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Abstract

In this paper, the stability properties of nonlinear difference equations of

Volterra type is discussed. For this purpose some comparison Theorems are developed,

then using these results the stability of the nonlinear difference equations of Volterra

type is investigated.
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1. Introduction.

Consider the nonlinear difference equation of Volterra type

(1.1)

n-1
Ax(n) f(n, x(n), E

s----n0
G(n ,s, x(s))),

+x(n0) = no no E Nn0
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where f, G N + d d dX Xno
Stability results of (1.1) are discussed recently

by linearization method in [3]. In this paper, we are interested in extending the

Lyapunov’s method to discuss stability properties of the system (1.1).

When we employ a Lyapunov function, we are faced with two questions. One is

to estimate variation of the Lyapunov function relative to the system (1.1) in terms of a

function, in which case a basic question is to select a minimal class of functions for

which this can be done. Thus by using the theory of difference inequalities and choosing

minimal classes of functions suitably, it is possible to establish stability properties of

difference equations of Volterra type (1.1) by reducing the study of (1.1) to a simple

difference equation. The second approach is to estimate the vairation of Lyapunov

function by means of a functional so that the study of (1.1) is reduced to the study of a

rlatively simple differenece equation of Volterra type. This approach makes the choice

of minimal classes unnecessary but it requires developing the theory of difference

inequalities of Volterra type. Therefore, finding the stability properties of even simple

diffenence equation of Volterra type is comparatively more difficult than simple

difference equations. Both methods offer a unified approach.

Extension of Lyapunov method for integro-differential equations is discussed in

[1]. For stability results using Lyapunov method for difference equations see [2].

2. Comparison results.

It is well known that comparison principle is one of the most efficient methods

for studying the qualitative behavior of solutions of nonlinear systems. Let us begin by

proving the following comparison results relative to the scalar difference equation of

Volterra type.
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/
Theorem 2. 1. Assume that g N

no
nondecreasing in u, v for fixed n E +N

no

X + X + , and g(n, u, v) is

Suppose further that

+
U’Nn0 + and n > no, u(n0)=u0 _> 0,

n-1
Au(n) _< g(n, u(n), u(s))--u(n).

Then u(n) _< r(n), n >_ no, where r(n) = r(n, no u0) is the solution of the scalar

difference equation of Volterra type.
n-1

ZXr(n) = r(n+l) r(n) = g(n, r(n),
S--n0

(2.1)

r(s)) r(n),

r(n0) >_ u0.

Proof. Let u(n0) _< r(n0) and suppose that u(n) > r(n), n _> n0. Then there exists

a k >no such that

u(k) _< r(k) and u(k+l) > r(k+l).

This implies that
n-1 n-1

u(s)_< Z r(s).
s = nO s = nO

Hence, using the monotone character of g, we get
n-1

u(k+l) <_ g(k, u(k), u(s))
S I10

n-1
< g(k, r(k), E r(s))= r(k+l).

S-I10
This contradiction proves the theorem.

The next comparison result is more general but requires the functional to be

nonnegative.
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Theorem 2.2. Assume that

g.N + +
no X + X + +, H’Nn0

and g(n, u, v), H(n, s, u) are nondecreasing in u,

+Let u’N + and for n > nono n-1
Au(n) < g(n, u(n), Z H(n, s, u(s))),

s=n0

+v for each n, s E N
no

Then u(n) _< r(n),

difference equation

(2.2)

u(no)-U0 >_0.

n >_ no, where r(n) r(n, no, u0) is the solution of the scalar

n-1
Xr(n) = g(n, r(n), H(n, s, r(n))),

$-n0

r(n0) >_ u0.

n-1
Proof. Set P(n) = g(n, u(n), H(n, s, u(s))) so that u(n) <_ A-1P(n) + W(n)

where A- is the antidifference operator and W(n) is an arbitrary function of period 1.

If Z(n) = &’lP(n) + W(n), then we see that XZ(n)= P(n) > 0 since g _> 0. Hence

Z(n) is nondecreasing and therefore we have

u(n) <_ Z(n), for every n >_ no
Consequently using the monotone character of g and H, we get

n-1
AZ(n) _< g(n, Z(n), Z H(n, s, Z(n)))

s---n0

= G(n, Z(n)), Z(n0)>_. u0.

Hence by comparison theorem for difference equation, we have

Z(n) <r(n), n > no
where r(n) is the solution of (2.2). Since u(n) <_ Z(n), the proof is complete.
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Next we shall discuss a comparison result in terms of Lyapunov function. For

this purpose, we need to define the variation of a Lyapunov function.

