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On the base of global optimality conditions for RCP we develop the global search strategy
(GSS) and focus on the global convergence of GSS giving a variant of the proof.

1. Introduction

Nowadays specialists on optimization observe the persistent demands from the world of
applications to create an effective apparatus for finding just a global solution to noncon-
vex problems in which there may exist local solutions located very far from a global one
even up to the values of goal function.

As well-known, the conspicuous limitation of convex optimization methods applied
to nonconvex problems is their ability of being trapped at a local extremum or even a
critical point depending on a starting point. In other words, the classical apparatus shows
itself inoperative for new problems arising from practice.

That is why, the development of nonconvex optimization took the way of tools initially
generated in discrete optimization (DO) and for discrete optimization. So, DO gave some
apparatus for continuous optimization (CO). Gradually, Branches & Bounds, cuts, and
so forth ideas became very popular in nonconvex area of CO, although in some cases its
turned out to be too much sensitive, for instance, with respect to the changing the size of
a problem.

In [8, 9, 10, 11, 12] it was proposed other approach to d.c. programming problems
based on global optimality conditions (GOC) that has proved its effectiveness for numer-
ous continuous (even dynamical) and discrete optimization problems [11, 13, 14, 15].

Nevertheless, the theoretical substantiation of the approach stays in some cases un-
completed. This concerns, in particular, convergence proofs for global search strategies
based on GOC.

This paper aims especially to full the lacuna for RCP. On the other hand, we demon-
strate below the importance of new notion in optimization—the notion of resolving set,
or a “good” approximation of the level surface of a convex function g(·).

The crucial influence of the approximation on results of global search was trans-
parently shown in [11, 12, 14, 15] by computational experiments. Here we would like
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underline the value of new notion or the theoretical side of investigations and its resolv-
ing impact on the convergence proof of GSS.

The paper is organized as follows. First, we remember the GOC for the simplest case
of reverse convex problems (x ∈ Rn):

f (x) ↓min, x ∈ S, g(x)≥ 0, (P)

and give the necessary and sufficient conditions for a sequence {zk} of feasible points to
be minimizing to (P). After this, we discuss some features of global search strategy (GSS)
for (P), and finally we study the convergence of GSS independent of starting point choice.

2. Global optimality conditions and minimizing sequences

In the sequel we assume that the goal function of problem (P) is bounded from below on
the feasible set, that is,

f∗ := inf
x

{
f (x) | x ∈ S, g(x)≥ 0

}
>−∞. (2.1)

In addition, suppose, the function g(·) is differentiable over some convex open set Ω
containing S.

Besides, the following assumption seems to be natural for reverse convex problem (P)
[1, 5, 6, 7, 16, 17]:

(G) there does not exist any global minimum point x∗, such that g(x∗) > 0.
In other words,

Sol(P)∩ {x | g(x) > 0
}=∅. (2.2)

where Sol(P) := Argmin(P).
Actually, if condition (G) is broken down, problem (P) ceases to be reverse convex and

might be solved by a suitable convex optimization method, say, in the case of convexity
of f (·) and S.

Theorem 2.1 [9, 10]. Let assumption (G) be fulfilled and a point z be a solution to (P)(z ∈
Sol(P)). Then the following condition holds

(�0)

∀y : g(y)= 0, ∀x ∈ S : f (x)≤ f (z),
〈∇g(y),x− y

〉≤ 0. (2.3)

At first sight, condition (�0) has no relation to the classical extremum theory. But if
one sets y = z, S= Rn, from (�0) it follows that z is a solution to the problem:

〈∇g(z),x
〉 ↑max, f (x)≤ f (z), (2.4)

and that is why the Lagrange rule takes place:

λ∇g(z) + λ0∇ f (z)= 0, (2.5)
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with λ0 ≥ 0, λ ≤ 0, λ0 + |λ| > 0. Clearly, (2.5) is the well-known result from nonlinear
programming [2, 3, 4, 18] for problem (P) with S = Rn. Hence (2.3) is connected with
optimization Theory.

