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Existence and uniqueness of solution are proved for elastodynamics of Reissner-Mindlin
plate model. Higher regularity is proved under the assumptions of smoother data and
certain compatibility conditions. A mass scaling is introduced. When the thickness ap-
proaches zero, the solution of the clamped Reissner-Mindlin plate is shown to approach
the solution of a Kirchhoff-Love plate.

1. Introduction

The Reissner-Mindlin (R-M) theory [13, 14, 15] has been popularly applied to thin-
walled structures with moderate thickness. Transient response plays an important role in
many aspects of structural analysis. The governing equation of the elastodynamics prob-
lem of R-M plate is of an evolutionary type with second-order time derivatives. In this
paper, we apply a priori estimate to investigate the elastodynamics problem of R-M plate.
This method has been successfully used in developing the theory of various partial dif-
ferential equations, for example, [7, 10, 11]. Following the line of [7, 10, 11], we prove
the existence and uniqueness of the H1 solution. We then apply the approaches of [8]
to prove the H2 regularity and higher regularity when the data is smoother and certain
compatibility conditions are satisfied.

For static problem under the assumption of load scaling, it is proved in [3] that the
solution of the clamped R-M plate approaches the solution of the Kirchhoff-Love (K-L)
plate when the thickness approaches zero. This fact has been employed to investigate the
finite element method of R-M plate, such as locking-free and uniform convergence, cf.
[2, 3, 5, 12, 16, 18]. For dynamics problem, with the introduction of mass scaling [4], we
prove that when thickness approaches zero, the H2 strong solution of the clamped R-M
plate approaches the H2 weak solution of K-L plate (whose classical solution requires H4

smoothness).
In what follows, we describe the system of equations in Section 2 and prove the exis-

tence, uniqueness, and regularity in Section 3. Then we discuss the relation between R-M
plate and K-L plate in Section 4. This is followed by a summary in Section 5.
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2. Governing equations of Reissener-Mindlin plate for elastodynamics

For elastodynamic bending shear problem modeled by R-M plate theory [13, 14, 15],
the displacement components of a generic point at a distance z to the midsurface are
expressed by the deflection w at the midsurface and the rotations (β1,β2) of the normal
to the midsurface,

U1 =−zβ1, U2 =−zβ2, U3 =w, (2.1)

|z| ≤ ζ/2. ζ is the thickness of the plate. For dynamics problems, the velocity and acceler-
ation, traditionally denoted by U̇i and Üi, respectively, have the same format of (2.1) after
differentiation with respect to time. The motion equation of R-M plate can be derived
from the general three-dimensional elastodynamics by integration through thickness, or
from the energy method using Hamilton’s principle, for example, [9]

Iβ̈1 +EA1(β)− λζ−2(w,1−β1
)=m1,

Iβ̈2 +EA2(β)− λζ−2(w,2−β2
)=m2,

ρζ−2ẅ− λζ−2∇· (∇w−β
)= g = f3ζ

−2,

(2.2)

where we define

A1(β)= −
(
(1 + ν)

(
βα,α

)
,1 +(1− ν)∇2β1

)
24
(
1− ν2

) ,

A2(β)= −
(
(1 + ν)

(
βα,α

)
,2 +(1− ν)∇2β2

)
24
(
1− ν2

) .

(2.3)

Here, E is the Young’s modulus, ρ is the density, and ν is the Poisson ratio. We denote
I = ρ/12 and λ= Gκ, with the shear modulus G and a shear correction factor κ, which is
introduced to balance the zero shear stress at the top and bottom surfaces. As analyzed
for static problem [2, 3, 5], the lateral loading force f3 (per unit volume) is scaled to ζ2g.
The convention of summation on repeated indices is also applied, with the Greek index
running over the range from 1 to 2. The bold-faced variables are used to denote a two-
dimensional vector, for example, β = (β1,β2), and βα is used to indicate all of the two
components involved when the indication is clear. Here, w,1 in (2.2) indicates the partial
derivative ∂w/∂x1. The same applies for all the similar cases.

