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We study the problem of existence and uniqueness of solutions of a class of nonlinear
fuzzy Volterra-Fredholm integral equations.

1. Introduction

Fuzzy differential and integral equations have been studied by many authors [1, 2, 5, 6,
7, 14]. Kaleva [5] discussed the properties of differentiable fuzzy set-valued mappings by
means of the concept of H-differentiability introduced by Puri and Ralescu [9]. Seikkala
[11] defined the fuzzy derivative which is a generalization of the Hukuhara derivative [9]
and the fuzzy integral which is the same as that proposed by Dubois and Prade [3, 4].
Balachandran and Dauer [1] established the existence of solutions of perturbed fuzzy
integral equations. Subrahmanyam and Sudarsanam [13] studied fuzzy Volterra integral
equations. Park and Jeong [8] proved the existence and uniqueness of solutions of fuzzy
Volterra-Fredholm integral equations of the form

¢ T
x(t) = F(t,x(t),JOf(t,s,x(s))dsL g(t,s,x(s))ds), (1.1)

and Balachandran and Prakash [2] studied the same problem for the nonlinear fuzzy
Volterra-Fredholm integral equations of the form

x(t) = f(t,x(t)) +F<t,x(t),fg(t,s,x(s))ds,JTh(t,s,x(s))ds) (1.2)
0 0

The purpose of this paper is to prove the existence and uniqueness of solutions of general
nonlinear fuzzy Volterra-Fredholm integral equations of the form

x(t) = F(t,x(t),L fl(t,s,x(s))ds,...,L Fn(t,5,x(5))ds,
(1.3)

T T
J gl(t,s,x(s))ds,...,J gm(t,s,x(s))ds>, 0<t<T.
0 0
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2. Preliminaries

Let Px(R") denote the family of all nonempty, compact, convex subsets of R”. Addition
and scalar multiplication in Pg(R") are defined as usual. Let A and B be two nonempty
bounded subsets of R". The distance between A and B is defined by the Hausdorff met-
ric d(A,B) = max{sup,., infyep l|a — bll,sup,cginfaea lla — bl }, where || - || denote the
usual Euclidean norm in R". Then it is clear that (Px(R"),d) becomes a metric space.

Let I = [0,1] € R be a compact interval and denote

E" = {u:R" — I : u satisfies (i)—(iv) below}, (2.1)

where
(1) u is normal, that is, there exists an xy € R" such that u(xy) = 1,
(ii) u is fuzzy convex,
(iii) u is upper semicontinuous,
(iv) [u]® = cl{x € R": u(x) > 0} is compact.
For 0 < a < 1 denote [u]® = {x € R" : u(x) > «a}. Then from (i)—(iv) it follows that the
a-level set [u]* € Pg(R") forall 0 < a < 1.
If g: R" X R" — R" is a function, then using Zadeh’s extension principle we can extend
g to E" X E" — E" by the equation

g(u,v)(z) = sup min{u(x),v(y)}. (2.2)
z=g(x,y)

It is well known that [g(u,v)]* = g([u]%, [v]®) for all u,v € E", 0 < & < 1, and continuous
function g. Further, we have [u+v]* = [u]* + [v]%, [ku]* = k[u]%, where k € R. The real
numbers can be embedded in E" by the rule ¢ — ¢(t) where

&) = 11 fort=c, (2.3)

0 elsewhere.

Let D: E" X E" — R* be defined by D(u,v) = sup,_,., d([u]%, [v]*), where d is the
Hausdorff metric defined in Px(R"). Then D is a metric in E” and (E",D) is a complete
metric space [5, 10]. Further D(u + w,v + w) = D(u,v) and D(Au,Av) = |A|D(u,v) for
every u,v,w € E" and A € R.

It can be proved that D(u+v,w+2z) < D(u,w) + D(v,z) for u, v, w, and z € E".

Definition 2.1 [5]. A mapping F : I — E" is strongly measurable if for all « € [0,1], the
set-valued map Fj : I — Px(R") defined by F,(t) = [F(t)]* is Lebesgue measurable when
Pk (R") has the topology induced by the Hausdorff metric d.

