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In this paper we study a queueing model of type GI/M/m̃a/∞ with m parallel channels,
some of which may suspend their service at specified random moments of time. Whether
or not this phenomenon occurs depends on the queue length. The queueing process,
which we target, turns out to be semi-regenerative, and we fully explore this utilizing
semi-regenerative techniques. This is contrary to the more traditional supplementary
variable approach and the less popular approach of combination semi-regenerative and
supplementary variable technique. We pass to the limiting distribution of the continuous
time parameter process through the embedded Markov chain for which we find the
invariant probability measure. All formulas are analytically tractable.
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1 Introduction

This paper analyzes a multi-channel queueing system with a random number of chan-
nels, infinite capacity waiting room, general input, and exponentially distributed service
times. The total number of channels does not exceed m, but at any given time not all of
them are “active.” The latter implies that even if a particular channel is busy servicing
a customer, the service at some later time can become suspended. We assume that
there is a certain sequence {Tn} of stopping times relative to the queueing process at
which a decision is being made for every busy channel to continue, suspend, or activate
service. This policy literally makes the total quantity of servers random and it affects
both the servicing and queueing processes.
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More formally, if Zt denotes the number of customers in the system at any given
time t, the number of active channels at Tn (where {Tn} is the arrival process) is a
binomial random variable with parameters (ZTn , a) where 0 ≤ a ≤ 1, provided that
Zt ≤ m. Unless service is interrupted, each of the customers is being processed at
an exponentially distributed time and service durations on each of the active channels
are independent. The input is a regular renewal process. For this system we use the
symbolic notation GI/M/m̃a/∞.

The system, as it is, generalizes the classical GI/M/m/∞ queue by making it, in
some real-world applications, more versatile. We can easily associate it with any mail
order servicing system where once the order has been taken, it can be suspended at
any moment of time for an unaware customer (who believes he is being processed) for
various reasons, most commonly due to unavailable items. An item can also be back-
ordered. The company is trying to shop around and find the item, and this takes time
and effort. A similar situation occurs in Internet service where jobs are being routinely
suspended for numerous reasons by Internet providers.

In this problem setting we make the consequences of this interruption policy milder,
in which suspensions take place only if the buffer (or waiting room) is empty, but all
or a few channels are occupied. It makes perfect sense to reduce waiting time for many
customers from the buffer.

The queueing systems with variable number of channels have been investigated in
the past literature. Saati [4] describes such one as a fully exponential system. Most
commonly, the queues with unreliable servers (which can break down at any time) and
priorities can also fall into this category. Our system is different firstly because it is non-
Markovian and secondly because service interruptions do not take place fully arbitrarily,
but with some probabilities upon certain random times. The closest problem to ours is
the system in Rosson/Dshalalow [3] with no buffer.

In the present paper, we focus our attention on the queueing process, which turns
out to be semi-regenerative relative to the sequence {Tn} of arrivals. We start with the
embedded process over {Tn} and turn to the analysis of the queue as a semi-regenerative
process, which to the best of our knowledge has not been analyzed this way even in the
case of the basic GI/M/m/∞ system, and thus this method is by itself novel for the class
of multi-channel queues. We have used this approach in Rosson/Dshalalow [3] for the
case of a more rudimentary GI/M/m/0 system with a random number of channels. The
paper is organized as follows. Section 2 formalizes the model more rigourously. Section
3 deals with an embedded Markov chain and the invariant probability measure under a
given ergodicity condition. Section 4 analyzes the continuous time parameter queueing
process followed by an example presented in Section 5. All formulas are obtained in
analytically tractable forms.

2 Description of the System and Notation

2.1 Description of the system

Let (Ω,F , (P x)x=0,1,..., Zt; t ≥ 0) → E = {0, 1, ...} be the stochastic process which
describes the evolution of the queueing process in the GI/M/m̃a/∞ system introduced
in the previous section. In other words, at any time t, Zt gives the total number of units
(or customers) in the system including those being in service. The servicing facility has
m permanent channels, of which not all are necessarily active. The buffer (or waiting
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room) is of an infinite capacity, but the system needs to be “watched” for preserving
the equilibrium condition. Customers arrive singly in the system in accordance with a
standard renewal process {Tn; n = 0, 1, ..., T0 = 0}. Inter-renewal times have a common
PDF (probability distribution function) A(x), with finite mean ā and the LST (Laplace-
Stieltjes transform) α(θ). The formation of active or inactive channels is being rendered
upon {Tn} as follows. If at time Tn− (i.e. immediately preceding the nth arrival)
the total number of customers is less than m, each of the channels, including the one
that is aimed to accommodate the nth customer (just arrived), can become temporarily
inactive with probability b. In such a case, the service of a customer by any such channel
becomes suspended until the next stopping time Tn+1 (of the process Zt). Every busy
channel is active with probability a (= 1 − b) and he is processing a customer a period
of time exponentially distributed with parameter µ until Tn+1 or the end of service,
whichever comes first. Thereby, service times at each of the parallel channels within the
random interval [Tn, Tn+1) are conditionally independent, given Xn := ZTn− and the
number of active channels is governed by a binomial random variable ξn with parameters
(Xn +1, a) provided that Xn < m. If the number of customers in the system upon time
Tn− is m or more, then all channels are almost surely active until Tn+1.