On the other hand, optimality condition (�0) possesses so-called algorithmic prop-
erty (AP) as all classical optimality conditions. It means if optimality condition is broken
down at a point z under study then there exists a procedure allowing to construct a feasi-
ble point which is better than the point z of interest. Indeed, if there is a pair (v,u), such
that g(v) = 0, u ∈ S, f (u) ≤ f (z) and 〈∇g(v),u− v〉 > 0, then due to convexity of g(·)
it results g(u) > 0 = g(v). Thus, one has the feasible point u ∈ S, g(u) > 0, f (u) ≤ f (z).
Therefore, in virtue of assumption (G) there is a possibility to decrease the value of objec-
tive function f (u) by descending on the constraint g(x)= 0, that is, to construct a better
feasible point ẑ ∈ S, such that g(ẑ)= 0, f (ẑ) < f (u)≤ f (z). It can be carried out by one of
classical optimization method, since the constraint g ≥ 0 is not active at the point u∈ S,
f (u)≤ f (z).

Theorem 2.2 [9, 10]. Suppose, in problem (P) the set S is convex and the following assump-
tions take place:

(�)

−∞≤ inf
(
g,Rn

)
< g(z)= 0; (2.6)

(H)

∀y ∈ S, g(y)= 0, ∃h= h(y)∈ S, 〈∇g(y),h− y〉 > 0. (2.7)

Then condition (�0) where y ∈ S becomes sufficient for z being a global solution to (P).

Remark 2.3. Assumption (2.6) seems to be natural since it means, that there exist points
in Rn, which are inadmissible with respect to the constraint g(x)≥ 0. Otherwise the con-
straint would be senseless.

Remark 2.4. Assumption (2.7) means, that if we throw away the constraint f (x)≤ f (z),
it becomes immediately possible to violate the basic inequality 〈∇g(y),x− y〉 ≤ 0 into
condition (�0). So, assumption (H) turns out to be similar to the regularity (or nor-
mality) conditions in Lagrange multipliers rule, when, say, Slater conditions guarantee
nontriviality (λ0 �= 0) of the multiplier corresponding to the objective function.

If λ0 = 0, the multiplier rule becomes inconsistent, senseless, because it expresses only
some property of constraints, for instance, the linear dependence of constraints gradients.
But the goal function is not involved into optimality condition. It is clear, it should be
there in, that is, the objective function must be in any optimality conditions in some
influential form. In other words, it would be senseless, if optimality condition did not
take into account the goal function. Fortunately, in our case it is not so.

Example 2.5. Consider the problem (x ∈ R2):

f (x) := x2
1 +
(
x2− 1

)2 ↓min, h1(x) := x2
1 + 4x2

2 − 4≤ 0,

h2(x) := 2x2− x1 ≤ 0, g(x) := 2x2
1 − x2− 2≥ 0.

(2.8)
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It can be shown, that the point z=−α(1,1/2), α=1/8(1 +
√

65) verifies the KKT-theorem:

∇ f (z) +
2∑

i=1

λi∇hi(z)−µ∇g(z)= 0,

µg(z)= 0, λihi(z)= 0, i= 1,2.

(2.9)

However, for y = (1,0), g(y) = 0 = g(z) and u = (9/8,0), hi(u) < 0, f (u) < f (z) we get
〈∇g(y),u− y〉 = 1/2 > 0.

So, z is not global minimum.

Definition 2.6. (i) A sequence {zk} ⊂ Rn is called minimizing for problem (P), if three
following conditions are fulfilled (see (2.1))

lim
k→∞

f
(
zk
)= f∗ := inf

x

{
f (x) | x ∈ S, g(x)≥ 0

}
; (2.10)

zk ∈ S, k = 0,1,2, . . . ; (2.11)

liminf
k→∞

g(zk)≥ 0. (2.12)

(ii) The set of all minimizing sequences for (P) will be denoted by � =�(P). Further
assume, that
(G1) there no exists {zk} ∈�, such that liminfk→∞ g(zk) > 0.

Lemma 2.7. Assumption (G1) is equivalent to the following condition:
(G2)

lim
k→∞

g(zk)= 0 ∀{zk}∈�. (2.13)

Proof. Clearly, (G2) implies (G1). Now, if (G1) holds, then

liminf
k→∞

g
(
zk
)≤ 0 ∀{zk}∈�. (2.14)

Thus, due to (2.12) one gets

liminf
k→∞

g
(
zk
)= 0 ∀{zk}∈�. (2.15)

Suppose limsupk→∞ g(zk) > 0. It means, there exists a subsequence {zm}� {zk}, such
that limm→∞ g(zm) > 0. On the other hand, it can be readily seen, that {zm} verifies (2.10)
and (2.11), as well as {zk}. Therefore, {zm} ∈� what contradicts to (G1). �

The following result is related to the duality theorem of Tuy [5, 16, 17] to which we
will return later (see Section 4).