For simplicity, we consider the equations defined on a smooth bounded domain Ω in
R2, with homogeneous Dirichlet boundary conditions and general initial conditions

βα(t,x)= 0; w(t,x)= 0 on ∂Ω,

βα(0,x)= β0
α(x); w(0,x)=W0(x),

β̇α(0,x)= β1
α(x); ẇ(0,x)=W1(x).

(2.4)
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We adopt the usual notations of Sobolev spaces. The Galerkin method yields the follow-
ing variational equation. For any t ∈ [0,T], find βα, w ∈V =H1

0 (Ω) such that

I
〈
β̈α,ηα

〉
+ρζ−2〈ẅ,ν〉+Ea(β,η)+λζ−2(w,α−βα,ν,α−ηα

)=(mα,ηα
)

+(g,ν), ∀ηα,ν∈V.
(2.5)

Here, (·,·) denotes the usual L2 inner product, and 〈·,·〉 denotes the duality on V ′ ⊗V .
a(·,·) is a bilinear form on V ⊗V defined as

a(β,η)= 1
24
(
1− ν2

)((1 + ν)
(
βα,α,ηα,α

)
+ (1− ν)

(∇βα,∇ηα
))
. (2.6)

It is associated with the operators A1 and A2 such that

a(β,η)= 〈A1(β),η1
〉

+
〈
A2(β),η2

〉= 〈A(β),η
〉

, ∀βα,ηα ∈V. (2.7)

In fact, a(·,·) is symmetric, the same as the two-dimensional elasticity operator with a
scalar factor. With Dirichlet boundary conditions, a(·,·) is equivalent to theH1-norm on
V [6] and there exist constants α1,α2 > 0 such that

α1‖η‖2
1 ≤ a(η,η), ∀ηα ∈V ,

a(β,η)≤ α2‖β‖1‖η‖1, ∀βα,ηα ∈V. (2.8)

We denote ‖η‖2
x = ‖η1‖2

x + ‖η2‖2
x for ηα of a functional space X . Note that for time-

dependent problems, the norm ‖ν‖X of a function ν : [0,T]→ X is a function of time. We
use the following notations for the functional spaces and the measure in time:

L2(X)= L2(0,T ;X)

=
{

ν : [0,T]−→ X | ν(t,x)∈ X ,‖ν‖L2(0,T ;X) =
(∫ T

0

(‖ν‖X
)2
dt
)1/2

<∞
}

,

L∞(X)= L∞(0,T ;X)

=
{

ν : [0,T]−→ X | ν(t,x)∈ X ,‖ν‖L∞(0,T ;X) = esssup
0≤t≤T

(‖ν‖X
)
<∞

}
.

(2.9)

3. Existence, uniqueness, and regularity

For linear hyperbolic equations of the second order in time with one function, the ex-
istence and uniqueness are proven (see, e.g., [7, 10, 11]) using the method of a priori
estimate. The method is also employed in [17] for Navier-Stokes problem whose steady-
state case has close relation to the static problems of R-M plate, (cf. [5]). We extend the
scheme to the dynamic problems of R-M plate. For the time being, we keep the material
parameters explicitly expressed for later use in Section 4.

Theorem 3.1. Ifmα,g ∈ L2(L2); B0
α,W0 ∈H1

0 ; and B1
α,W1 ∈ L2, then there exists a solution

(βα,w) of (2.5) (a weak solution of (2.2)) with initial conditions (2.4), βα,w ∈ L∞(H1
0 ),

β̇α,ẇ ∈ L∞(L2), and β̈α,ẅ ∈ L∞(H−1). Moreover, there exists a constant C > 0, independent
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of the material parameters, such that

I‖β̇‖2
0 + ρζ−2‖ẇ‖2

0 +E‖β‖2
1 + λζ−2‖∇w−β‖2

0

≤ C
(
I
∥∥B1

∥∥2
0 + ρζ−2

∥∥W1
∥∥2

0 +E
∥∥B0

∥∥2
1

+ λζ−2
∥∥∇W0−B0

∥∥2
0 + I−1‖m‖2

L2(L2) + ρ−1ζ2‖g‖2
L2(L2)

)
.