2.2 Notation

We will be using the following notation throughout the remainder of this paper:

a = probability of each busy channel at Tn+ to be active, n = 0, 1, ... .

b = 1 − a = probability of a channel at Tn+ to be inactive.

β̂0 = γm =
∫∞
0 [p(x)]mdA(x)

βs =
∫∞
0

e−mµx (mµx)s

s! dA(x), s = 0, 1, . . .,

p(x) = b + a e−µx

q(x) = (1 − e−µx) a.

αr = α(rµ),

α (θ) =
∫∞
0

e−θuA(du).

γr =
∫∞
0 [p(x)]rdA(x), r = 0, 1, . . . .

α̂r =
∫∞
0 [p(x)]r[1 − A(x)]dx.

ar =
{

1, r = 0,∏r
j=1

γj

1−γj
, r > 0.

3 Embedded Process

As a precursor to the key semi-regenerative approach for treating the one-dimensional
distribution of the queueing process

(Ω,F , (P x )x=0,1,. . . , Zt; t ≥ 0) → E = {0, 1, ...},



378 H.-T. T. ROSSON and J.H. DSHALALOW

we begin with the process

(Ω,F , (P x)x=0,1,..., Xn = ZTn−; n = 0, 1, ...) → E = {0, 1, ...}

embedded in (Zt) over the almost surely strictly monotone increasing sequence {Tn} of
stopping times relative to (Zt). As in the case of the usual GI/M/m/∞ queue, (Zt) is
semi-regenerative with respect to {Tn}, and as a consequence, {Xn} is a Markov chain.
It is obviously time-homogeneous.We now turn to the TPM (transition probability ma-
trix) of {Xn}.

3.1 Transition Probabilities

Let

qr
s =

(
r
s

)
ar−sbs, s = 0, ..., r, r = 0, ..., m − 1

(binomial distribution; commonly denoted by b(r, 1 − a; s) in the literature) and let

Bjk =
∫ ∞

0

(
j
k

)
(1 − e−µx)j−ke−µkx dA(x), k = 0, 1, . . . , j + 1; (3.1)

j = 0, 1, ..., m− 1.

Then,

pjk =
k∑

s=0

qj+1
s Bj+1−s,k−s (3.2)

=
k∑

s=0

(
j + 1

s

)
aj+1−sbs

∫ ∞

0

(
j + 1 − s

k − s

)(
1 − e−µ x

)j+1−k
e−µ ( k−s ) x dA(x),

k = 0, . . ., j + 1 ; j = 0, . . . , m − 1,

where qj+1
s is the probability that s out of j + 1 busy channels are inactive at Tn,

(1 − e−µx)j+1−k is the probability that in [0, x], j+1−s−(k−s) customers are processed,
and e−µ(k−s)x is the probability that in [0, x], k − s customers are not finished while
being treated. Clearly, pjk = 0 for

k > 0, j = 0, . . . , m − 1. (3.3)

Notice that

pm−1,m =
∫ ∞

0

[p(x)]mdA(x) = β̂0 = γm, (3.4)

where

β̂0 = pm−1,m =
m∑

s=0

Bm−s,m−sq
m
s

=
m∑

s=0

∫ ∞

0

(
m − s
m − s

)
e−µ(m−s)xdA(x)

(
m
s

)
am−sbs

=
∫ ∞

0

(b + ae−µx)mdA(x) = β̂0 = γm,
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and that β̂0 = β0 = αm =
∫∞
0

e−µmxdA(x) if a = 1.
The above probabilities (3.1)-(3.4) form the upper block

L1 =




p00 p01 0 · · · 0 · · ·
p10 p11 p12 · · · 0 · · ·
p20 p21 p22 · · · 0 · · ·
...

... · · ·
...

· · · · · · · · · · · · · · · · · ·
pm−1,0 pm−1,1 pm−1,2 · · · pm−1,m−1 pm−1,m = β̂0 0




(3.5)

of the TPM ( transition probability matrix ) L = (pij)i, j ∈E .
The lower block of L with the rows from m and all the way down are identical to

that for the system GI/M/m/∞:

L2 =




pm,0 pm,1 . . . pm,m β1 β0 0 0 . . .
pm+1,0 pm+1,1 . . . pm+1,m β2 β1 β0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .


 (3.6)

with

βj =
∫ ∞

x=0

e−µmx (mµx)j

j!
dA(x) j = 0, 1, . . ., (3.7)

and

pij =
∫ ∞

x=0

(
m
j

)
e−µjx

∫ x

y=0

(e−yx − e−µx)m−jmµ
(mµy)i−m

(i − m)!
dydA(x), (3.8)

i = m, . . . ; j = 0, 1, . . ., m.

The PGF (probability generation function) of the ith row of L1 is

pi(z) =
∫ ∞

0

[q (x) + p (x)z]i+1dA(x), i = 0, . . ., m − 1 (3.9)

where
q(x) = (1 − e−µx)a (3.10)

and
p(x) = b + ae−µx. (3.11)

We can easily deduce that L represents an irreducible and aperiodic MC (Markov
chain).