Lemma 2.8. Let assumption (G1) takes place. Then for every {zk} ∈� there exists a nu-
merical sequence {ζk} ⊂ R, such that ζk > 0, k = 1,2, . . . , ζk ↓ 0(k→∞), and

g(x)≤ g
(
zk
)

+ ζk, ∀x ∈ S : f (x)≤ f
(
zk
)
. (2.16)
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Proof. Suppose, for some sequence {zk} ∈� there no exists any sequence {ζk} verifying
the conditions above. It means, that for every k = 1,2, . . . there exists xk ∈ Rn, such that

xk ∈ S, f
(
xk
)≤ f

(
zk
)
, (2.17)

g
(
xk
)≥ g

(
zk
)

+ γk, (2.18)

where γk > 0, k = 1,2, . . .

limγk = γ > 0. (2.19)

Then, due to Lemma 2.7 it follows from (2.17) and (2.18)

lim
k→∞

inf g
(
xk
)≥ lim

k→∞
g
(
zk
)

+ limγk = γ > 0. (2.20)

It results from (2.17) that {xk} is also a minimizing sequence, since {zk} ∈�. On the
other hand, the latter inequalities contradict condition (G1). �

Further, consider the function

ϕ(z)= sup
(x,y)

{〈∇g(y),x− y
〉 | x ∈ S, f (x)≤ f (z), g(y)= g(z)

}
. (2.21)

Since 0= 〈∇g(z),z− z〉 ≤ ϕ(z), one has

ϕ(z)≥ 0 ∀z ∈ S. (2.22)

Theorem 2.9. Let assumption (G1) takes place and {zk} ∈�. Then the following condition
holds

(�)

lim
k→∞

ϕ
(
zk
)= 0. (2.23)

Proof. According to Lemma 2.8 there exists a numerical sequence {ζk}, ζk > 0, k = 0,1,
2, . . . , ζk ↓ 0, verifying (2.16). Therefore, for all k = 0,1,2, . . . , for all y : g(y) = g(zk), for
all x ∈ S, f (x)≤ f (zk), in virtue of the convexity of g(·) one gets

ζk ≥ g(x)− g
(
zk
)= g(x)− g(y)≥ 〈∇g(y),x− y

〉
. (2.24)

Whence, due to (2.21) and (2.22) it follows

0≤ ϕ
(
zk
)≤ ζk, (2.25)

what proves (�). �

Now consider the following condition:
(�1)

∥∥∇g(y)
∥∥≥ χ > 0 ∀y : g(y)= g

(
zk
)
; (2.26)
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Theorem 2.10. Let the goal function f (·) be upper semicontinious over a convex set S and
assumption (H) of Theorem 2.2 takes place.

Let in addition (�1) and the condition (�) be fulfilled together with the condition:

lim
k→∞

g
(
zk
)≤ 0. (2.27)

Then equality (2.10) holds. If (2.27) is verified as equality, then the sequence {zk} turns out
to be minimizing to problem (P) : {zk} ∈�.

Proof. (1) Suppose, (2.10) is broken down. Then for some subsequence {zm} of the se-
quence {zk} one has

lim
m→∞ f

(
zm
)
> f∗ + γ+ ε, (2.28)

where ε, γ > 0 and ε is rather small.
There then exists w ∈ S, g(w)≥ 0, such that

lim
m→∞ f

(
zm
)
> f (w) + γ. (2.29)

(2) Let show, that in this case one can find u, such that

u∈ S, g(u) > 0, f (u) < lim
m→∞ f

(
zm
)− γ. (2.30)

If g(w) > 0, it is done. When g(w)= 0, due to upper semicontinuity of f (·) there exists a
neighborhood W of the point w, such that

f (x) < lim
m→∞ f

(
zm
)− γ ∀x ∈W. (2.31)

On the other hand, in virtue of (H) one can find h∈ S, such that 〈∇g(w),h−w〉 > 0.
Then for x(α)= αh+ (1−α)w ∈ S, α∈]0,1[, because of the convexity of g(·) one gets

g
(
x(α)

)− g(w)≥ 〈∇g(w),x(α)−w
〉= α

〈∇g(w),h−w
〉
> 0. (2.32)

So, g(x(α)) > 0, x(α)∈ S, α∈]0,1[.
Besides, for a rather small α we have x(α)∈W , and due to (2.31)

f
(
x(α)

)
< lim

m→∞ f
(
zm
)− γ. (2.33)

