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Abstract. The study of long-run equilibrium processes is a significant component of
economic and finance theory. The Johansen technique for identifying the existence of
such long-run stationary equilibrium conditions among financial time series allows the
identification of all potential linearly independent cointegrating vectors within a given
system of eligible financial time series. The practical application of the technique may be
restricted, however, by the pre-condition that the underlying data generating process fits
a finite-order vector autoregression (VAR) model with white noise. This paper studies
an alternative method for determining cointegrating relationships without such a pre-
condition. The method is simple to implement through commonly available statistical
packages. This ‘residual-based cointegration’ (RBC) technique uses the relationship be-
tween cointegration and univariate Box-Jenkins ARIMA models to identify cointegrating
vectors through the rank of the covariance matrix of the residual processes which result
from the fitting of univariate ARIMA models. The RBC approach for identifying mul-
tivariate cointegrating vectors is explained and then demonstrated through simulated
examples. The RBC and Johansen techniques are then both implemented using several
real-life financial time series.

Keywords: Equilibrium processes, Cointegration, Johansen, ARIMA models.

1. Introduction

The long-run equilibrating potential of financial time series such as foreign
exchange rates, stock prices, interest rates and their relation to market
efficiency in both spot and forward markets are probably the most inten-
sively researched topics in cointegration analysis (Copland, 1991; Crowder,
1996). Cointegration occurs if attractor forces within a vector of financial
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time series keep the series in close proximity or ‘long-run equilibrium’ so
that a linear combination of component series forms a stationary series in
itself (Granger, 1981; Engle and Granger, 1987; Johansen, 1988; Johansen
and Juselius, 1990; Layton and Tan, 1992). Should the variables drift away
from equilibrium for a certain period of time, equilibrating economic forces
are expected to act, thus restoring equilibrium.

The concept of cointegration, introduced by Granger (1981) and fur-
ther developed by Engle and Granger (1987), defined long-run equilibrium
between elements of a time series vector as the existence of a linear com-
bination of vector elements that is shown to be stationary. Cointegration
overcame several limitations of classical univariate inference analysis in
studying these processes by incorporating non-stationarity, long-term rela-
tions and short-run properties into the one modelling process (Engle and
Yoo, 1987). The notion of equilibrium has formally specified the definition
of a long-run equilibrium process. The importance of such a precise defi-
nition of long-run equilibrium is two-fold. Firstly, it may be exploited to
test whether economic and finance theory actually holds. Secondly, cointe-
gration has allowed the modelling of long-run behaviour especially in the
area of derivative markets.

Before cointegration was formally specified, the usual practice in univari-
ate model fitting procedures was to difference the data to achieve stationar-
ity, resulting in a loss of information about long-run trends. The technique
of cointegration thus allowed the simultaneous investigation into both the
long-run relationships and short-run dynamic adjustments to such long-run
relationships. Furthermore, Engle and Yoo (1987) and Diebold, Gardeaza-
bal and Yilmaz (1994), amongst others, have shown that the imposition of
cointegration (via the error correction model) leads to superior forecasting
accuracy over the longer term.

The original Engle and Granger (1987) technique only allowed identifi-
cation of a single cointegrating vector within a system. Johansen (1988)
derived a procedure which overcame this limitation by being able to identify
multiple linearly independent cointegrating vectors, if they exist, within a
system. In the Johansen method the evolution of eligible time series is
assumed to be well specified by a finite-order VAR model with white noise.
Letting Xt be a p× 1 vector of I(1) variables (i.e. variables which become
stationary after first differences);

Xt = Π1Xt−1 + Π2Xt−2 + ... + ΠkXt−k + εt, t = 1, 2, ..., T, (1)

where each of the Πk is a (p× p) matrix of parameters and εt ∼ IN(0,Σ).
Equation (1) may be transformed into the following form;

∆Xt = Γ1∆Xt−1 + ... + Γk−1∆Xt−k+1 + ΠXt−k + εt,
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where Γi = −(1−Π1−...−Πi), i = 1, 2, ..., k−1 and Π = −(1−Π1−...−Πk).
The matrix Π contains information about the long-run properties of the

model. If Π has rank 0, then the system is not cointegrated (all the variables
in Xt are integrated of order one or higher). If Π has rank p (i.e. full rank),
the variables in Xt are stationary. If Π has rank r (where 0 < r < p), Π
may be decomposed into two distinct (p × r) matrices α and β such that
Π = αβT (i.e. there are r cointegrating vectors, which are given by β).