(3.1)

Proof. We apply the scheme for hyperbolic equations developed in [7, 10, 11]. The space
V is separable. We construct an approximation of order n, with a countable basis {ψi(x),
i= 1,2, . . .} of V :

βαn(t,X)=
n∑
j=1

β
j
αn(t)ψj(X), wn(t,X)=

n∑
j=1

w
j
n(t)ψj(X),

I
(
β̈αn,ηα

)
+ ρζ−2(ẅn,ν

)
+Ea

(
βn,η

)
+ λζ−2(wn,α−βαn,ν,α−ηα

)
= (g,ν) +

(
mα,ηα

)
, ∀ηα,ν∈Vn = span

{
ψ1, . . . ,ψn

}
.

(3.2)

The approximation problem (3.2) leads to a linear system of second-order ordinary
differential equations. With the approximations of (2.4) for the initial conditions

n∑
j=1

B
0 j
αnψj(X)= B0

αn −→ B0
α,

n∑
j=1

W
0 j
n ψj(X)=W0

n −→W0,

n∑
j=1

B
1 j
αnψj(X)= B1

αn −→ B1
α,

n∑
j=1

W
1 j
n ψj(X)=W1

n −→W1,

(3.3)

we have unique solution

{
β
j
1n(t),β

j
2n(t),w

j
n(t), j = 1, . . . ,n

}∈H2([0,T]
)
. (3.4)

Now using ηα = β̇αn(t,X) and ν = ẇn(t,X) in (3.2), then integrating from t = 0 to T ,
we have

I
∥∥β̇n∥∥2

0 + ρζ−2
∥∥ẇn

∥∥2
0 +Ea

(
βn,βn

)
+ λζ−2

∥∥∇wn−βn
∥∥2

0

= I∥∥β̇n(0)
∥∥2

0 + ρζ−2
∥∥ẇn(0)

∥∥2
0 +Ea

(
βn(0),βn(0)

)
+ λζ−2

∥∥∇wn(0)−βn(0)
∥∥2

0 + 2
∫ T

0

((
mα, β̇αn

)
+
(
g,ẇn

))
dt

≤ I∥∥B1
n

∥∥2
0 + ρζ−2

∥∥W1
n

∥∥2
0 +Eα2

∥∥B0
n

∥∥2
1 + λζ−2

∥∥∇W0
n −B0

n

∥∥2
0

+
∫ T

0

(
I−1‖m‖2

0 + ρ−1ζ2‖g‖2
0

)
dt+

∫ T
0

(
I
∥∥β̇n∥∥2

0 + ρζ−2
∥∥ẇn

∥∥2
0

)
dt.

(3.5)
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Applying Gronwall inequality, we obtain

I
∥∥β̇n∥∥2

0 + ρζ−2
∥∥ẇn

∥∥2
0 +α1E

∥∥βn∥∥2
1 + λζ−2

∥∥∇wn−βn
∥∥2

0

≤ C
(
I
∥∥B1

n

∥∥2
0 + ρζ−2

∥∥W1
n

∥∥2
0 +α2E

∥∥B0
n

∥∥2
1

+ λζ−2
∥∥∇W0

n −B0
n

∥∥2
0 + I−1‖m‖2

L2(L2) + ρ−1ζ2‖g‖2
L2(L2)

)
.