Definition 2.2 [5]. A mapping F : I — E" is said to be integrably bounded if there is an
integrable function h(t) such that ||x(#)]l < h(t) for every x € Fy(¢).
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Definition 2.3 [10]. The integral of a fuzzy mapping F : I — E" is defined level-wise by

[LF(t)dt]a - LFa(t)dt

(2.4)
= { J f(t)dt] f: I — R"is a measurable selection for F,x}
i

forall « € [0,1].

It has been proved by Puri and Ralescu [10] that a strongly measurable and integrably
bounded mapping F : I — E" is integrable (i.e., [; F(t)dt € E").

THEOREM 2.4. IfF: I — E" is continuous, then it is integrable.

THEOREM 2 5. Let F,G: I — E" be integrable and A € R. Then
i) [[(F(t)+G(t))dt = [ F(t)dt + [; G(¢)dt,
) j,AF(t )ydt = A [, F(t)dt,
(111) D(F, G) is integrable,
(iv) D(J; F(t)dt, [; G(t)dt) < [; D(F(t), G(t))dL.
Now we make the following assumptions.
(A1) Let J=[0,T], A= {(t,s): 0<s<t<T}.If fi,gi € CAXE" E"), i=1,2,...,m,
F e C(J x E?mtUn En) and if x € C(J,E") and

z(t) = F(t,x(t),Lfl (t,s,x(s))ds,...,JO S (£,5,x(s5))ds,
(2.5)

T T
J g (t,s,x(s))ds,...,J gm(t,s,x(s))ds) ,
0 0

then z € C(J,E").
(Az) There exist functions w;(t,s, p), @;(t,s, p) such that w;,®; € C(A X R*,R*), R* =
[0, 00), which are nondecreasing in p and fulfil the conditions

D(fi(t,s,x(s)), fi(t,5X(s))) < wi(t,s,D(x(s),X(5))),
D(gi(t,5,x(s)),gi(t,5,%(s))) < @i(t,s,D(x(s),x(s))) (2.6)
for x,x € C(J,E"), i=1,2,...,m.

(A3) There exists a function H (¢, p1, p2,..., pam+1) defined fort € Jand 0 < p; < p, <
* < pams1 < oo such that
(i) ifue C(J,J) and

v(t) = H(t,u(t),rwl (t,s,u(s))ds,... ,thm (t,s,u(s))ds,
0 0

T T
J d)l(t,s,u(s))ds,...,J d)m(t,s,u(s))ds>,
0 0

thenv € C(J,]);
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(i) if u,u € C(J,J) and u(t) < u(t) for t € J, then
t

H (t,u(t),J:wl (t,s,u(s))ds,...,J0 W (t,5,u(s))ds,

T

T
J (i)l(t,s,u(s))ds,...,J ci)m(t,s,u(s))ds>
0 0
(2.8)
t t
sH(t,ﬁ(t),J wl(t,s,ﬁ(s))ds,...,f wp, (t,5,7(s))ds,
0

0

T T
J cbl(t,s,ﬁ(s))ds,...,J d)m(t,s,ﬁ(s))ds) forte]J;
0

0

(ii1) if u, € C(J,)), thpe1(t) < u, (), t € J,n=0,1,2,..., and lim,_ o u,(t) = u(t),

then
limH<t,un(t),th1(t,s,un(s))ds,...,thm(t,s,un(s))ds,
n—oo 0 0
T T
J d)l(t,s,un(s))ds,...,J (bm(t,s,un(s))ds>
0 0
(2.9)
t t
= H(t,u(t),J a)l(t,s,u(s))ds,...,J W (t,s,u(s))ds,
0 0
T T
J d)l(t,s,u(s))ds,...,J d)m(t,s,u(s))ds).
0 0
(Ay)
D(F(t,x1(8),%2(t),...» %2m+1(2)), F(£,%1(£),%2(£),..., Xoms1 (1))
(2.10)