If V. N+ X Rd N+,no
system (1.1) by

then we define the variation of V relative to the

AV(n, x(n)) V(n+l, x(n+l)) V(n, x(n)),

Also let us define the minimal set f2 given by

[x(n).Nn0+ d. V(s, x(s)) _< V(n, x(n)), no _< s _< n].

Then we have the following result.

+Theorem 2. 3. Suppose that g" N
no

+for each n E N and
no

(2.3)

X + + g(n, u) is nondecreasing in u

AV(n, x(n)) <_ g(n, v(n, x(n)))

for x(n) E f2 and n >_ n0. Then V(n0, x(n0) _< u(n0)implies V(n, x(n)) _< u(n),

n > no, where x(n) is the solution of (1.1) and u(n) is the solution of

(2.4) Au(n) g(n, u(n)), u(n0) = u0.

Proof. Suppose the assertion is false. Then there exists a k > no such thar

V(k, x(k)) _< u(k), and V(k+l, x(k/l)) > u(k/l).

Since g >_ 0, u(n) is nondecreasing sequence and therefore we have for

no <_ s _< k,

V(s, x(s)) _< u(s) _< u(k) <_ u(k+l) <_ V(k+l, x(k+l)).

This implies that x( k+l ft. Consequently, with (2.3) and the monotone character

of g,

V(k, x(k)) + g(k, V(k, x(k)) _> V(k+l, x(k+l))

> u(k+l) = u(k) + g(k, u(k))

>_ u(k) + g(k, x(k))).
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This leads to the contradiction

V(k, > u(k)

and hence the proof is complete.

Another comparison theorem which is sometimes useful, is the following.

.N +Theorem 2.4. Assume that g no X + +, g(n, u) is nondecreasing in u

for each n E N + A" N + A(n) >0 for n > no and
no no +’

(z3V(n, x(n)))a(n+l) +(A(n))V(n, x(n)) _< g(n, A(n)V(n, x(n))),

where

+x(n) E FtA --Ix(n)- N
nO

-+ d" A(s)V(s, x(s)) < A(n)V(n, x(n)), no <_ s <_ n.

Then A(n0) V(no, x(no) _< u0 implies

A(n)V(n, x(n)) < u(n), n >_ n0,

where u(n) is the solution of (2.4).

Proof. Setting L(n, x(n)) = A(n)V(n, x(n)), it is easy to compute that

AL(n, x(n)) < g(n, L(n, x(n))),

for x(n) f2 = Ix(n) L(s, x(s)) < L(n, x(n)), no <_ s < n]. It then follows from

Theorem 2. 3 the stated result and the proof is complete.

3. Stability Results.

Having the necessary comparison results, it is now easy to investigate stability

properties of solutions of the system (1.1). For this purpose, we slaall assume that

f(n, 0, 0) = 0, and G(n, s, 0) = 0, so that we have the trivial solution x(n) = 0 for the

system (1.1).

Let us recall that a function (u) is said to be of class n if it is continuous in

[0, p), strictly increasing in u and (0) = 0. Using the comparison Theorem 2. 3, we

can now prove stability porperties of the null solution of (1.1) in a unified way.
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Theorem 3. 1. Suppose that there exists two functions V(n, x) and g(n, u) satisfying

the conditions:

(i)

(ii)

.N +g no X+
, g(n, 0)=0, g(n,u) is nondecreasing in u for

+each n E N
no

+V N X S(p) +, V(n, x) is continuous in x and the variation of
no

V relative to (1.1) satisfies the estimate

(,) AV(n, x(n)) < g(n, v(n, x(n))) whenever

where S(p)= Ix E d. Ilxli < p].

x(n) e , n >_ no

(iii) b(llxll) _< V(n, x) _< a(ilxll), where a, b to.

Then the stability properties of the trivial solution of (2.4) imply the corresponding

stability properties of the Volterra system (1.1).

Proof. Let 0 < e < p and no _> 0 be given. Assume that the trivial solution of (2.4)

is stable. Then, given b(e) > 0 and no >_ 0, there exists a 61 = 61(n0, ) > 0 such

that

(3.1) u(n0) < 1 implies u(n) < e, n > n0.