(3.6)

The right-hand side has limit as n→∞ due to (3.3). Therefore, the left-hand side is
bounded. Note that ‖wn‖1 ≤ C‖∇wn‖0 ≤ C(‖∇wn−βn‖0 +‖βn‖0). By compactness, we
can find convergent subsequences, still denoted by subscript n, such that

βαn −→ βα, wn −→w weakly star in L∞
(
H1

0

)
,

β̇αn −→ ϕα, ẇn −→ χ weakly star in L∞
(
L2). (3.7)

It is a straightforward task to verify that β̇α = ϕα, ẇ = χ, β̈αn → β̈α, ẅn → ẅ weakly star
in L∞(H−1), and {βα,w} satisfy the initial conditions (2.4) and the variational equation
(2.5), thus form a weak solution of (2.2). �

Theorem 3.2. Under the conditions of Theorem 3.1, the solution {βα,w} is unique, that is,
if g = 0, mα = 0, B0

α =w0 = B1
α =w1 = 0, then βα =w = 0.

Proof. Following the line of [10, 11], we can prove the uniqueness, but omit the details.
�

Theorem 3.3. Under the conditions of Theorem 3.1, if ṁα, ġ ∈ L2(L2), B0
α,W0 ∈H2, and

B1
α,W1 ∈ H1

0 , then the solution (βα,w) of (2.2) with the initial conditions (2.4) satisfies
β̈α,ẅ ∈ L∞(L2), β̇α,ẇ ∈ L∞(H1

0 ), βα,w ∈ L∞(H2), and

I‖β̈‖2
0 + ρζ−2‖ẅ‖2

0 +E‖β̇‖2
1 + ζ−2‖∇ẇ− β̇‖2

0

≤ C
(
I−1
(
E2
∥∥B0

∥∥2
2 + λ2ζ−4

∥∥∇W0−B0
∥∥2

0 +
∥∥m(0)

∥∥2
0

)
+ ρ−1ζ2

(
λ2ζ−4

∥∥∇W0−B0
∥∥2

1 +
∥∥g(0)

∥∥2
0

)
+E

∥∥B1
∥∥2

1 + λζ−2
∥∥∇W1−B1

∥∥2
0 + I−1‖ṁ‖2

L2(L2) + ρ−1ζ2‖ġ‖2
L2(L2)

)
,

(3.8)

E‖β‖2 ≤ C
(
I‖β̈‖0 + λζ−2‖∇w−β‖0 +‖m‖0

)
, (3.9)

λζ−2‖w‖2 ≤ C
(
ρζ−2‖ẅ‖0 + λζ−2‖β‖1 +‖g‖0

)
, (3.10)

where the bounds of ‖∇w−β‖0 and ‖β‖1 are established in (3.1).

Proof. We apply the method for hyperbolic equations demonstrated in [8]. From

Theorem 3.1, we have β̇
j
αn,ẇ

j
n ∈H1([0,T]). Differentiating (3.2) with respect to t, we ob-

tain
...
β
j

αn,
...
wj
n ∈ L2([0,T]). The a priori estimate like (3.6) holds:

I
∥∥β̈n∥∥2

0 + ρζ−2
∥∥ẅn

∥∥2
0 +α1E

∥∥β̇n∥∥2
1 + λζ−2

∥∥∇ẇn− β̇n
∥∥2

0

≤ C
(
I
∥∥β̈n(0)

∥∥2
0 + ρζ−2

∥∥ẅn(0)
∥∥2

0 +α2E
∥∥β̇n(0)

∥∥2
1

+ λζ−2
∥∥∇ẇn(0)− β̇n(0)

∥∥2
0 + I−1‖ṁ‖2

L2(L2) + ρ−1ζ2‖ġ‖2
L2(L2)

)
.

(3.11)
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From (2.2), we obtain β̈α(0), ẅ(0)∈ L2,

I
∥∥β̈α(0)

∥∥
0 ≤ E‖B0‖2 + λζ−2

∥∥∇W0−B0
∥∥

0 +
∥∥mα(0)

∥∥
0,

ρζ−2
∥∥ẅ(0)

∥∥
0 ≤ λζ−2

∥∥∇W0−B0
∥∥

1 +
∥∥g(0)

∥∥
0.