3.2 The Invariant Probability Measure

According to Abolnikov and Dukhovny [1], for mµα > 1, there exists an invariant
probability measure P := (P0, P1, . . .) of {Xn} as a unique positive solution of the
matrix equation {

P = PL
(P, 1) = 1, P ∈ RE .

(3.12)
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(3.12) also reads

Pk =
∞∑

i=k−1

pikPi, k = 0, 1, . . . , (3.13)

with
p−10 = P−1 = 0, (3.14)

and
∞∑

k=0

Pi = 1. (3.15)

For k ≥ m, (3.13), in light of (3.6-3.8), leads to

Pk =
{

β̂0 Pm−1 +
∑

i≥m βi+1−kPi, k = m,∑
i=k−1 βi+1−kPi, k > m.

(3.16)

Let us now consider equations (3.16) for k ≥ m. We will seek the solution of (3.16)
in the form

Pk = A δk−m, k ≥ m (3.17)

where A will be evaluated from (P, 1 ) = 1. Inserting (3.17) into (3.16) gives,

Aδk−m =
∞∑

s=0

βsAδs+k−1−m, k > m, (3.18)

which yields
δ = α(mµ − mµδ) (3.19)

where δ, according to Takács [6], is a unique, real positive root of (3.19), strictly less
than 1 when meeting the ergodicity condition mµα > 1. For k = m, (3.16) and (3.17)
yield

A = β̂0Pm−1 +
∞∑

i≥m

βi+1−mAδi−m (3.20)

= β̂0Pm−1 − Aβ0δ
−1 +

1
δ

∞∑

i≥m−1

βi+1−mAδi+1−m,

which, after some algebra and due to (3.19), reduces to

Pm−1 = Aδ−1 β0

β̂0

. (3.21)

(If β̂0 = β0 and P
′

m−1 = 1 , then Pm−1 = A δ−1 as in GI/M/m/∞.)
To determine the unknowns P0, P1, . . . , Pm−1 let us define the PGF

U(z) =
m−1∑

k=0

zkPk . (3.22)

The following proposition gives an equation in U(z) and Pi, i = 0, . . . , m− 1, which
lead to the derivation of the invariant probabilities.
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Proposition 3.1: It holds true that

U(z) =
m−1∑

i=0

Pi

∫ ∞

0

[p(x)z + q(x)]i+1dA(x) + AW (z), (3.23)

where

W (z) = mµ

∫ ∞

x=0

∫ x

y=0

emµyδ(e−µy − e−µx + ze−µx)dydA(x) − zm. (3.24)

Proof: From (3.13) ,

U(z) =
m−1∑

k=0

zkPk =
m−1∑

k=0

zk
∞∑

i=k−1

pik Pi = C(z) + D(z), (3.25)

where

C(z) =
m−1∑

i=0

Pi

i+1∑

k=0

pik zk − pm−1,m zmPm−1 (3.26)

and

D(z) =
m−1∑

k=0

zk
∞∑

i≥m

pikPi. (3.27)

Because of

pi(z) =
i+1∑

k=0

pikzk =
∫ ∞

0

[p(x)z + q(x)]i+1dA(x), i = 0, . . ., m − 1, (3.28)

along with (3.21) and (3.28), we have

C(z) =
m−1∑

i=0

Pi

∫ ∞

0

[p (x)z + q(x)]i+1dA (x) − A

δ
zmαm. (3.29)

Now we turn to D(z). Substitution of (3.8) into (3.27) and Fubini’s Theorem give

D(z) =
∫ ∞

x=0

∫ x

y=0




m−1∑

k=0

}
∞∑

i≥m

(
m
j

)
e−µjx(e−yx − e−µx)m−j (3.30)

× mµ
(mµy)i−m

(i − m)!
zkPi

)
dydA(x).

Furthermore, with Pk = A δk−m, we have

D(z) = A

∫ ∞

x=0

∫ x

y=0

∞∑

i≥m

(mµyδ)i−m

(i − m)!
e−µmy

(
m∑

k=0

(
m
j

)[
e−µ(x−y)

]j [
1 − e−µ(α−y)

]m−j

zk − emµ(x−y)zm

)
mµdydA(x)
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= A

∫ ∞

x=0

∫ x

y=0

emµyδe−mµy(1 − e−µ(x−y) + ze−µ(x−y))mmµ dydA(x)

−Azm

∫ ∞

x=0

e−mµx

∫ x

y=0

mµ emµyδ dydA(x)

= A

∫ ∞

x=0

∫ x

y=0

emµyδ (e−µy − e−µx + ze−µx)mmµ dydA(x)

−Azm

∫ ∞

x=0

e−mµxδ−1(emµx δ − 1) dA(x),

so that

D(z) = Amµ

∫ ∞

x=0

∫ x

y=0

emµy(e−µy − e−µx + ze−µx) dydA(x) (3.31)

+ Azm (
αm

δ
− 1).

By (3.26) and (3.31), we get

U(z) =
m−1∑

i=0

Pi

∫ ∞

0

[p (x)z + q(x)]i+1dA(x) + AW (z),

where

W (z) = mµ

∫ ∞

x=0

∫ x

y=0

emµyδ(e−µy − e−µx + ze−µx) dydA(x) − zm.