The restriction that the time series must be well specified by a finite-order
VAR model may be particularly severe in the case of ‘chaotic’ financial time
series which appear random but actually have some deterministic elements
or when the order of the moving-average component is greater than zero
and may not be adequately proxied by a finite-order pure autoregressive
model (see examples in section three).

An alternative approach to identifying cointegrating vectors, under cer-
tain conditions, has been developed by Lin and McCrae (1999, 2001a). The
procedure may be easily applied using widely-available standard statistical
packages. This ‘residual-based cointegration’ (RBC) approach relies on the
relationship between cointegrating vectors and residual processes obtained
from the fitting of univariate Box-Jenkins ARIMA models. Lin and Mc-
Crae (1999, 2001a) show that, in theory, the number and identity of the
linearly independent cointegrating vectors may be determined via the rank
and content of the residual covariance matrix respectively. The technique is
relatively simple to implement and is able to be executed using commonly
available statistical packages.

Strictly speaking, the cointegration approaches of Lin and McCrae (1999,
2001a) and Johansen (1988) are not directly comparable since they are
based on two different methodologies and each method is valid under dif-
ferent conditions. As mentioned previously, the Johansen (1988) technique
models the series of interest by a VAR process and tests for cointegra-
tion by examining whether Π is of full rank. The RBC procedure on the
other hand may be applied when the variance/covariance matrix of resid-
ual processes (obtained when an appropriate univariate ARIMA model is
applied to each time series) may be accepted as having reduced rank or
asymptotically reduced rank.

The purpose of this paper is to test the practical implementation of the
RBC procedure to both simulated and real-life data and is organised as
follows; section two introduces the RBC approach to cointegration. The
fundamental link between cointegrating vectors and residual processes ob-
tained from the fitting of univariate ARIMA models, which motivates the
RBC technique, is explained. This section also describes the steps in the
practical application of the RBC approach. In section three, examples of
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autoregressive and moving-average series are analysed to show the appli-
cability of the RBC procedure. In section four, the accuracy of the cointe-
gration estimates is investigated for simulated series drawn from a model
example in section three. Section five contains real-life applications of the
RBC approach to foreign exchange rate data. The last section summarises
the potential contribution of the RBC approach in financial time series
analysis and suggests further avenues of research.

2. An Alternative Approach to Cointegration

A new procedure for determining cointegrating vectors, when the compo-
nents of the system of interest satisfy certain conditions, was introduced
by Lin and McCrae (1999, 2001a). This method allows the underlying
time series to be fitted by ARIMA models other than finite-order VAR’s
only. Using this innovative procedure, the significance of the cointegration
behaviours may be identified and estimated easily. Although the idea is
similar to that of Engle and Yoo (1987) and Bierens (1997), the difference
between this proposed procedure and that of both Engle and Yoo (1987)
and Bierens (1997) is that the latter focus their attention on standard VAR
models in which the covariance matrix has full rank. The novelty of the
RBC approach is that the method involves an analysis of the relation-
ship between multivariate cointegration and univariate ARIMA modelling
where each individual time series is modelled independently. In such uni-
variate modelling, investigation is limited to the analysis of the covariances
between individual series. The covariance matrix of the residual processes
given by the ARIMA models may not be of full rank, resulting in the
corresponding time series being cointegrated.

The RBC approach utilises the theoretical relationship between the Engle-
Granger and Johansen cointegration procedures and univariate ARIMA
modelling fitting techniques for individual time series. The approach pro-
vides a method for examining;

• whether a relationship between cointegration and univariate ARIMA
modelling exists, and

• whether the cointegrating vectors for the system may be determined by
univariate ARIMA model fitting procedures, or more specifically, the
covariance matrix of the residual processes.

Firstly, the RBC model will be introduced by reviewing the definitions
of I(d) time series and cointegrating vectors.
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DEFINITION 1: A time series Xt, which has a stationary ARMA repre-
sentation after differencing d times but with the term (1 − B)d−1Xt being
non-stationary, is integrated of order d and is denoted by Xt ∼ I(d), where
B is the back-shift operator.

DEFINITION 2: Let Xt = (X1,t, · · · , Xp,t)
T be a (transposed) time

series vector, t = 1, 2, ..., n. If each component of Xt is I(1) and there
exists a vector ξ such that ξT Xt ∼ I(0), X1,t, · · · , Xp,t are said to be
cointegrated and ξ is called a cointegrating vector for the system Xt.