< H(taD(-xl(t))yl(t))>D(x2(t))§2(t))>-- . aD(x2m+1(t)>E2m+l(t)))

holds for x;,x; € C(J,E"),t€J,i=1,2,...,2m+1).
(As) There exists a nonnegative continuous function %: ] — R* being the solution of
the inequality,

t

t
H<t,u(t),J0 w1 (t,s,u(s))ds,...,J0 Wi (t,5,u(s))ds,

(2.11)

T T

J wl(t,s,u(s))ds,...,J wm(t,s,u(s))ds> +q(t) < u(t),
0 0
where
q(t) = supD(F(t,(),rﬁ(t,s,f))ds,...,thm(t,s,())ds,
te] 0 0

(2.12)

T A T A A
J gl(t,s,O)ds,...,J gm(t,s,O)ds>,0>.
0 0
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(As) In the class of functions satisfying the condition 0 < u(t) < u(¢), t € J, the func-
tion u(t) = 0, t € ], is the only solution of the equation

u(t) = H(t,u(t),rwl (t,s,u(s))ds,..., thm(t,s,u(s))ds,
0 0

r ’ (2.13)
J wl(t,s,u(s))ds,...,J wm(t,s,u(s))ds).
0 0
In order to prove the existence of a solution of (1.3), we define the sequence
xo(t) =0,
t t
X1 (1) =F(t,xn(t),J fl(t,s,xn(S))ds,...,J Sn (t,5,50(s)) ds,

0 0 (214)

T T
J &1(t,8,x4(5))ds, ... ,J gm(t,s,xn(s))ds>
0 0

forn=0,1,2,....
To prove the convergence of the sequence {x,} to the solution X of (1.3), we define the
sequence {u,} by the relations

uo(t) = u(t),

Upi1 (1) = H(t,un(t),J;wl (t,s, un(s))ds,...,JO Wi (2,8, u,(s)) ds,

(2.15)
T T
J wl(t,s,un(s))ds,...,J wm(t,s,un(s))ds>
0 0
for n=0,1,2,..., where the function %(¢) is from the assumptions (As) and (As).
LemMa 2.6. If the conditions (A3), (As), and (Ag) are satisfied, then
0<up(t) <u,(t)<u(t), te],n=0,1,2,...,
(2.16)

i{rgloun(t)=0, te])

and the convergence is uniform in each bounded set.
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Proof. From (2.11) and (2.15) we have

t t
up(t) = H<t,uo(t),J wl(t,s,uo(S))ds,-..,J W (1,5, uo(s)) ds,
0

0
T

T
J Wl(t,s,uo(s))ds,...,J wm(t,s,uo(s))ds>
0 0

<H (t,u(t), JZ w1 (t,5,7(s))ds, ... ,Lt W (t,5,2(s)) ds, (2.17)

T

JOT W (t,s,ﬁ(s))ds,...,JO

< u(t) = uo(t)

Wm(t,s,u(s))ds> +q(t)

for t € . Further, we obtain (2.16) by induction. But (2.16) implies the convergence of
the sequence {u,(t)} to some nonnegative function ¢(¢) for t € J. By Lebesgue’s theorem
and the continuity of H, it follows that the function ¢(¢) satisfies (2.13). Now from as-
sumptions (As) and (Ag), we have ¢(t) =0, t € J. Hence by the Dini theorem [12], the
sequence {u,} converges uniformly in J. O

3. Main results

THEOREM 3.1. If the assumptions (A1)—(Ag) are satisfied, then there exists a continuous
solution X of (1.3). The sequence {x,} defined by (2.14) converges uniformly on ] to X, and
the following estimates:

D(X(t),x,(t)) <uy(t), te], n=0,1,2,..., (3.1)
D(x(1),0) <u(t), teJ (3.2)

hold. The solution X of (1.3) is unique in the class of functions satisfying the condition (3.2).
Proof. We first prove that the sequence {x,(t)}, t € ], fulfils the condition

D(x,(t),0) <u(t), te],n=0,1,2,.... (3.3)

Obviously, we see that D(xy(t),0) = 0 < #(t), t € J. Further, if we suppose that inequality
(3.3) is true for n > 0, then