Thus, (2.30) is proven with u= x(α) and α rather small.
(3) Now, due to (2.27) for some number � one has

g
(
zm
)
< g(u) ∀m≥�. (2.34)

Hence, there exists ym ∈ Rn, such that

g
(
ym
)= g

(
zm
)=: gm, 1/2

∥∥ym−u
∥∥2 = inf

x

{
1/2‖x−u‖2 : g(x)≤ gm

}
. (2.35)
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Besides,
∥∥ym−u

∥∥ > 0, (2.36)

since u do not belong to {x | g(x)≤ gm}.
So, the KKT-theorem takes place, that is,

∃λ0 ≥ 0, ∃λ≥ 0 : λ0 + λ > 0, λ0
(
ym−u

)
+ λ∇g(ym)= 0, λ

[
g
(
ym
)− gm

]= 0.
(2.37)

If λ0 = 0, then λ > 0 and ∇g(ym)= 0, what contradicts (�1). If λ= 0, then λ0 > 0 and
ym = u, what is impossible due to (2.36).

So, λ > 0 and g(ym)= gm := g(zm). In this case it follows from (2.37)

λm∇g
(
ym
)= u− ym, λm = λ/λ0 > 0. (2.38)

Taking into account (�1) we get

λ−1
m

∥∥u− ym
∥∥= ∥∥∇g(ym)∥∥≥ χ > 0, (2.39)

whence it immediately follows

〈∇g(ym),u− ym
〉= λ−1

m

∥∥u− ym
∥∥2 ≥ χ

∥∥u− ym
∥∥. (2.40)

On the other hand,
〈∇g(ym),u− ym

〉≤ sup
x

{〈∇g(ym),x− ym
〉 | x ∈ S, f (x)≤ f

(
zm
)}≤ ϕ

(
zm
)
. (2.41)

Unifying the latter inequalities with (2.40) one finally has

0 < χ
∥∥ym−u

∥∥≤ ϕ
(
zm
)
. (2.42)

Whence, due to (�) it follows lim ym = u. Then because of continuity of g(·) and
(2.27), we obtain

0≥ limg
(
zm
)= limg

(
ym
)= g(u) > 0, (2.43)

what is impossible. �

3. Global search strategy

In this section, we briefly repeat the basic positions of conceptual global search algorithm
advanced in [15]. Theorems 2.1–2.10 suggest to consider the following problem:

Ψ(x, y) �
〈∇g(y),x− y

〉 ↑max
(x,y)

, x ∈ S, g(x)≥ 0, g(y)= 0, (3.1)

which is rather tight. That is why we decompose it into two consecutive problems:
〈∇g(y),x

〉 ↑max
x

, x ∈ S, f (x)≤ f (z), (3.2)

hu(v) := 〈∇g(v),u− v
〉 ↑max

v
, g(v)= 0, (3.3)
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where u is an approximate solution to (3.2). Supposing these problems solvable, in [15]
we advanced the following.

Global search strategy. Let given sequences {τk}, {δk}, such that τk ↓ 0, δk ↓ 0, τk > 0,
δk > 0, k = 0,1,2 . . . and an initial point x0 ∈ S, g(x0)≥ 0.
Step 0. Set k := 0, xk := x0.
Step 1. Starting from the point xk ∈ S, g(xk)≥ 0, by means of one of local search method
(LSM) obtain a τk-stationary point

zk ∈ S, g
(
zk
)= 0, ζk := f (zk). (3.4)

Step 2. Construct an approximation

�k := {v1,v2, . . . ,vNk | g(vi)= 0, i= 1, . . . ,Nk
}

(3.5)

of the level surface g(y)= 0.
Step 3. For all i = 1, . . . ,Nk find a δk-solution ui ∈ S, f (ui) ≤ ζk, of linearized problem
(3.2):

〈∇g(vi),ui〉+ δk ≥ sup
x

{〈∇g(vi),x〉 | x ∈ S, f (x)≤ ζk
}
. (3.6)

Step 4. For all i = 1, . . . ,Nk find δk-solution wi, g(wi) = 0, of the Level problem (3.3)
corresponding to ui:

〈∇g(wi
)
,ui−wi

〉
+ δk ≥ sup

v

{〈∇g(v),ui− v
〉 | g(v)= 0

}
. (3.7)

Step 5. Set

ηk := 〈∇g(wj
)
,uj −wj

〉= max
1≤i≤Nk

〈∇g(wi
)
,ui−wi

〉
. (3.8)

Step 6. If ηk > 0, then set xk+1 := uj , k := k+ 1 and loop to Step 1.
Step 7. If ηk ≤ 0, then set xk+1 := zk, k := k+ 1 and loop to Step 1.