Under certain weak conditions, Lin and McCrae (1999, 2001a) show that
the number of cointegrating vectors may be determined via the rank of
the covariance matrix of the residual processes. Given a system Xt =
(X1t, ..., Xpt)

T , assume that all of the elements of Xt are I(1). If Xt may be
accepted as a cointegrated system, the following procedure may be applied
to determine all linear independent cointegrating vectors. The procedure
consists of the following five steps.

(1) Fit Xt by an appropriate ARIMA model, say

Φ(B)(1 − B)Xt = µ + Θ(B)εt, t = 1, 2, ..., n

where εt = (ε1t, ..., εpt)
T are white noise, µ = (µ1, ..., µp)

T and

Φ(B) =







Φ1(B) 0
. . .

0 Φp(B)






,Θ(B) =







Θ1(B) 0
. . .

0 Θp(B)







where all Φi(B) and Θi(B) are finite-order polynomial functions of B

with roots outside the unit circle.

(2) If the residual vectors εt = (ε1t, ..., εpt)
T and residual cross-products

εitεjt, i < j ≤ p, t = 1, 2, ..., n are both stationary (or have ergodic prop-
erties) then the residual vectors may be analysed to obtain the sample
covariance matrix for εt. The sample covariance matrix is denoted by
Σ̂n, and is used to estimate var(εt).

(3) Determine the eigenvalues of Σ̂n, say λ1 ≥ λ2 ≥ ... ≥ λp−r > λp−r+1 ≥
... ≥ λp, and corresponding eigenvectors. The eigenvectors form a ma-
trix denoted by A. The matrix A may be re-written as A = (A1,A2),
where A2 is formed by those eigenvectors corresponding to the smaller
eigenvalues λp−r+1 ≥ λp−r+2 ≥ ... ≥ λp.

(4) Let v
(1)
t = (v1,t, ..., vp−r,t)

T and v
(2)
t = (vp−r+1,t, ..., vp,t)

T satisfy the
following equation

Φ(B)(1 − B)Xt = µ + Θ(B)εt, t = 1, 2, ..., n
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where

εt = (A1 A2)

(

v
(1)
t

v
(2)
t

)

.

Now Xt may be expressed in the following form;

(1 − B)Xt = µ̃ + C(B)v
(1)
t + C1(B)v

(2)
t

with C(B) = Φ(B)−1Θ(B)A1, C1(B) = Φ(B)−1Θ(B)A2 and µ̃ =
Φ(B)−1µ.

Therefore,

Xt = µ̃t + X0 + (1 − B)
C(B) − C(1)

1 − B
Σt

i=1v
(1)
t

+ C(1)Σt
i=1v

(1)
t + C1(B)Σt

i=1v
(2)
t ,

where C(1) = C(B) with B = 1. Upon solving for ξT C(1) = 0, ξ is

obtained such that ξT Xt = ξT X0−ξT W0+ξT Wt+ξT C1(B)Σt
i=1v

(2)
i ,

where Wt = C(B)−C(1)
1−B

v
(1)
t and the term ξT X0−ξT W0+ξT Wt is I(0)

(Lin and McCrae, 1999).

Therefore, ξ may be accepted as a cointegrating vector for Xt − µ̃t if

the impact of the non-stationary component ξT C1(B)Σt
i=1v

(1)
i is not

significant. An important issue is how to determine whether or not the
non-stationary component is in fact significant. The size of the impact
of this non-stationary component may be measured by the ratio of
variances given by the non-stationary and stationary components in
the manner of Lin and McCrae (2001b).

(5) Verify that the linear combination of the cointegrating vector ξT (Xt −
µ̃t) is indeed stationary via the Augmented Dickey-Fuller (ADF) test
as well as by graphical procedures.

3. Application of the RBC Procedure to Simulated Data

This section will outline how the method of RBC may be applied in prac-
tice via the use of simulated data. In theory this alternative approach is
theoretically valid but a sub-issue is whether this translates into practical
significance. There are two stages in the application of the procedure. By
using such simulated data one may test whether the RBC theory shows
improvement in the experimental stage. If this procedure fails then there
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is a strong indication that the theoretical results will not translate into
practical significance. If the results do show promise then the next logical
step would be to implement the method to real-life data. Simulated data is
considered first due to the fact that real-life data may be “dirty” and thus
may be susceptible to conditioning factors (i.e. other influences on data
that may complicate the data modelling). Such external factors may be
controlled by the use of simulated data, as well as providing knowledge of
the true cointegrating relationship present. Furthermore, if the RBC the-
ory translates well to simulated data, then providing external factors are
minimised in real-life data the method will be equally valid for this type of
data.