�
To obtain Pk’s we will use a method similar to that of Takács [6]. Given a polynomial

function f(z), define the sequence of linear functionals:

∀ r = 0, 1, . . . , Rrf = lim
z→1

1
r!

f (r)(z). (3.32)

Since U(z − 1) is identical to the Taylor series of U(z) expanded at 1, applying Rr to
the polynomial U(z), r = 0, 1, . . . , m − 1, and then multiplying it scalarly by (1, z −
1, . . . , (z − 1)m−1) we will thereby reexpand U(z) in a Taylor series at 1 and arrive at
its binomial moments:

RrU(z) =
m−1∑

k=r

Pk

(
k
r

)
=: Ur, r = 0, 1, . . . , m − 1. (3.33)

On the other hand, given the binomial moments, we have

Pk =
m−1∑

r=k

(
r
k

)
(−1)r−kUr, k = 0, . . . , m − 1. (3.34)

The following proposition is an analog to the result known for the GI/M/m/∞
queue, except for ar in (3.36) being different.
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Proposition 3.2: The nth binomial moment Un of U(z) is given by

Un =

an




Aδ−1 β0
β̂0

am−1
+
∑m−1

r=n+1

 m
r

[m(1−γr)−r]

ar(1−γr)[m(1−δ)−r]




β0
β̂0

am−1δ + 1
1−δ +

∑m−1
r=1

 m
r

[m(1−γr)−r]

ar(1−γr)[m(1−δ)−r]

, , n = 0, . . . , m − 1 (3.35)

with
∑m−1

r=m = 0, where

ar =
{

1 r = 0,∏r
j =1

γj

1−γj
r > 0,

(3.36)

and
γr =

∫ ∞

0

[p(x)]rdA(x) (3.37)

Proof: Applying Rr to (3.25) we have

Ur = RrU(z) = lim
z→1

1
r !

dr

dzr
U(z) (3.38)

From (3.26),

RrC(z) = lim
z→1

1
r !

dr

dzr
C(z) (3.39)

= lim
z→1

1
r !

dr

dzr

m−1∑

i=0

Pi

∫ ∞

0

[p (x)z + q(x)]i+1

and due to

Rr[p(x)z + q(x)]i+1 =





(
i + 1

r

)
p(x)r r ≤ i + 1

0 r > i + 1,
(3.40)

we have

Ur =
m−1∑

j=0

Pi

∫ ∞

0

Rr[p(x)z + q(x)]i+1dA(x) + ARrW (z)

=
m−1∑

i=r−1

Pi

(
i + 1

r

)
γr − AWr,

where
γr =

∫ ∞

0

[p(x)]rdA(x)

and
Wr := RrW (z).

With the usual combinatorics,

m−1∑

i=r−1

Pi

(
i + 1

r

)
γr = γr (Ur + Ur−1). (3.41)
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From (3.41) we have
Ur = γr(Ur + Ur−1) − AWr , (3.42)

or in the form

Ur =
γr

1 − γr
Ur−1 −

A

1 − γr
Wr , r = 1, . . . , m − 1. (3.43)

From (3.24)
RrW (z) = Wr (3.44)

= lim
z→1

1
r !

dr

dzr
mµ

∫ ∞

x=0

∫ x

y=0

emµy δ(e−µy − e−µx + ze−µx)dy dA(x) − zm

=
(

m
r

)
mµ

∫ ∞

x=0

e−rµx

∫ x

y=0

e(mµδ−(m−r)µ)y dy dA ( x ) −
(

m
r

)
,

r = 1, 2, . . . , m − 1.

Simplifying, we obtain

Wr =
(

m
r

)
m

m (1 − δ) − r

(∫ ∞

0

e−(1−δ)mµxdA(x) −
∫ ∞

0

e−rµx dA (x)
)
−
(

m
r

)

(3.45)

=
(

m
r

)
m(1 − γr) − r

m (1 − δ) − r
, r = 1, 2, . . . , m − 1.

Denoting

ar =





1, r = 0,

∏r
j = 1

γj

1−γj
, r > 0,

we have
γj

1 − γj
=

ar

ar−1
, (3.46)

and dividing by ar both sides of (3.43), we have

Ur

ar
=

1
ar−1

Ur−1 −
A

ar(1 − γr)
Wr, r = 1, . . ., m − 1. (3.47)

Assuming 0 ≤ n ≤ m − 2, we add up equation (3.47) for r = n + 1, . . . , m − 1,
arriving at

m−1∑

r=n+1

Ur

ar
=

m−1∑

r=n+1

1
ar−1

Ur−1 −
m−1∑

r=n+1

A

ar(1 − γr)
Wr , r = 1, . . ., m − 1,

m−1∑

r=m

= 0

and thus

Un =
anUm−1

am−1
+ an

m−1∑

r=n+1

A

ar(1 − γr)
Wr , n = 0, 1, . . . , m − 2. (3.48)
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By (3.22), (3.34) and (3.38), Um−1 = Pm−1, and, by (3.21), Pm−1 = A δ−1 β0

β̂0
. There-

fore,

Un =
anAδ−1 β0

β̂0

am−1
+ an

m−1∑

r=n+1

A

ar(1 − γr)
Wr , n = 0, 1, . . . , m − 2. (3.49)

Um−1 = Pm−1. (3.50)

In (3.49), for n = 0 and a0 = 1

U0 =
Aδ−1 β0

β̂0

am−1
+

m−1∑

r=1

A

ar(1 − γr)
Wr. (3.51)

On the other hand, by (3.22) and (3.17),

U(1) =
m−1∑

k=0

Pk = 1 −
∞∑

k=m

Pk = 1 −
∞∑

k=m

A δk−m.