Remark 3.1. In order the description of GSS becomes more substantiated we assume,
that
(HL) for all δ > 0, for all z ∈ S, g(z) ≥ 0 for all v : g(v) = 0, one can find a point u ∈ S,

f (u)≤ f (z), such that

〈∇g(v),u
〉

+ δ ≥ sup
x

{〈∇g(v),x
〉 | x ∈ S, f (x)≤ f (z)

}
; (3.9)

(HU) for all δ > 0, for all u∈ S one can find a point w : g(w)= 0, such that 〈∇g(w),u−
w〉+ δ ≥ supv{〈∇g(v),u− v〉 | g(v)= 0}.

Remark 3.2. It can be easily seen that the sequence {zk} generated by GS strategy is a
sequence of τk-stationary (critical) points due to describing of Step 1.

Remark 3.3. When ηk > 0 (Step 6), due to convexity of g(·), one has

0 <
〈∇g(wj

)
,uj −wj

〉≤ g
(
uj
)− g

(
wj
)= g

(
uj
)
, (3.10)
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whence g(xk+1) ≥ ηk > 0 = g(zk) = g(wi). On the other hand, from the description of
Step 3 it follows

f
(
xk+1)≤ ζk := f

(
zk
)
, xk+1 ∈ S, g

(
xk+1) > 0. (3.11)

Thus, one constructed a feasible point xk+1 ∈ S, that is not worse than zk, (since f (xk+1)≤
ζk := f (zk)) and at which the constraint g ≥ 0 is not active, g(xk+1) > 0. In this case,
starting new local search at xk+1 under the assumption of type (G), (G1), or, when con-
straint g ≥ 0 is essential [1, 7, 16, 17], we will get zk+1, g(zk+1) = 0, with the property
f (zk+1) < f (xk+1) so that

f
(
zk+1) < f

(
xk+1)≤ f

(
zk
)
. (3.12)

This observation will have an important impact on the convergence of GS Strategy.
Thus, the strategy above becomes relaxing, that is, decreasing the value of f (·) at ev-

ery iteration, when ηk > 0. Note, that we suppose to use some minimization method (say,
Newton’s method or an interior point method and so on) in order “to descent” on the
surface g = 0 with the obligatory strict improving of the goal function and without taking
into account the constraint g ≥ 0 (so, a free (from the constraint g = 0) descent). There-
fore, we call this LSM the free descent procedure. More strictly it can be reformulated as
follows:
(FD) there exist µ > 0, such that for all x ∈ S, g(x) > 0, for all τ > 0 one can find a τ-

critical point ẑ = ẑ(x), such that

ẑ ∈ S, g(ẑ)= 0, f (ẑ)≤ f (x)−µg(x) + τ. (3.13)

It is easy to see, that (3.13) is equivalent to

g(x)≤ 1/µ
[
f (x)− f (ẑ)

]
+ τ/µ. (3.14)

Remark 3.4. Returning to the describing of the global search strategy, note that it can not
be viewed as an algorithm, because on Step 1, it is not precised what kind of LS algorithm
you have to use, as well as, on Step 3 for solving the linearized problem you are free to
choose any suitable method, which must be, however very fast, since one has to repeat it
several times at every iteration.

Nevertheless, GS strategy allows us not to lose from the view all basic moments of
global search, while if we begin to precise some point, for instance, the linearized problem
solving, we are risking to be lost in some particularities.

4. Convergence of global search strategy

As it was pointed out above, the verification of the fact, whether a feasible point z is a
global solution or not, can be reduced to the solving problem (3.1), which in turn can be
partially performed by global search strategy.

Clearly, the choosing methods for solving problems (3.2) and (3.3), as well as the local
search method on Step 1 of GSS, must be skilled, but, nevertheless, is standard, in a sense,
and “already seen” [2, 3, 4, 5, 6, 7, 18].
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At the same time, the constructing of a “good” approximation �k of the level surface
g(x)= 0 on Step 2 turns out to be of paramount importance from the view point of real
global search, as the numerous computational experiments show [8, 11, 13, 14, 15].

If you are able to construct a “good” approximation on Step 2 of GSS, you can escape
from any stationary point and finally to say that an obtained point z is an approximate
global solution [11, 13, 14, 15].