Three examples using simulated data will be considered. The first ex-
ample is considered because it is generated by two autoregressive processes
and shows the possible inaccuracy of the resulting estimates if each and
every series is not fitted properly. The second example is included because
it results in the failure of the Johansen (1988) technique whilst the third
example is considered as three variables are included in the system.

The true theoretical value of the cointegrating vector is firstly derived
and then the estimates of each of the cointegrating vectors are compared
with the true values. This is done for one simulation from each of the three
examples.
Example 1: Consider two time series, X1,t and X2,t, which are generated
from the following models:

X1,t = 1.4X1,t−1 − 0.2X1,t−2 − 0.2X1,t−3 + εt,

X2,t = 1.2X2,t−1 − 0.2X2,t−2 + εt,

where εt is white noise with mean 0 and variance 1. It may be seen that after
differencing both series X1,t and X2,t are generated by an autoregressive
model.

The time series may be written as follows;

(1 − B)

(

X1,t

X2,t

)

=

( 1
1−0.4B−0.2B2 0

0 1
1−0.2B

)(

εt

εt

)

.

The true variance/covariance matrix of (ε1t, ε2t)
T is given by Σ2×2 with all

entries equal to 1. The matrix Σ has resulting eigenvalues of 2 and 0. Since
one eigenvalue is equal to zero, following the discussion in Lin and McCrae
(1999, 2001a), X1,t and X2,t are cointegrated. The true cointegrating vector
of the system X1,t and X2,t is given by (1, -2)T (for details on how to
determine the true cointegrating vector see Lin and McCrae, 1999).

In the following, it is of interest to examine whether, given a sample X1,t

and X2,t, the RBC procedure may be implemented to estimate the cointe-
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grating vector. A sample (X1,t, X2,t) of size 1000 are simulated from the
models in Example 1. The RBC and Johansen procedures are then applied
to the samples. The first step in the RBC procedure is to fit univariate
ARIMA models to each of the time series X1,t and X2,t, both of which are
I(1). The appropriate models to be fitted, using Box-Jenkins methods, are
ARIMA(2,1,0) and ARIMA(1,1,0) respectively.1 The true value of the co-
efficients of the autoregressive parameters of X1,t in Example 1 are 0.4 and
0.2 respectively, while the true value of the coefficient of the autoregres-
sive parameter of X2,t is 0.2. Furthermore, there are no moving-average
parameters. The estimated coefficients of the autoregressive parameters
of X1,t are 0.3442 and 0.2354. Likewise, the estimated coefficient for the
autoregressive parameter of X2,t is 0.1658.

The second step is to construct the sample covariance matrix Σ̂n, given
that the residual vectors εt = (ε1t, ..., εpt)

T and residual cross-products
εitεjt, i < j ≤ p, t = 1, 2, ..., n are both stationary. After fitting the
ARIMA models to X1,t and X2,t, the residual vectors εt = (ε1t, ..., εpt)

T and
residual cross-products εitεjt, i < j ≤ p, t = 1, 2, ..., n are both stationary.

Therefore, Σ̂n may be used to estimate the true covariance matrix Σ and
is given by

Σ̂n =

(

1.073226 1.073925
1.073925 1.075640

)

.

The third step is to determine the eigenvalues of Σ̂n. These estimated
eigenvalues are 2.148360 and 0.000508 respectively. Since one estimated
eigenvalue is approximately equal to zero and the ratio of it to the sum
of all eigenvalues is negligible (0.000236), the RBC procedure may be im-
plemented to estimate the cointegrating vector. The resulting eigenvectors
form the matrix A which is given by

A =

(

0.706710 0.707504
0.707504 −0.706710

)

.

Furthermore, A may be decomposed into (A1,A2), where A1 is formed by
those eigenvectors corresponding to the largest eigenvalue λ1 (=2.148360),
i.e.

A1 =

(

0.706710
0.707504

)

.

The fourth step involves the estimation of the cointegrating vector via
the solving of the equation ξT C(1) = 0. As mentioned previously, C(1) is
given by C(B) with B = 1. In this example C(1) is equal to

C(1) =

(

1
0.4204 0

0 1
0.8342

)(

0.706710
0.707504

)

.
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The true cointegrating vector may be seen to be theoretically equal to (1, -

2)T . The estimated cointegrating vector in this simulated example is ξ̂=(1,
-1.981889)T , a very accurate estimate notwithstanding the fact that X1,t

has estimated coefficients which are not very close to the true coefficients.
The fifth and last step in the procedure involves the testing for station-

arity of the linear combination of the cointegrating vector. The ADF test
shows that the linear combination is stationary as does the time series plot
of the linear combination. The Johansen procedure yields an estimate of
ξ̂=(1, -2.0003)T in this example.