Hence,

U(1) = 1 − A

1 − δ
. (3.52)

Futhermore,

Uk =
U (k)(1)

k!
=

1
k!

(
dkU(z)

dzk

)

z=1

, k = 0, 1, . . ., m− 1.

In particular, U0 = U(1). By (3.52), therefore,

U0 = 1 − A

1 − δ
.

Substitution of U0 = 1 − A
1−δ into (3.51) gives

A =




β0

β̂0

am−1δ
+

1
1 − δ

+
m−1∑

r=1

1
ar(1 − γr)

Wr




−1

. (3.53)

Explicitly,

A =




β0

β̂0

am−1δ
+

1
1 − δ

+
m−1∑

r=1

(
m
r

)
[m(1 − γr) − r]

ar(1 − γr)[m (1 − δ) − r]




−1

. (3.54)

Furthermore, equation (3.49) also holds for n = m − 1 with
∑m−1

r=m := 0. We
conclude that

Un = Aan




Aδ−1 β0

β̂0

am−1
+

m−1∑

r=n+1

Wr

ar(1 − γr)


 , (3.55)
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n = 0, 1, . . . , m − 1

= Aan

m∑

r=n+1

1
ar(1 − γr)

Wr ,

with
Wm := δ−1 β0

β̂0

γm. (3.56)

(Indeed, (3.56) agrees with (3.55) as the following calculations show:

Wm

am(1 − γm)
=

δ−1 β0

β̂0

am−1

Wm =
δ−1 β0

β̂0
am(1 − γm)

am−1
=

δ−1 β0

β̂0
γm(1 − γm)

1 − γm
= δ−1 β0

β̂0

γm.)

Substituting equation (3.53) into (3.55) yields

Un =
an

(
Aδ−1 β0

β̂0
am−1

+
∑m−1

r=n+1
Wr

ar(1− γr)

)

β0
β̂0

am−1 δ + 1
1−δ +

∑m−1
r=1

1
ar(1− γr)Wr

, (3.57)

and after substituting equation (3.45) into (3.57) we finally have

Un =

an




Aδ−1 β0
β̂0

am−1
+
∑m−1

r=n+1

 m
r

[m(1−γr)−r]

ar(1− γr)[m (1−δ)−r]




β0
β̂0

am−1 δ + 1
1−δ +

∑m−1
r=1

 m
r

[m(1−γr)−r]

ar(1− γr)[m (1−δ)−r]

m−1∑

r=0

= 0.

We are done with the proposition. �

4 Continuous Time Parameter Process

The continuous time parameter queueing process is our main objective, which we
target in the present section. The tools we are exploring are quite different from
that used in our past experience (cf. Dshalalow [2]). Back then, we extended the
process (Ω,F , (P x)x=0,1,..., Zt; t ≥ 0) from just being semi-regenerative to a two- (and
more) variate process by using typical supplementary variable techniques, forming Kol-
mogorov’s partial differential equations and Laplace transforms, then combining all of
these with some semi-regenerative tools to yield a compact result. In this particular
case, the past approach does not work since the additional information about arrival
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processes still does not make the two-variate process Markov, and any further efforts
in this direction are cumbersome and counterproductive. So, we instead try to use a
similar idea as that utilized in our recent paper [3] on semi-regenerative analysis directly
applied to (Ω,F , (P x)x=0,1,..., Zt; t ≥ 0). Knowledge of invariant probability measures
for embedded processes is crucial information needed for the upcoming analysis. We
present some formal concepts of semi-regenerative processes pertinent to the models
studied here.

According to Section 3,

(Ω,F , (P x)x=0,1,..., Zt; t ≥ 0) → E = {0, 1, . . .}

is a semi-regenerative process relative to the sequence {Tn} of stopping times. By
the key convergence theorem for semi-regenerative processes, for each initial state x =
0, 1, . . . , the limiting probability

lim
t→∞

P x{Zt = j} = πj (4.1)

exists if mµα > 1 and is given by the expression

πj =
1
a

∑

i∈E
Pi

∫ ∞

0

Kij(t)dt, j ∈ E (4.2)

where {Kij(t)} is the semi-regenerative kernel of the process (Zt) (cf. [2]) whose entries
are defined as

Kij(t) = P{Zt = j, T1 > t
∣∣Z0 = i}, t ≥ 0; i, j ∈ E . (4.3)

Observe that Kij(t) = P i{Zt = j
∣∣T1 > t} [1−A(x)], and thus hij =

∫∞
0

Kij(t)dt looks
like the transition probability pij except that dA(x) is replaced with [1 − A(x)]dx.