Let us look at the situation from the theoretical point of view and show the resolving
impact of a “good” approximation on the convergence of GS strategy.

In order to do it, set ζ := f (z) and consider an approximation

�(ζ) :=�= {v1, . . . ,vN | g(vi)= 0, i= 1, . . . ,N =N(ζ)
}
. (4.1)

Suppose, some points ui ∈ S, f (ui)≤ ζ , wi ∈ Rn, g(wi)= 0 verify the inequalities (3.6)
and (3.7) according to assumption (HL) and (HU), respectively, with δk := δ.

Besides, set, as above

η(ζ) := 〈∇g(wj
)
,uj −wj

〉= max
1≤i≤N

〈∇g(wi
)
,ui−wi

〉
. (4.2)

Definition 4.1. Let given constants ∆,δ,ε > 0, 0 <Θ < 1.
(i) The approximation �(ζ) is called strictly (∆,δ,ε,Θ)-resolving set, if from the fact

that z is not a ∆-solution to problem (P), that is,

f (z)−∆ > f∗ � inf
x

{
f (x) | x ∈ S, g(x)≥ 0

}
, (4.3)

it follows two inequalities:

η(ζ) > 0, (4.4)

η(ζ) >Θϕ(z)− ε. (4.5)

(ii) If inequalities (4.4) and (4.5) are fulfilled as nonstrict, then the approximation
�(ζ) is called simply (or merely) resolving.

Let us consider together with problem (P) the dual (according Tuy [5, 7, 16, 17]) prob-
lem of convex maximization:

g(x) ↑max, x ∈ S, f (x)≤ β. (Qβ)

Recall that due to Tuy in [5, Proposition 10, page 166] the point z ∈ S is a solution to
(P) if and only if

V
(
f (z)

)
:= sup

x

{
g(x) | x ∈ S, f (x)≤ f (z)= f∗

}= 0, (4.6)

where V(β) is the optimal value function of problem (Qβ)

V(β) := sup
x

{
g(x) | x ∈ S, f (x)≤ β

}
. (4.7)
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Assume, that the optimal value function V(β) is upper Lipschitzian at f∗, that is, there
exist two constants β̄ and M > 0, such that for every β : f∗ ≤ β < β̄ the following estima-
tion holds

V(β)−V
(
f∗
)≤M

(
β− f∗

)
. (4.8)

Whence, in virtue of (4.6) it follows

sup
x

{
g(x) | x ∈ S, f (x)≤ f (z)

}≤M
(
f (z)− f∗

)
. (4.9)

Note, that estimation (4.8), as well known [2, 3, 4], is rather natural for problem (Qβ),
since for a Lipschitzian function (in (Qβ) it is convex, hence, Lipschitzian), a bounded set
S and a continuous function f (·) the stability property in a neighborhood of zero takes
place for the optimal value function V(·). See, for instance, [2], Corollaries 1 and 2 from
Theorem 6.3.2, as well as Sections 6.4 and 6.5.

Remember also, that any normality condition for problem (Qβ), for instance, Slater or
Mangasarian-Fromovitz regularity conditions, guarantees Lipschitzian property for the
optimal value function, or the stability of the problem (Qβ) with respect to the simplest
perturbation of inequality constraint [2].

Therefore, one can say, that assumption (4.8) by no means bounds the generality of
consideration of problems (P) and (Qβ).

In the sequel the following result will be rather useful.

Lemma 4.2. Let an approximation �(ζ) be strictly (merely) (∆,δ,ε,Θ)-resolving. In ad-
dition, estimation (4.9) takes place with a constant M > 0 and ε ≥MΘ∆. Then, from the
(nonstrict) inequality (4.4) it follows the (nonstrict) inequality (4.5).

Proof. First, from the definition of the function ϕ(·) and due to convexity of g(·) it fol-
lows

ϕ(z) := sup
x,y

{〈∇g(y), x− y
〉 | x ∈ S, f (x)≤ f (z), g(y)= 0

}

≤ sup
x

{
g(x) | x ∈ S, f (x)≤ f (y)

}
.