It is worth noting that if inappropriate ARIMA models are used to fit
the time series an inaccurate estimate of the cointegrating vector will, in
all likelihood, be obtained. This may be seen in Table 1 where the most
accurate estimate of the cointegrating vector is obtained when both time
series are fitted correctly.

Table 1. Estimates of the Cointegrating Vector for Example 1

X1,t X2,t Estimate of
Cointegrating Vector

ARIMA(1,1,0) ARIMA(1,1,0) (1, -1.558540)
ARIMA(2,1,0) ARIMA(1,1,0) (1, -1.981889)
ARIMA(1,1,0) ARIMA(2,1,0) (1, -1.507315)
ARIMA(2,1,0) ARIMA(2,1,0) (1, -1.915948)

Example 2: Consider two time series, X1,t and X2,t, which are generated
from the following models:

X1,t = X1,t−1 + εt − 0.2εt−1,

X2,t = X2,t−1 +
√

2εt + 0.2εt−1,

where εt is white noise with mean 0 and variance 1. It may be seen that after
differencing both series X1,t and X2,t are generated by a moving-average
model.

The time series may be written as follows;

(1 − B)

(

X1,t

X2,t

)

=

(

1 − 0.2B 0

0
√

2 + 0.2B

)(

εt

εt

)

.

The true variance/covariance matrix of (ε1t, ε2t)
T is given by Σ2×2 with

all entries equal to 1. The matrix Σ has resulting eigenvalues of 2 and 0.
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Since one eigenvalue is equal to zero, X1,t and X2,t are cointegrated (Lin
and McCrae, 1999, 2001a). The true cointegrating vector is given by (1,
-0.4956)T .

Data is simulated from the models in Example 2 and the RBC and Jo-
hansen procedures are applied to the simulated data, the sample size being
1000. In this instance, the appropriate ARIMA model to be fitted to both
the time series X1,t and X2,t is ARIMA(0,1,1). From the fitting of this
model to X1,t and X2,t the residual vectors εt = (ε1t, ..., εpt)

T and residual
cross-products εitεjt, i < j ≤ p, t = 1, 2, ..., n are both stationary. The
sample covariance matrix is given by

Σ̂n =

(

1.074328 1.518333
1.518333 2.146540

)

.

The eigenvalues of Σ̂n are 3.220634 and 0.000234 respectively. The second
estimated eigenvalue is negligible (and the ratio of it to the sum of all of
the eigenvalues is also negligible) and so an estimate of the cointegrating
vector may be obtained by the RBC procedure. The resulting eigenvectors
form the matrix A, where

A =

(

0.577519 0.816377
0.816377 −0.577519

)

,

the eigenvector (0.577519, 0.816377)T corresponding to the largest eigen-
value, 3.220634.

The estimated cointegrating vector in this simulated example is ξ̂=(1,
-0.494087)T , a very accurate estimate noting that the true cointegrating
vector has been shown to be theoretically equal to (1, -0.4956)T . The graph
of the linear combination of the cointegrating vector is stationary. The ADF
test also reveals stationarity of the linear combination. The traditional
cointegration approach of Johansen implemented via use of the PcFIML
package yields invalid estimates in this instance.2 The invalid estimates
arise from the singularity of the Σ matrix (Johansen, 1988).3

Example 3: Consider three time series, X1,t, X2,t and X3,t, which are
generated from the following models:

X1,t = 1.4X1,t−1 − 0.2X1,t−2 − 0.2X1,t−3 + ε1,t,

X2,t = 1.3X2,t−1 − 0.3X2,t−2 + ε1,t + ε2,t,

X3,t = 1.6X3,t−1 − 0.6X3,t−2 + ε2,t − 0.8ε2,t−1,

where ε1,t is white noise with mean 0 and variance 0.64 and ε2,t is white
noise with mean 0 and variance 1. It may be seen that after differencing
the series X1,t and X2,t are generated by an autoregressive model and the
series X3,t contains both autoregressive and moving-average components.
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The time series may be written as follows;

(1 − B)





X1,t

X2,t

X3,t



 =





1
1−0.4B−0.2B2 0 0

0 1
1−0.3B

0

0 0 1−0.8B
1−0.6B









ε1,t

ε1,t + ε2,t

ε2,tε2,t−1



 .