(3.12)

The argument of boundedness and compactness leads to the conclusion that β̈αn → β̈α,
ẅn→ ẅ weakly star in L∞(L2). Hence, (3.11) implies (3.8).

On the other hand, we rewrite (2.2):

EA1(β)=m1− Iβ̈1 + λζ−2(w,1−β1
)
,

EA2(β)=m2− Iβ̈2 + λζ−2(w,2−β2
)
,

−λζ−2∇2w = g − ρζ−2ẅ− λζ−2βα,α.

(3.13)

For any fixed time t, the right-hand sides of these equations are in L2. We have the elas-
ticity operator and the Laplace operator in the left-hand side. According to the theory of
elliptic equations, with a smooth domain Ω, we have βα,w ∈H2, and the bounds (3.9)
and (3.10). �

We are ready to extend the method for higher regularity of hyperbolic equation [8]
to the transient dynamics of R-M plate. For simplicity, the dependence on the material
parameters is not explicitly expressed and will have more discussion in Section 4.

Theorem 3.4. Assume for any integer P ≥ 0,

B0
α,W0 ∈HP+1∩H1

0 , B1
α,W1 ∈HP ∩H1

0 ,

∂kmα

∂tk
,

∂kg

∂tk
∈ L2(HP−k), k = 0,1, . . . ,P,

(3.14)

and that the following compatibility conditions hold for P ≥ 2:

Bk+2
α = I−1

(
∂kmα(0)
∂tk

−EAα
(

Bk
)

+ λζ−2(∇Wk −Bk
))∈H1

0 ,

Wk+2 = (ρζ−2)−1
(
∂kg(0)
∂tk

+ λζ−2∇· (∇Wk −Bk
))∈H1

0 ,

k = 0,1, . . . ,P− 2.

(3.15)
Then the solution of (2.2) with (2.4) satisfy, for k = 0,1, . . . ,P + 1,

∂kβα
∂tk

,
∂kw

∂tk
∈ L∞(HP+1−k), (3.16)

∥∥∥∥∂kβα∂tk

∥∥∥∥
P+1−k

+
∥∥∥∥∂kw∂tk

∥∥∥∥
P+1−k

≤ C
( P∑

j=0

(∥∥∥∥∂jmα

∂t j

∥∥∥∥
L2(HP− j )

+
∥∥∥∥∂jg∂t j

∥∥∥∥
L2(HP− j )

)

+
∥∥B0

∥∥
P+1 +

∥∥W0
∥∥
P+1 +

∥∥B1
∥∥
P +

∥∥W1
∥∥
P

)
.

(3.17)
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Proof. The cases of P = 0 and P = 1 are proved in Theorems 3.1 and 3.3, respectively.
Using the method of induction, we assume that the theorem is true for P ≤Q and assume
that the conditions (3.14) and (3.15) are valid for P =Q+ 1. Denote

B̃α = β̇α, w̃ = ẇ,

m̃α = ṁα, g̃ = ġ,

B̃kα = Bk+1
α , W̃k =Wk+1, k = 0,1, . . . ,Q.

(3.18)

Then B̃kα,W̃k, k = 0,1, . . . ,Q, satisfy (3.15) for P = Q. B̃0
α = B1

α and W̃0 =W1 ∈ HQ+1 ∩
H1

0 . For k = 0,1, . . . ,Q, ∂km̃α/∂tk = ∂k+1mα/∂tk+1 and ∂kg̃/∂tk = ∂k+1g/∂tk+1 ∈ L2(HQ−k).
From (3.14) and (3.15) with P =Q+ 1,