Notice that
hm−1,m =

∫ ∞

0

[p(x)]m[1 − A(x)] dx = α̂m, (4.4)

and

hij =
∫ ∞

x=0

(
m
j

)
e−µjx

∫ x

y=0

(e−yx − e−µx)m−j (4.5)

mµ
(mµy)i−m

(i − m) !
dy [1 − A(x)] dx, i = m, . . . ; j = 0, 1, . . . , m.

Let us now consider equations (4.2) for the index values j ≥ m. The following
theorem states that, except for πm, the result for πj , j ≥ m, is similar to that of [6].

Theorem 4.1: The part of the limiting distribution πm, πm+1, . . . of the queueing
process Zt exists if mµα > 1, it is independent of any initial state, and is given by

πj =
1

amµ
Pj−1, j = m + 1, m + 2, . . . ,

and
πm =

1
amµ

Pm−1[mµα̂m + β̂0], j = m.
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Proof:
Case I: Let j > m. Then from (4.2),

aπj =
∞∑

i=j−1

Pi 4i+1−j , (4.6)

where
4s =

∫ ∞

0

(mµx)s

s!
e−mµx[1 − A(x)] dx, s ≥ 0, (4.7)

and
Pi = Aδi−m, i = j − 1. (4.8)

Inserting (4.8) into (4.6) we get

aπj =
∞∑

s=0

Aδs+j−1−m4s. (4.9)

Then,

aπj = Aδj−1−m

∫ ∞

0

e−mµ x(1−δ)[1 − A(x)]dx (4.10)

= Aδj−1−m 1 − α(mµ − mµδ)
mµ(1 − δ)

.

Since
δ = α (mµ − mµδ),

we can simplify aπj to

aπj = Aδj−1−m 1
mµ

=
1

mµ
Pj−1. (4.11)

Therefore,

πj =
1

amµ
Pj−1, j = m + 1, m + 2, . . . . (4.12)

Case II: Let j = m. Then

aπm =
∞∑

i=m−1

Pihim (4.13)

= Pm−1hm−1,m +
∞∑

i=m

Pi4i+1−m. (4.14)

Now, since Pm−1 = Aδ−1 β0

β̂0
, hm−1,m = α̂m =

∫∞
0 [ p (x) ]m[1 − A (x)]dx

and
∑∞

i=m Pi 4i+1−m = Aδ−1 1
mµ , we have

aπm = Aδ−1 β0

β̂0

α̂m − Aδ−140 + Aδ−1 1
mµ

, (4.15)

where
40 =

∫ ∞

0

e−mµx[1 − A(x)] dx =
1 − αm

mµ
(4.16)
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(using integration by parts for Stieltjes integrals as in Appendix, Theorem A.1) and

Aδ−1 1
mµ

= A
∞∑

i=m−1

δ−i−m 4i+1−m. (4.17)

Therefore,

aπm = Aδ−1 β0

β̂0

α̂m −
1 − αm

mµ
A δ−1 + Aδ−1 1

mµ

and the latter simplifies to

aπm = A δ−1[
β0

β̂0

α̂m +
αm

mµ
],

or also in the form: (since β0 = αm)

aπm = Aδ−1 β0

β̂0

[α̂m +
β̂0

mµ
].

Since A δ−1 β0

β̂0
= Pm−1, we have

πm =
1

amµ
Pm−1[mµα̂m + β̂0]. (4.18)

[In the special case, α̂m = 1−αm

mµ and β̂0 = β0 = αm, we have mµα̂m + β̂0 = 1 and
thus πm = 1

amµPm−1.] �
To determine the unknown probabilities π0, π1, . . . πm−1 let us define the PGF

Û(z) =
m−1∑

k=0

πj zj , (4.19)

where πj satisfies (4.2).
Proposition 4.2: It holds true that

aÛ(z) =
m−1∑

i=0

Pi

∫ ∞

0

[q(x) + p(x)z]i+1[1 − A(x)] dx + AΦ(z), (4.20)

where

Φ(z) = mµ

∫ ∞

x=0

∫ x

y=0

(ze−µx + e−µy − e−µx)memµyδdy [1 − A(x)] dx (4.21)

−zm αm

mµδ
.

Proof: Substituting equation (4.2) into (4.19) yields

aÛ(z) =
m−1∑

j=0

zj
m−1∑

i=j−1

hijPi = F (z) + ϕ(z), (4.22)
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where

F (z) =
m−1∑

i=0

Pi

i+1∑

j=0

hijz
j − hm−1, m zm Pm−1 (4.23)

and

ϕ(z) =
m−1∑

j=0

zj
∞∑

i=m

hijPi. (4.24)

Because

hi(z) =
i+1∑

j=0

hij zj =
∫ ∞

0

[p(x)z + q(x)]i+1[1 − A(x)] dx, (4.25)

i = 0, . . . , m − 1,

with (3.21), (4.4), and (4.25), we have

F (z) =
m−1∑

i=0

Pi

∫ ∞

0

[q(x) + p(x)z]i+1[1 − A(x)]dx − Aδ−1 αm

γm
α̂mzm. (4.26)

Now we turn to ϕ(z). Substitution of (4.5) into (4.24) and Fubini’s Theorem give

ϕ(z) =
m−1∑

j=0

zjAmµ

∞∑

i≥m

∫ ∞

x=0

(
m
j

)
e−µjx

∫ x

y=0

( e−µy − e−µx )m−j (4.27)