The true variance/covariance matrix is given by

Σ =





0.64 0.64 0
0.64 1.64 1
0 1 1



 ,

which has resulting eigenvalues of 2.517268, 0.762732 and 0. Since one
eigenvalue is equal to zero, following the discussion in Lin and McCrae
(1999, 2001a), X1,t, X2,t and X3,t are cointegrated. The true cointegrating
vector of the system X1,t, X2,t and X3,t is given by (1, -1.75, 5)T .

Data is simulated from the models in Example 3 and the RBC and Jo-
hansen procedures are applied to the simulated data, the sample size being
1000. In this instance, the appropriate ARIMA model to be fitted to X1,
X2 and X3 are ARIMA(2,1,0), ARIMA(1,1,0) and ARIMA(1,1,1) respec-
tively. After fitting the ARIMA models to X1,t, X2,t and X3,t, the residual
vectors εt = (ε1t, ..., εpt)

T and residual cross-products εitεjt, i < j ≤ p,
t = 1, 2, ..., n are stationary. The sample covariance matrix may then be
estimated and is given by

Σ̂n =





0.686866 0.691890 0.006158
0.691890 1.647333 0.951617
0.006158 0.951617 0.945766



 .

The eigenvalues of Σ̂n are 2.497964, 0.780245 and 0.001755 respectively.
The last estimated eigenvalue is negligible (and the ratio of it to the sum
of all of the eigenvalues is also negligible) and so an estimate of the coin-
tegrating vector may be obtained by the RBC procedure. The resulting
eigenvectors form the matrix A, where

A =





0.311021 −0.754901 0.577399
0.809702 −0.107642 −0.576885
0.497644 0.646944 0.577766



 ,

the eigenvector (0.311021, 0.809702, 0.497644)T corresponds to the
largest eigenvalue (2.497964) and the eigenvector (-0.754901, -0.107642,
0.646944)T corresponds to the second largest eigenvalue, 0.780245. The
first two columns of A are used to compose C(1).
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The estimated cointegrating vector in this simulated example is ξ̂=(1,
-1.647948, 4.863616)T . The graph of the linear combination of the cointe-
grating vector is stationary. The ADF test also reveals stationarity of the
linear combination. The traditional cointegration approach of Johansen
implemented via use of the PcFIML package yields an estimate of the
cointegrating vector of ξ̂= (1, -1.7664, 5.0294)T . The resultant linear com-
bination of cointegrating vector is also seen to be stationary in this instance
(both by graphical procedures and the ADF test).

4. Simulated Examples

In this section ten thousand independent simulations of the model in Ex-
ample 1 are carried out to investigate whether the cointegrating vector
estimates from the RBC approach vary significantly between simulations
for a given model. The RBC procedure described previously is then imple-
mented to each simulated data set to obtain an estimate of the cointegrat-
ing vector. It is to be noted that the first component of the cointegrating
vector ξ (i.e. ξ1) in all cases is fixed (equal to one) and only the second
component of ξ (i.e. ξ2) is estimated.

According to the procedure outlined in section two, the negligibility of
the smallest estimated eigenvalue is of interest. Therefore, for each simula-
tion, the proportion contribution of the smallest eigenvalue (to the sum of
eigenvalues) is calculated (see Examples 1-3 above). The estimated eigen-
values are not identical between replications due to the residual covariances
between X1,t and X2,t not being equal.

Consider ten thousand independent samples, (X1,t, X2,t), which are gen-
erated from the following ARIMA models described in Example 1. The
correlation between the magnitude of the contribution of the smallest eigen-
value and the most accurate estimates may be evidenced by the cross-plot
in Figure 1. It may be seen that the smaller the proportion contribution
of the smallest eigenvalue, the more accurate the resulting estimate of the
cointegrating vector. It appears as though the resulting estimates of the
cointegrating vector are symmetrically dispersed around the central true
value (-2). Figure 1 appears to be bimodal in the sense that, when the con-
tribution of the smallest eigenvalue (relative to the sum of all eigenvalues)
is relatively large, two possible events might occur; either the resulting es-
timate of the cointegrating vector might over-estimate or the estimate may
under-estimate the true cointegrating vector.
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Figure 1. Cross-plot of the estimate of the cointegrating vector via the RBC proce-
dure and the proportion contribution of the smallest eigenvalue for 10000 simulations of
Example 1.