(4.10)

Whence with the help of (4.9) one has

ϕ(z)≤M
(
f (z)− f∗

)
. (4.11)

If now the inequality (4.5) is broken down, then

η(ζ) + ε≤ΘM
(
f (z)− f∗

)
. (4.12)

On the other hand, in this case according to definition of strictly resolving set we have

ζ := f (z)≤ f∗ +∆. (4.13)
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Then, from (4.12) it follows

η(ζ)≤MΘ∆− ε ≤ 0, (4.14)

what contradicts (4.4).
Clearly, in the case of merely resolving set and the nonstrict inequalities the proof is

similar. �

Notes. First, Lemma 4.2 gives the concordance condition for parameters of computation
∆, ε and Θ : ε ≥MΘ∆, where ∆ is the solving accuracy of problem (P), ε stands for
exactness of the basic inequality (4.5), Θ is a share of solving the auxiliary problem
(3.1).

Second, according to this lemma, when applying global search strategy one can look
only for the number ηk = η(ζk), ζk := f (zk), neglecting (4.5). This completely corre-
sponds to the describing of GSS, in which one does not use the inequality (4.5). The latter
will be without fail satisfied, if ηk > 0 (ηk ≥ 0), when using strictly (merely) resolving set
�(ζk) at every iteration of GSS on Step 2.

Therefore, for applying the GS strategy (or conceptual algorithm) for solving problem
(P) the following assumption seems to be natural.

(HR) For all (∆,τ,δ,ε,Θ),∆,τ,δ,ε > 0, 0 < Θ < 1, ε ≥MΘ∆, for every τ-stationary
point z ∈ S, g(z)= 0, ζ := f (z), which is not a ∆-solution to problem (P), one can con-
struct strictly (merely) (∆,δ,ε,Θ)-resolving approximation�(ζ).

Further, assume, that at every iteration of GSS on Step 2 one constructs strictly (mere-
ly) (∆k,δk,εk,Θk)-resolving set�k =�(ζk).

Note, when using merely resolving sets we have to change in the describing GSS the
strict inequality ηk > 0 (on Step 6) for nonstrict, and the inequality ηk ≤ 0 (on Step 7) for
the strict one correspondingly.

Since the notion of resolving approximation plays the crucial role in the proof of con-
vergence of GS strategy, at each iteration of which on Step 2 one constructs a resolving
set, we will call such conceptual algorithm shorther�-strategy.

Further, let us consider the following assumptions:
(�3)

∥∥∇g(y)
∥∥≥ ρ > 0 ∀y : g(y)= 0; (4.15)

(H1)

∀y ∈ S, g(y)= 0, ∃h= h(y)∈ S,
〈∇g(y),h− y

〉
> 0. (4.16)

Besides, let us suppose that numerical sequences {∆k}, {τk}, {δk}, {εk}, and {Θk}
verify the following conditions:

∆k,τk,δk,εk > 0, 0 <Θk < 1, εk ≥ΘkM∆k, k = 0,1,2, . . . ;

τk ↓ 0, δk ↓ 0, εk ↓ 0 (k −→∞).
(4.17)
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Theorem 4.3. Let in problem (P) the goal function be continuous over an open domain Ω,
containing a convex set S and {x | g(x)= 0}. Besides

f∗ := inf
x

{
f (x) | x ∈ S, g(x)≥ 0

}
>−∞, (4.18)

where a convex function g(·) is differentiable over Ω.
In addition, suppose assumptions (HL), (HU), (HR), (FD) as well as the conditions (4.9),

(4.15)–(4.17) take place.
Then the sequence {zk} generated by �-strategy turns out to be minimizing for problem

(P).
Moreover every cluster point z of the sequence {zk} yields the infinum of f (·) over the

feasible set of problem (P).
In the case of closed set S this cluster point turns out to be a global solution to (P).

Proof (for strictly resolving sets). For the case of merely resolving sets the proof is similar
with the corresponding change of the sign of inequalities from strict for nonstrict and
vice versa.

(a) For the case ηk = η(ζk) ≤ 0 for all k ≥ k0 ≥ 0 from definition of resolving set it
follows

f
(
zk
)≤ f∗ +∆k. (4.19)

Since ∆k ↓ 0 (k→∞) due to (4.17), the sequence {zk} turns out to be minimizing (see,
definition of minimizing sequence, (2.10)–(2.12)):

lim
k→∞

f
(
zk
)= f∗, g

(
zk
)= 0, zk ∈ S, k = 0,1,2, . . . . (4.20)

(b) Consider now the case, when

ηk > 0, k = 0,1,2, . . . . (4.21)

By constructing, zk+1 is a τk+1-critical point, g(zk+1) = 0, obtained by some method of
local search, starting from xk+1 := ujk ∈ S, f (xk+1)≤ f (zk). Besides,