A

D(xn+l(t)’0)
< D(x451(£),x1(1)) + D (x1(1),0)

< D(F(t,x,,(t),rfl(t,s,xn(s))ds,...,rfm(t,s,xn(s))ds,
0 0

T T
J gl(t,s,xn(s))ds,...,f gm(t,s,xn(S))dS),
0 0
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t t T T
F(t,o,j fl(t,s,ﬁ)ds,...,J fm(t,s,O)ds,J gl(t,s,())ds,...,J gm(t,s,())ds)>
0 0 0 0
A t A t A T A T A A
+D<F(t,O,J ﬁ(t,s,O)ds,...,J fm(t,s,O)ds,J gl(t,s,O)ds,...,J gm(t,s,O)ds>,O>
0 0 0 0

<H<t D(x,(t) (J f1(8,5,%4(s ds,J fi(t,s,0) ds),

D(thm(t,s,xn(s))ds,f fm(t,s,f))ds>,
0 0
T T
D(JO gl(t,s,xn(s))ds,JO gl(t,s,f))ds>,...,
T T
D(J gm(t,s,x,,(s))ds,J gm(t,s,f))ds))+q(t)

H(th,, JDfltsxn (s)), fi(t,s,0))ds,...

t T
JOD(fm(t>5;xn(5)):fm(t>5’0))d5>JO D(gl(t’s’x”(s))’gl(t’s’()))ds""’
T
JO D(gm(t:5>-xn(5))agm(tas’0))d5) +q(t)
t t
< H(t,D(xn(t),ﬁ),J w1(t,s,D(xn(s),ﬁ))ds,...,J Wi (£,5,D(x,(5),0))ds,
0 0

T

LTwl(t,s,D(xn(s),()))ds,...,JO wm(t,s,D(xn(s),f)))dS) +q(t)

t

t
< H(t,ﬁ(t),J wl(t,s,ﬁ(s))ds,...,J Wi (8,5,7(s) ) ds,
0 0

T

JOTwl(t s, u(s))ds,... JO

<u(t) forte].

wm(t,s,u(s))ds> +q(t)

(3.4)
Now we obtain (3.3) by induction. Next, we prove that
D (x4, (1),x(8)) <uu(t), t€],n=0,1,2,...,r=0,1,2,.... (3.5)
By (3.3), we have

D(x,(£),x0(t)) = D(x,(1),0) <(t) = uo(t), te€],r=0,1,2,.... (3.6)
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Suppose that (3.5) is true for n,7 > 0, then

D(xn+r+1(t))xn+l(t))
t
D( (t Sosr (1) J Fi(y5, %010 (8)) s, J (1,5, %10 (5)) ds
T T
J £1(8,8,%n4,(5))ds,..., Jo gm(t,s xn+,(s))ds>

<txn Jfltsx,,(s metsxn ))ds,

J £1(t,5,x,(5))ds,..., J g (t,8,%,(s))d ))

H(t D (x4 (8),xa(1)), (J 18,5, %04r(s)) ds, J fi(ts, x,,(s))ds) .....
D(J;fm(t,s,xn+,(s))ds, Ltfm(t,s,xn(s))ds),

T T
D(J gl(t>5)xn+r(s))dsaj gl(t,S,xn(S))d5> -----
0 0

T T
D(J gm(t,s,xn+r(5))ds,J gm(t,s,xn(S))dS>>
0 0

t
= H<t>D(xn+r(t)axn(t)))Jo D(fl (t>5)xn+r(s)))fl (t,s,xn(s)))ds,
JO D(fin (£,5,%n11(5)) s fn (1,5, (s)) ) ds,
T
L D(g1(t,5Xn1r(5)), &1 (t,5,%4(5)) ) ds, ...,
T
L D(gm(t,s,xnﬂ(s)),gm(t,s,xn(s)))ds)

<H (t,D(an(t),xn(t)),L: w1 (t,8,D (x4 (5),%,(5)))ds,...,

T

Itwm (t’S’D(xnﬂ(s))xn(s)))ds’I Wi (t:S’D(xn+r(5)’xn(5)))d5 -----
0 0

T
I wm(t’S)D(xn+r(5)>xn(S)))d5>
0
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< H(t,un(t), Jot w1 (8,8, un(s))ds,.. .,L:wm(t,s,un(s))ds,

T

T
J wi(t,s, u,,(s))ds,...,J Wi (8,5, un(s))ds)
0 0

<up(t) forte].
(3.7)

Now we obtain (3.5) by induction.