∥∥B̃1
∥∥
Q =

∥∥B2
∥∥
Q ≤ C

(∥∥m(0)
∥∥
Q +

∥∥B0
∥∥
Q+2 +

∥∥W0
∥∥
Q+1 +

∥∥B0
∥∥
Q

)≤∞,∥∥W̃1
∥∥
Q =

∥∥W2
∥∥
Q ≤ C

(∥∥g(0)
∥∥
Q +

∥∥W0
∥∥
Q+2 +

∥∥B0
∥∥
Q+1

)≤∞. (3.19)

Hence B̃kα,W̃k, k = 0 and 1, satisfy (3.14) for P =Q. We apply the assumption of induc-
tion and obtain from (3.16) and (3.17) with P =Q, for k = 0,1, . . . ,Q+ 1,

∂kB̃α
∂tk

,
∂kw̃

∂tk
∈ L∞(HQ+1−k), (3.20)

∥∥∥∥∂kβ̃α∂tk

∥∥∥∥
Q+1−k

+
∥∥∥∥∂kw̃∂tk

∥∥∥∥
Q+1−k

≤ C
( Q∑

j=0

(∥∥∥∥∂j
↔
mα

∂t j

∥∥∥∥
L2(HQ− j )

+
∥∥∥∥∂j g̃∂t j

∥∥∥∥
L2(HQ− j )

)

+
∥∥B̃0

∥∥
Q+1 +

∥∥W̃0
∥∥
Q+1 +

∥∥B̃1
∥∥
Q +

∥∥W̃1
∥∥
Q

)
.

(3.21)

It implies that, for k = 1, . . . ,Q+ 2,

∂kβα
∂tk

,
∂kw

∂tk
∈ L∞(HQ+2−k), (3.22)

∥∥∥∥∂kβα∂tk

∥∥∥∥
Q+2−k

+
∥∥∥∥∂kw∂tk

∥∥∥∥
Q+2−k

≤ C
(Q+1∑

j=0

(∥∥∥∥∂jmα

∂t j

∥∥∥∥
L2(HQ+1− j )

+
∥∥∥∥∂jg∂t j

∥∥∥∥
L2(HQ+1− j )

)

+
∥∥B1

∥∥
Q+1 +

∥∥W1
∥∥
Q+1 +

∥∥B2
∥∥
Q +

∥∥W2
∥∥
Q

)
.

(3.23)

We can use (3.19) to estimate B2 and W2 in (3.23) with

∥∥m(0)
∥∥
Q ≤ C‖m‖C0(HQ) ≤ C

(
‖m‖L2(HQ) +‖ṁ‖L2(HQ)

)
,∥∥g(0)

∥∥
Q ≤ C‖g‖C0(HQ) ≤ C

(
‖g‖L2(HQ) +‖ġ‖L2(HQ)

)
.

(3.24)
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Therefore, (3.17) is true for P = Q+ 1 and k = 1, . . . ,Q+ 2. Now the right-hand sides of
(3.13) are bounded in HQ. We have

‖β‖2
Q+2 ≤ C

∥∥Iβ̈− λζ−2(∇w−β)−m
∥∥2
Q ≤ C

(‖β̈‖2
Q +‖w‖2

Q+1 +‖β‖2
Q +‖m‖2

Q

)≤∞,

‖w‖2
Q+2 ≤ C

∥∥ρζ−2ẅ+ λζ−2βα,α− g
∥∥2
Q ≤ C

(‖ẅ‖2
Q +‖β‖2

Q+1 +‖g‖2
Q

)≤∞.
(3.25)

Therefore,

‖β‖Q+2 +‖w‖Q+2

≤ C
(Q+1∑

j=0

(∥∥∥∥∂jmα

∂t j

∥∥∥∥
L2(HQ+1− j )

+
∥∥∥∥∂jg∂t j

∥∥∥∥
L2(HQ+1− j )

)

+
∥∥B0

∥∥
Q+2 +

∥∥W0
∥∥
Q+2 +

∥∥B1
∥∥
Q+1 +

∥∥W1
∥∥
Q+1

)
.