5. Application of the Proposed Method to Financial Data

This section will apply the RBC procedure to real-life data. The pur-
pose is to show whether, in practical situations, the method of RBC may
be invoked as an alternative to the Johansen procedure. The aim is to
see whether the improvement in the alternative technique that was gained
with “clear” series (i.e. generated series) may be translated to real-life data.
The examples both apply to foreign exchange rate data, the first example
tests for cointegration between spot and forward prices. Derivatives such
as forward contracts are commonly traded by hedgers who transfer the as-
sociated price risk to others, thus lessening their own exposure to such risk.
Hedging exchanges spot risk, which is defined as the chance of movement in
prices in the underlying instrument, for basis risk (the chance that forward
prices may move out of line with spot prices over time). However, basis risk
is usually much less than spot risk because, in efficient markets, there is a
theoretical relationship between spot and forward prices which means they
should not move too far apart from one another. Therefore, one would
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expect forward and spot prices to be cointegrated in the long-run. The
second example tests for cointegration between three (spot) exchange rate
series in the Asian region.

The first example relates to an analysis of potential long-run equilibrium
between daily spot and one week forward rates for the US dollar (relative
to the UK pound) exchange rate. The period examined is between October
27, 1997 and December 22, 1999 inclusive, which provides 563 observations.
Denoting X1,t to be the natural logarithm of the spot rates of the US Dol-
lar (with respect to the British Pound) and X2,t as the natural logarithm
of the one week forward rates of the US Dollar (with respect to the British
Pound), the ARIMA(3,1,0) or ARIMA(0,1,3) time series models seem ap-
plicable models to fit X1,t and X2,t. The fitting of these ARIMA models to
X1,t and X2,t result in the residual vectors εt = (ε1t, ..., εpt)

T and residual
cross-products εitεjt, i < j ≤ p, t = 1, 2, ..., n both being stationary. There-
fore, the residual vectors may be exploited to obtain the sample covariance
matrix for εt. All four combinations of models are fitted to the series X1,t

and X2,t to determine which combination provides the most accurate esti-
mate of the cointegrating vector. The determination of the most accurate
estimate of the cointegrating vector is provided via both an ADF test and a
time series plot on the resulting linear combination of cointegrating vector.
Both series are non-stationary in levels and stationary in first differences.
The time series graphs of X1,t and X2,t are shown in Figure 2. The esti-
mates of the cointegrating vector for each combination are shown in Table
2.4

Table 2. Estimates of the Cointegrating Vector for the spot and
forward data

X1,t X2,t Estimate of
Cointegrating Vector

ARIMA(3,1,0) ARIMA(3,1,0) (1, -0.999145)
ARIMA(0,1,3) ARIMA(0,1,3) (1, -0.999345)
ARIMA(3,1,0) ARIMA(0,1,3) (1, -1.016763)
ARIMA(0,1,3) ARIMA(3,1,0) (1, -0.981885)

The third estimate is the most accurate and the graph of the linear com-
bination of cointegrating vector is shown in Figure 3. Via the ADF test,
the linear combination of cointegrating vector for the third potential coin-
tegrating vector is the only one which reveals stationarity, the other linear
combinations are not stationary. Therefore, the estimate of the cointegrat-
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Figure 2. Time series plots of the natural logarithms of the forward and spot exchange
rates respectively (of the US Dollar with respect to the British Pound).

ing vector is (1, -1.016763)T . The cointegrating vector when the method of
Johansen is applied is (1, -1.0118)T . The PcFIML output of the cointegrat-
ing analysis is reported in Table 3 whilst the graph of the linear combination
of the cointegrating vector via this procedure is shown in Figure 3. The
ADF test for stationarity of the linear combination of the cointegrating vec-
tor obtained via the RBC procedure reveals significance at the 1% level of
significance, thus inferring stationarity. Analysis on the linear combination
of cointegrating vector via the Johansen procedure also reveals stationarity
at the 1% level of significance.



44 R. BIONDINI, Y-X LIN, AND M. MCCRAE

0 50 100 150 200 250 300 350 400 450 500 550

-.006

-.0055

CVJOH

0 50 100 150 200 250 300 350 400 450 500 550

-.0085

-.008

-.0075 CVRBC

Figure 3. Time series plots of the linear combinations of the cointegrating vector via
the Johansen Method and RBC procedure respectively for the spot and forward data.