Choose 6 3(n0, ) > 0 such that a(6) < 61. Then we claim that the null solution of

(1.1) is stable with this 6. If this is false, then there would exist a solution x(n) of (1.1)

such that II x(n0) II < and an n > no with

(3.2) II x(nl)II-e and II x(s)II < < ;, no < s < n 1.

This shows by Theorem 2.3 that

(3.3) V(n,x(n)) < u(n), no _< n_< n 1,

where u(n) = u(n, no, u(n0) is the solution of (2.4). We choose

V(n0, x(n0) u(n0), so that when IIx(n0)ll < , we have u(n0) _< a(6) < 51. Now

the relation (3.1), (3.2), (3.3) and condition (iii) lead to the contradiction

b(e) = b(llx(n)ll) < V(nl, x(nl)) < u(nl) = u(nl, n0, 61) < b(e).

Hence the trivial solution of (1.1) is stable.
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If we suppose that the trivial solution of (2.4) is uniformly stable, then it is

clear from the above proof that 6 is independent of no and hence we get the uniform

stability of the trivial solution of (1.1).

If we suppose that the trivial solution of (2.4) is asymptotically stable, we then

have

V(n, x(n)) < u(n), for all n > nO,

in view of stability. Consequently, condition (iii) implies the asymptotic stability of the

trivial solution of (1.1). The proof of the theorem is complete.

Corollary 3. 1. The functions

(i) g(n, u) 0

n-1

(ii) g(n, u)- anu, an >_ 0 with I’I
i- no

a < r(n0),

are admissable to yield uniform stability of (1.1) in Theorem

(ii),
n-i n-n01-[ ai< Mr/
i=n0

Furthermore, if in

with 0 < r/< 1, then exponential stability of the system (1.1) follows.

Theorem 3. 2. Let the assumptions (i) and (iii) of Theorem 3. 1 hold. Suppose

further that

A N + [1, oo) A(n)- :x:) as n---+
nO

+V" Nn0 X S(p) --, +, V(n, x) is continuous in x and

(AV(n, x(n)))A(n+1) +(AA(n))V(n, x(n)) _< g(n, A(n)V(n, x(n)))

for x(n) E flA" Let the trivial solution of (2.4) be stable. Then the trivial solution of
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(1.1) is asymptotically stable.

Proof. Proceeding as in the proof of Theorem 3. 1, we obtain the stability of the

trivial solution of (1.1) since A(n) >_ 1 for n > n0. Then it is easy to get the estimate

(3.4) A(n)V(n, x(n)) <_ u(n), n >_ n0,

provided IIx(n0)ll < 60 where 60 = 6(no, p) corresponding to e = p. It then follows

that from (2.4) in view of the assumptions on A(n) that lim Iix(n)ll 0 which proves

the asymptotic stability of the trivial solution of (1.1). The proof is complete.

Let us next employ the comparison Theorem 2. 1 so that we do not need

minimal class of functions.

Theorem 3. 3. Let there exist two function V(n, x) and g(n, u, v) satisfying the

conditions:

(i)

(ii)

.N /g X N+ X N+ N, g(n, 0,0) =0, g(n,u,r) is
no

nondecreasing in u, r for each n,

+V" Nn0 X S(p) R+, V(n, x)is continuous in x and

n-1
AV(n, x(n)) <_ g(n, V(n, x(n)), E

s--n
V(s, x(s))), for n > n0.

(iii) b(ilxll) < V(n, x) < a(lixll), where a, b e x.

Then the stability properties of the trivial solution of the scalar difference equation of

Volterra type (2.1) imply the corresponding stability properties of the trivial solution of

the system (1.1).

Proof. If x(n) is any solution of (1.1), we obtain, using Theorem 2. 1 the estimate

V(n,x(n)) <_ r(n), n >_ no
where r(n) is the solution of the scalar equation (2.1). Hence using an argument similar
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to Theorem 3. 1 with suitable modifications, we can construct the proof of the

theorem. We omit the details.

Theorem 3. 4. Let the assumptions of Theorem 3. 3 hold except that the equation

(3.5) is now replaced by
n-1

AV(n, x(n)) <_ g(n, V(n, x(n)), E
$=n0

H(n, s, V(s, x(s)))),

+ +where H:N X N
no no

X +-’ and g>_O. Then the stability properties of

the null solution of (2.2) imply the corresponding stabilty properties of the null solution

or (I.:).

Proof. Based on the comparison Theorem 2. 2 and the proof of Theorem 3. 1,

it is not difficult to construct the proof. We omit the details to avoid monotony.
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