(mµyδ)i−m

(i − m)!
dy [1 − A(x)]dx

=
m−1∑

j=0

Amµ

∫ ∞

x=0

∫ x

y=0

(ze−µx + e−µy − e−µx)m emµy δdy [1 − A(x)]dx

−Amµ zm

∫ ∞

x=0

e−mµx emµδx − 1
mµδ

[1 − A(x)] dx,

which can be simplified to

ϕ(z) =
m−1∑

j=0

Amµ

∫ ∞

x=0

∫ x

y=0

(ze−µx + e−µy − e−µx)memµyδdy[1 − A(x)]dx − Γ, (4.28)

where
Γ = Amµ zm 1

mµδ

∫ ∞

0

{e−mµ(1−δ)x − e−mµx}[1 − A(x)] dx. (4.29)

The latter can be simplified to

Γ = Amµ zm 1
mµδ

{1 − α(mµ − mµδ)
mµ(1 − δ)

− 1 − α(mµ)
mµ

} = Azm αm

mµδ
. (4.30)

Therefore,

ϕ(z) =
m−1∑

j=0

Amµ

∫ ∞

x=0

∫ x

y=0

(ze−µx + e−µy − e−µx)m emµy δdy [1 − A(x)]dx (4.31)
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−Azm αm

mµδ
.

By (4.26) and (4.31), we finally have (4.20) and (4.21) valid. �
Lemma 4.3:The rth binomial moment ûr of Û(z) satisfies the following formula:

aûr =
α̂r

γr
Ur + A

(
α̂r

γr
+

1
rµ

)
Wr − ρ, (4.32)

where

ρ = Aδ−1

(
m
r

)
αm

(
α̂m

γm
+

1
mµ

)
, (4.33)

and

Wr =
(

m
r

)
m(1 − γr) − r

m(1 − δ) − r
, r = 1, . . . , m − 1, (4.34)

and Ur is defined as in (3.43).
Proof: We use a method similar to that in Section 3.

If ûr

(
=
∑m−1

k=r πk

(
k
r

)
, r = 1, ..., m − 1

)
denotes the rth binomial moment of

Û(z), then

aRrÛ(z) = aûr = a lim
z→1

1
r !

dr

dzr
Û(z) (4.35)

= RrF (z) − Aδ−1zm αm α̂m

γm
+ RrΦ(z),

where

RrF (z) = lim
z→1

1
r !

dr

dzr
F (z)

= lim
z→1

1
r!

dr

dzr

m−1∑

i=0

Pi

∫ ∞

0

[q(x) + p (x)z]i+1[1 − A(x)] dx

−A δ−1 αm

γm
α̂m zm. (4.36)

Rr[p(x)z + q(x)]i+1 =





(
i + 1

r

)
p(x)r , r ≤ i + 1,

0, r > i + 1.

With the usual combinatorics we arrive at

m−1∑

i=r−1

Pi

(
i + 1

r

)
α̂r = α̂r(Ur + Ur−1), (4.37)

where

α̂r =
∫ ∞

0

[p(x)]r][1 − A(x)]dx. (4.38)

(In the appendix, we provide an alternative expression for α̂r.)
Let

Φr = RrΦ(z). (4.39)
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Then,

Φr = lim
z→1

1
r!

dr

dzr
Amµ

∫ ∞

x=0

∫ x

y=0

(z e−µx + e−µy − e−µx)m

emµyδdy[1 − A(x)] dx − zm αm

mµδ

= A

(
m
r

)(
m

m(δ − 1) + r

1 − α(mµ(1 − δ))
mµ(1 − δ)

− 1 − αr

rµ

)
− Azm αm

mµδ

= A

(
m
r

)
1
rµ

(1 − αr)m − r

m(1 − δ) − r
= A

1
rµ

Wr − Azm αm

mµδ
. (4.40)

From (4.24), (4.36), (4.37) and (4.40) we obtain

aûr = α̂r(Ur + Ur−1) + A
1
rµ

Wr − ρ. (4.41)

Substituting Ur from (3.43) into (4.41), we have

aûr = α̂r

(
Ur +

1 − γr

γr
Ur +

AWr

γr

)
+ A

1
rµ

Wr − ρ

=
α̂r

γr
Ur + α̂r

AWr

γr
+ A

1
rµ

Wr − ρ.

Finally,

aûr =
α̂r

γr
Ur + A

(
α̂r

γr
+

1
rµ

)
Wr − ρ,

where

ρ = Aδ−1

(
m
r

)
αm

(
α̂m

γm
+

1
mµ

)
.

The proof of Lemma 4.3 is therefore completed. �
The below corollary finalizes our efforts to get π0, π1, . . . ,πm−1.
Corollary 4.4: The limiting probabilities π0, π1, . . . , πm−1 satisfy the following for-

mulas:

πk =
m−1∑

r=k

(
r
k

)
(−1)r−k 1

a

(
α̂r

γr
Ur + A

(
α̂r

γr
+

1
rµ

)
Wr − ρ

)
, (4.42)

k = 0, 1, . . . , m,−1,

where Ur, and α̂r are defined by (3.43) and (4.38), respectively. �
In the following sections we will be concerned with a special case.