ηk =
〈∇g(wjk

)
,xk+1−wjk

〉= max
1≤i≤Nk

〈∇g(wi
)
,ui−wi

〉
> 0, (4.22)

where g(wi)= g(wjk )= 0, i= 1, . . . ,Nk, k = 0,1,2, . . . .
Therefore, due to convexity of g(·) one has

0 < ηk ≤ g
(
ujk
)− g

(
wjk
)= g

(
xk+1). (4.23)

In addition, in virtue of condition (FD)

f
(
zk+1)≤ f

(
xk+1)−µg

(
xk+1)+ τk+1, (4.24)

where µ > 0, or, what is the same,

g
(
xk+1)≤ 1

µ

[
f
(
xk+1)− f

(
zk+1)]+ τk+1/µ. (4.25)
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Thus, the numerical sequence { f (zk)} turns out to be monotonously decreasing, since

f
(
zk+1) < f

(
xk+1)≤ ηk := f

(
zk
)
. (4.26)

Because f (·) is bounded from below over the feasible set of problem (P), the sequence
{ f (zk)} converges. Due to (4.26) it implies that { f (xk)} also converges to the same limit.
Therefore, it follows from (4.25) that g(xk) ↓ 0. In turn, in virtue of (4.23) it implies

ηk ↓ 0, (k −→∞). (4.27)

On the other hand, since the approximation �k = �(ζk) is strictly (∆k,δk,εk,θk)-
resolving, according to Lemma 4.2 from the inequality ηk > 0 it follows

ηk > θkϕ
(
zk
)− εk ≥ θϕ

(
zk
)− εk. (4.28)

From the latter inequality due to (4.17) and (4.27) one obtains
(�)

lim
k→∞

ϕ
(
zk
)= 0. (4.29)

Therefore, according to Theorem 2.10 the sequence {zk} turns out to be minimizing,
since limk→∞ g(zk)= 0 by constructing, and from the regularity condition (�3) it follows
the condition (�1) of Theorem 2.10.

(c) In general case the sequence {ηk} is divided into two subsequences {ηks} and {ηkt}
by means of conditions ηks ≤ 0, ηkt > 0, so that {ks}∪{kt} = {0,1,2 . . .}. Correspodently,
the sequence {zk} is also decomposed into two subsequences {zks} and {zkt}. Moreover,
the both subsequences are minimizing according, respectively, to parts (a) and (b) of the
proof. Therefore, the whole sequence {zk} shows itself minimizing to problem (P). �

To conclude, one can say a few words about the existence of the resolving set, the
crucial role of which we observed during the proving of the convergence of GSS.

For some simple problems as presented for instance in [8, 12], we are able to construct
the weakly resolving set, that is, when from inequality (4.3) it follows only (4.4) (without
(4.5)).

Simultaneously, the existence of a weakly resolving set is shown in the sufficiency proof
of Theorem 2.2 [8, 9, 10, 12]. Therein, supposing that there exists a feasible element u∈ S,
g(u) ≥ 0, which is better than the point under study, f (u) < f (z), one find a point y,
g(y)= 0, such that 〈∇g(y),u− y〉 > 0. (In the same manner Theorem 2.10 was proven.)
It means, that the set W = {y} of only one point, shows itself as the weakly resolving
approximation for z.

Moreover, we are able to prove that if z is not a critical point in the sense, say, of the
condition (see (2.5))

〈∇ f (z)− λ∇g(z),x− z
〉≥ 0, ∀x ∈ S, (4.30)

where g(z)= 0, then the set W = {z} consisting of only one point, turns out to be weakly
resolving. But this is the topic for following papers (see [12]).
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On the other hand, we can prove that if there exists a procedure for constructing a
weakly (∆,δ)-resolving set, then one can construct the strictly (∆,δ,ε,θ)-resolving ap-
proximation for some θ, 0 < θ < 1, and ε ≥ θM∆ > 0.

As a consequence, we can replace assumption (HR) by weaker one concerning the
construction of only a weak resolving approximation. How one can do it for convex
maximization problems, reverse convex and d.c. minimization problems one can see in
[8, 10, 11, 12, 13, 14, 15].

5. Conclusion

In this paper for a minimisation problem with one reverse convex constraint
(i) after remember optimality conditions for a global solution;

(ii) the necessary and sufficient conditions for a sequence of feasible points to be
minimising are given;

(iii) the global search strategy for finding a global solution was proposed;
(iv) the new notion of resolving set has been advanced and some features of it were

studied;
(v) the convergence of proposed global search strategy was proved.
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