Because of Lemma 2.6, lim,, . u, () = 0 in J and we have from (3.5) that x,, — X in J.
The continuity of X follows from the uniform convergence of the sequence {x,} and the
continuity of all functions x,,. If r — oo, then (3.5) gives estimation (3.1). Estimation (3.2)
implies (3.3). It is obvious that X is a solution of (1.3).

To prove that the solution X is a unique solution of (1.3) in the class of functions
satisfying the condition (3.2), we suppose that there exists another solution £ defined in J
such that x(t) # £(¢) and || %(¢)|| < u(¢) for t € J. From (3.1) we get D(X(¢),x,(t)) < u,(t),
te],n=0,1,2,... and it follows that X(¢) = x(¢) for t € J. This contradiction proves the
uniqueness of X in the class of functions satisfying the relation (3.2). This completes the
proof of the theorem. O

THEOREM 3.2. If the assumptions (A,)—(A4) are satisfied and the function y(t) =0, t €],
is the only nonnegative continuous solution of the inequality

t t
y(t) < H(t,y(t),[0 wy (t,s,y(s))ds,...,J Wi (8,5, y(s))ds,

0
T

T
J wl(t,s,y(s))ds,...,I wm(t,s,y(s))ds>, te],
0 0

then (1.3) has at most one solution in J.

Proof. We suppose that there exist two solutions ¥ and % of (1.3) such that X(¢) # %(¢),
t € ].Put y(t) = D(x(t),%(t)), t €], then

y(t) = D(x(t),%(t))

t t
=D(F<t,f(t),J fl(t,s,f(s))ds,...,J Fn(t,5,5(5))ds,
0 0

T T
J gl(t,s,f(s))ds,...,J gm(t,s,f(s))ds>,
0 0
t t
F(t,fc(t),Lfl(t,s,fc(s))ds,...,L Fn(t,5,5(5))ds,

T T
J &1 (t,5,%(5))ds,.. I gm(t,s,fC(S))dS))
0 0
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sH( (1), 4(1)), (j filts,x )ds,JOtfl(t,s,fc(s))ds),...,
D(J0 fm(t,s,%(s))ds,f0 fm(t,s,fc(s))ds),

T T
D(J & (fas,f(s))dS,J & (t,s,fc(s))ds> s
0 0

T T
D<J gm(t,s,%(s))ds,J gm(t,s,fc(s))ds>>
0 0
t
< H(t,D(y_c(t),a%(t)),JO D(fi(1,5,%()), fi (1,5,5(5)) ) ds,....
LD(fm(t,s,x(s)), Fu(t,5,2(s)) ) ds,
T
L D(gi (t,5,%(s)),41 (£,5,%(s)) ) ds,...,

T
[ D(gm(t,s,ﬂs)),gm<t,s,fc<s>>>ds)

< H(t,D(x(t),fc(t)), thl (t,5,D(x(5),£(s)))ds, ..,
0

ItWm(t’S’D(E(S)’fC(S)))dSa

0

T
I w1 (t,s,D(x(s),%(s)))ds,...,
0

JTwm(t,s,D(E(s),fc(s)))ds)

0

t

< H(t,y(t),L wi (8,5, 9(s))ds,.. .,JO wi (8,5, y(s))ds,

T T
I W (t,s,y(s))ds,...,J Wi (t,s,y(s))ds)
0 0

(3.9)

and by (3.8) we conclude that y(t)

=0 fort € ], thatis, x(t) = X(t), t € J. This contradic-
tion proves our Theorem 3.2.

]
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