Table 3. PcFIML output of cointegration analysis via the Johansen procedure for the
spot and forward exchange rate example

Cointegration analysis 2 to 563

Ho:rank=p -Tlog(1-\mu) using T-nm 95% -T\Sum log(.) using T-nm 95%

p == 0 15.92* 15.87* 14.1 16.74* 16.68* 15.4

p <= 1 0.8205 0.8175 3.8 0.8205 0.8175 3.8

standardized \beta’ eigenvectors

LSSpot LSForward

1.0000 -1.0118

-1.0025 1.0000

The method of RBC is now applied to foreign exchange rates in the Asian
region. In this example there are three series of (spot) exchange rates. The
first is the Malaysian Ringgit, the second is the Philippines Peso and the
third series is the Thai Baht. All series are expressed in terms of the US
Dollar. The time period examined commences on January 1, 1985 and
terminates on December 30, 1994 which provides ten years data and 2610
observations for each series. The natural logarithms of the exchange rates
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are once again analysed and the time series graphs of each of the three vari-
ables are shown in Figure 4. The most appropriate univariate Box-Jenkins
ARIMA model for the Malaysian Ringgit is the ARIMA(4,1,0) model. The
most appropriate Box-Jenkins ARIMA time series models for the Philip-
pine Peso and the Thai Baht are ARIMA(1,1,2) and ARIMA(0,1,4) re-
spectively. The resulting residual vectors εt = (ε1t, ..., εpt)

T and residual
cross-products εitεjt, i < j ≤ p, t = 1, 2, ..., n are both stationary and the
residual vectors may therefore be exploited to obtain the sample covariance
matrix for εt.
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Figure 4. Time series plots of the natural logarithms of the Malaysian Ringgit, Philippine
Peso and Thai Baht exchange rates respectively.

The resultant eigenvalues obtained from the fitting of the three ARIMA
models specified above are 0.00002498, 0.00001171, 0.00000364. From these
eigenvalues it may be expected that there are either zero or one cointegrat-
ing vectors since the second smallest eigenvalue appears to be much larger
than the smallest eigenvalue whilst not being much smaller than the largest
eigenvalue. When the technique of RBC is applied the resulting estimate
of the cointegrating vector is (1, 3.964026, -23.342658)T . This linear coin-
tegrating vector is found to be stationary using the ADF test at the 1%
level of significance. The same conclusion may be reached with the Jo-
hansen technique, where the estimate of the cointegrating vector is given
by (1, 28.229, 298.19)T . The linear combination of cointegrating vector
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obtained via both the RBC and Johansen techniques are shown in Figure
5. By noting that the cointegrating vector given by the Johansen method
assigns heavy weight on the Thai Baht, this currency plays a major role
in the system as defined by the Johansen method and the impact given
by the Malaysian Ringgit and Philippine Peso on the system becomes in-
significant. From this point of view, the cointegration system determined
by RBC seems more appropriate.
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Figure 5. Time series plots of the linear combinations of the RBC and Johansen coin-
tegrating vectors respectively for the Asian exchange rate data.

6. Discussion

This paper has shown the applicability of the procedure of RBC through
both simulated and real-life examples. There is still an outstanding issue
which may be examined in future study. This issue involves the criteria for
determining whether the smallest eigenvalue provides negligible contribu-
tion with respect to the larger eigenvalue(s). Lin and McCrae (2001b) have
shown that it is possible to provide a relative comparison of the variances
of the non-stationary and stationary components respectively and whether
or not the non-stationary component is negligible determines whether the
system is cointegrated or not. It is seen in the simulations performed in this
paper that the more negligible the contribution of the smallest eigenvalue,
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the more likely the estimate of the cointegrating vector is closer to the true
theoretical value. Given a multivariate time series and estimated eigenval-
ues, how could one be able to tell if in fact the smaller estimated eigenvalue
is small enough with respect to the larger estimated eigenvalue(s), so that
cointegration is a distinct possibility? A simple plot of the time series of the
linear combination of the cointegrating vector(s) may well not be enough.

By taking into account the relationship between cointegration and uni-
variate ARIMA models, the number of cointegrating vectors may be de-
termined via the rank of the covariance matrix of the residual processes of
univariate ARIMA models. Furthermore, the more negligible the contribu-
tion of the smallest estimated eigenvalue, the more accurate the resulting
estimates of the cointegrating vector. As seen in this paper, the RBC
approach may, in certain instances, be an alternative to the Johansen pro-
cedure. This appears to be true when the underlying time series may not
be modelled appropriately by a finite order autoregression model but rather
a finite order moving-average model.

Notes

1. Obviously these are the two correct ARIMA models for X1,t and X2,t from the
generation of the two particular time series.

2. PcFIML is an econometric package for determining cointegrating vectors via the
Johansen procedure.

3. The resulting output is made redundant (in actual fact, the output does not reveal
cointegration when clearly there is).

4. The estimates in Table 2 arise from both time series being fitted using ARIMA models
without the constant term.
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