5 Special Case

Consider the special case of GI/M/m̃a/∞, with a = 1 and p(x) = e−µx, which corre-
sponds to the system GI/M/m/∞. Now, we have:

γm = αm , α̂m =
1 − αm

mµ
. (5.1)
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Thus
hm−1,mPm−1 = Aδ−1 1 − αm

mµ
. (5.2)

Equation (5.1) immediately leads to

Θ =
1 − αm

mµ
+

αm

mµ
=

1
mµ

. (5.3)

Substituting (5.3) into the equation ρ = A δ−1

(
m
r

)
Θ we have

ρ = Aδ−1

(
m
r

)
1

mµ
, (5.4)

α̂r =
1 − αr

rµ
, γr = αr. (5.5)

Then, substituting equations (5.4) and (5.5) into (4.32) we have

aûr =
1 − αr

rµαr
Ur + A

(
1 − αr

rµαr
+

1
rµ

)
Wr − A δ−1

(
m
r

)
1

mµ
, (5.6)

where
Ur =

αr

1 − αr
Ur−1 − AWr

1
1 − αr

. (5.7)

So,

aûr =
1
rµ

Ur−1 −
(

m
r

)
1

mµ
Pm−1, r = 1, . . . , m − 1, (5.8)

and

aûr =
1
rµ

Ur−1 −
(m − 1)!

(m − 1− (r − 1))r(r − 1)!µ
Pm−1 (5.9)

=
1
rµ

(
Ur−1 −

(
m − 1
r − 1

)
Pm−1

)

=
1
rµ

(
m−2∑

k=r−1

Pk

(
k

r − 1

)
−
(

m − 1
r − 1

)
Pm−1

)
(5.10)

Therefore,

arµ =
m−1∑

k=r

(
k
r

)
πk =

m−2∑

k=r−1

(
k

r − 1

)
Pk (5.11)

and
πm−1 =

1
a (m − 1)µ

Pm−2. (5.12)

Suppose

πk =
1

a kµ
Pk−1, k = m − 1, . . . , r + 1. (5.13)

Then

a rµ =
m−1∑

k=r

(
k
r

)
πk = πr a rµ + a rµ,

m−1∑

k=r+1

(
k
r

)
πk (5.14)
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= πra rµ +
m−1∑

k=r+1

(
k − 1
r − 1

)
Pk−1. (5.15)

After cancellation,
πrarµ = Pr−1 (5.16)

which proves by induction for any r = 1, . . . , m − 1 that if a = 1, then (4.32) will be
reduced to GI/M/m/∞.
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Appendix

The following theorem gives an alternative expression for α̂r of (4.38) under some rela-
tively weak, sufficient conditions. This expression can on occasions be more beneficial.

Theorem A.1: Given a2 = E [ ( Tn+1 − Tn )2] < ∞, it holds true that

α̂r =
∫ ∞

x=0

∫ ∞

u=0

[p(u)]rdu dA(x), r = 1, . . . , m − 1. (A.1)

Proof: Recalling (4.38), where α̂r =
∫∞
0 [ p(u) ]r[1 − A(x)] dx, and letting

F (t) =
∫ t

u=0

[ p (u)]rdu

and
G(t) = A(x) − 1,

we can then use the integration by parts formula for Stieltjes integrals,

F (∞) G(∞) − F ( 0−) G(0−) =
∫ ∞

0−
FdG +

∫ ∞

0−
GdF,
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to show that ∫ ∞

0−
G dF = −α̂r.

Observe that
∫ ∞

0

FdG =
∫ ∞

0

∫ t

0

[p (u)] rdu ) dA(x) ≤
∫ ∞

0

x dA(x) = a.

Since F (0−) = 0, we need to show that under the condition that a2 = E[(Tn+1 −
Tn )2 ] < ∞ imposed on the PDF A(x),

−F (∞) G(∞) = lim
t→∞

[1 − A (x)]
∫ t

u=0

[ p(u) ]r du = 0.

Since [p (u)]r ≤ 1, F (t) ≤ t, and thus,

lim
t→∞

[1 − A(x)] F (t) ≤ lim
t→∞

x[1 − A(x)].

Now,
lim

t→∞
x[1 − A(x)] = 0

if
Λ =

∫ ∞

0

x[1 − A(x)] dx < ∞.

The latter holds if and only if E [(Tn+1 − Tn)2] < ∞. Indeed,

Λ =
∫ ∞

t=0

x

∫ ∞

u=t

dA(u) dx =
∫ ∞

u=0−
dA (u)

∫ u

t=0

x dx =
1
2

a2 .

Remark A.2: Evidently,

lim
t→∞

x[1 − A(x)] = 0 (A.2)

can hold while a2 = ∞, and so condition (A.2) is exactly what we need and it is weaker.
However, a2 < ∞ is more tame. In most special cases, however, (A.2) holds true (i.e.
if 1 − A(x) → 0 and x → ∞, the latter should go faster to zero than 1

x does ) . For
instance, if A(x) is k - Erlang, then

x[1 − A(x)] = x

k−1∑

j=0

e−λx ( λx )j

j!

obviously vanishes when x → ∞, for any k = 1, 2, ..., and so will do any convex linear
combination of Erlang distributions.


