e2) (see (4) and (5)) it is natural to impose some conditions on these quantities
and see how A- E{IX-X 2m}0 as e0 and on which intervals this convergence holds.
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Three specific cases will be considered.

In the statements below (Theorems 1, 2 and 3) we assume (with mentioning it again) that
the general conditions of Theorem A are satisfied. We also use the constant M- 2K +
2(2m 1)12.

Theorem 1" Suppose that for all t >_ to,

0(0) 0’ (l(t’l) el and 62(t,2) 2" (2)

Define the numbers and T1 as follows"

max[elo/m, 1, e] and T1 (1- p)/(M + p),

where p G (0, 1) is arbitrarily chosen.

Then the following relation holds:

supA--0 as -0 for t E [to, to + Tlln(1/)).

Proof: In Theorem A we have found the upper bound (6) for A and now by using (12) we
can go further. After a substitution we arrive at

(A)1/m < e/mexp[M(t- to) + 2l(t- to) + / [2e1 + (2m- 1)e22 exp [M(t- s) + 2l(t- s)]]ds.
o

Since -0 implies that 1--.0, we can assume that 21 < p. Taking into account that
lo/m -- ’ (1 -- ( and 22 _< we find that

(A)l/m _< CIe(M + p)t _4_ (4)/(M + p), (13)

where the constant C1 depends on to and m but not on t.

Obviously, (13) implies that A---.0 as --0 for each t on any finite interval [to, tl] with fixed

t > t0. However, we can use (13) and make one step further by extending the time-interval on

which A0. Indeed, if we take T1 -(1- p)/(M + p)we find from (13) that

A _< [C1P -+-(4)/(M + p)]m for any t E [to, to + T11n (l/e))

and hence suptA-+0 as --0 on the interval [to, to + Tlln(1/)).
interval tends to infinity as 40. Theorem 1 is proved.

Theorem 2: Suppose that to > 1 and let for all > to,

(0(0)- to 1/0, 1(t,1)- t 1/el and 2(t,2) t

Define and T2 as follows:

Note that the length of this

1/e2. (14)

max[mo,l,e2/2 and T2 (1/M)ln(tO- p),

where p is an arbitrary number in the interval (0, to).
Then,

supA--+O as e---0 for e [to, o + T2/e ).
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Proof: From (6) and (14), we find that

1-1/<1_t1-1/e1(A)l/rn

_
t0- l/(m<0)exp [M(t to)+ 2cl(to )/(1 -(10]

+ f[2 
o

-l/(m<0) -l/e, -1/<1Obviously, we can take 1 < 1/2, and, since s _< s s _< s

-:"/<2 _< s-1/< for any s > 1, we derive that

(A)I/m _< to_ 1/eeM(t to) + 2 + 4m J" s 1/eeM(t- s) + 2ds"

1-11el--t1-1/< ]ds.1/el + (2m 1)s 2/e2]exp[M(t s) + 2el(S )/(1 (10

Hence
o

and

(/k)l/m
_
C2t- l/eeMt (15)

where C2 is a constant depending on to and m but not on t. It follows from (15) that A--0 as

e-0 for each t on any finite interval [t0, t2] with fixed t2 > t0. Moreover, with T2

(1/M)ln(to p) we easily find that

A _< C(1 P/to)m/< for all t e [to, to + T2/e).

Since 0 < 1- pito < 1, the conclusion is that suPtA--0 as e--,0 on the interval [to, to + T2/e
whose length tends to infinity. Theorem 2 is proved, rl

Theorem 3: Suppose that to > 0 and let for all t >_ to

-t/a -t/5o(eo) e t/e, 61(t, e1) e and 52(t, c2)- e (16)

For an arbitrary p G (0, to) define

e-- max[meo,2/2 and T3 --(to-P)/M.

Then

supA--O as --,0 for t e [t0, tO -- T3/c).

sic1Proof: Taking eI < 1 (we can do this since el--,0 we easily see that f e ds < 1 and
o

-r/<ld7 < 1. Then, substituting (16) into (6) and suitably transforming the right-hand side

of (6) we finally arrive at the relation:

(/ke1/m < C3eMt- to/e
t/

where Ca depends on to, m and M but not on t.

Therefore, A-0 as --,0 for each t on any finite interval [to, t3] with fixed t3 > to.
more, if T3 (to p)/M, then

supA _< Ce- Ple--O as --0 for t E [t0, o + Talc).

Even
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Again the convergence to zero holds on intervals whose lengths tends to infinity.
proved.

Theorem 3 is

4. Additional Remarks

(a) In Theorems 1, 2 and 3 not only did we prove that suptA--0 as --.0 but, in addition,
we can specify the rate of convergence. It is a power rate in Theorem 1 and exponential rate in
Theorems 2 and 3. Moreover, we can specify the rate of getting to infinity of the lengths of the
corresponding intervals. Obviously, both rates depend on the magnitude of perturbations.

(b) Instead of A E{IX X 12m}, we can consider the quantity

X -E( sup x -x l
te[to, T]

as a measure of closeness between the processes X and X. If we establish a sup-version of
Theorem A and use some additional arguments, we can provide conditions under which A-0 as

-0 on finite fixed intervals or on intervals whose lengths tend to infinity.

(c) The results of the present paper can be used when studying stability properties of SDE’s
under perturbations. Another possibility is to look for the so-called expansions of the solution X
of the perturbed SDE (3) assuming some smoothness of the coefficients (.) and b (-).

(d) Similar questions can be raised for more general SDE’s driven by arbitrary semimartin-
gales not just by the standard Wiener process (see Protter [6]).
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