(3.26)

Thus, (3.17) also holds for P =Q+ 1 and k = 0. The case of P =Q+ 1 of the induction is
true. �

4. Relation to Kirchhoff-Love plate

For static problem, it is understood that when the thickness ζ → 0, the solution of the
clamped R-M plate approaches the solution of a K-L plate (see, e.g., [3] for a proof). The
convergence is for the systems with load scaling, in the sense that βα→ β̃α, w→ w̃, and

β̃ =∇w̃, (4.1)

D0∇4w̃ = g, (4.2)

where D0 = E/12(1− ν2) = Dζ−3. D is the usual bending stiffness. Due to the load scal-
ing, the K-L equation (4.2) is independent of thickness. Physically, when the thickness
approaches zero, the bending stiffness approaches zero faster with a factor of ζ3. The un-
scaled loading, which contributes to the external work, is proportional to the thickness
and will not give a meaningful solution. This fact is used for investigating the thickness-
independent convergence of finite element method, for example, [2, 3, 5, 12, 16, 18] (see
[12, 16, 18] for numerical examples).

For dynamic problem, due to the appearance of the inertia term, which contributes to
the kinetic energy, the equation of K-L plate is no longer thickness independent. To keep
K-L plate as a reference model, a possible approach is then to scale the mass density [4]
along with the load. Assume

ρ = ζ2ρ0,

I = ζ2I0, I0 = ρ0

12
.

(4.3)
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We consider the scaled R-M equation (2.2) with mα = 0, which does not appear in K-L
plate:

I0ζ
2β̈1 +EA1(β)− λζ−2(w,1−β1

)= 0,

I0ζ
2β̈2 +EA2(β)− λζ−2(w,2−β2

)= 0,

ρ0ẅ− λζ−2∇· (∇w−β)= g,

(4.4)

or the variational equation (2.5):

I0ζ
2〈β̈α,ηα

〉
+ ρ0〈ẅ,ν〉+Ea(β,η) + λζ−2(w,α−βα,ν,α−ηα

)= (g,ν), ∀ηα,ν∈V.
(4.5)

As a parallel study to the static problem, we consider a special case of elastodynamics with
zero initial conditions:

B0
α = B1

α =W0 =W1 = 0. (4.6)

Theorem 4.1. Assume g ∈ H1(L2), ġ ∈ L2(L2), and (βα,w) ∈ L∞(H1
0 ) is the solution of

(4.4) (or (4.5)) with initial conditions (4.6). Then as ζ → 0, there exists a sequence of (βα,w)
with the same notation for simplicity such that

w −→ w̃ weakly star in L∞
(
H2),

βα −→ β̃, ẇ −→ ˙̃w weakly star in L∞
(
H1),

ẅ −→ ¨̃w weakly star in L∞
(
L2).

(4.7)

Moreover,

β̃ =∇w̃ (4.8)

and w̃ is the solution of a K-L plate problem of elastodynamics with clamped boundary
conditions

ρ0 ¨̃w+D0∇4w̃ = g or

ρ0( ¨̃w,ν) +D0
(∇2w̃,∇2ν

)= (g,ν), ∀v ∈H2
0 ,

w̃
∣∣
∂Ω =

∂w̃

∂n

∣∣
∂Ω = 0,

w̃(0,x)= ˙̃w(0,x)= 0.

(4.9)

Proof. By Theorems 3.1 to 3.3, we have a unique solution (βα,w) ∈ L∞(H1
0 )∩ L∞(H2)

for (4.4) (or (4.5)), where the generic constant C > 0 used in the a priori estimates is
independent of material parameters. With (4.6), the a priori estimate (3.1) is reduced to

√
I0ζ‖β̇‖0 +

√
ρ0‖ẇ‖0 +

√
E‖β‖1 +

√
λζ−2‖∇w−β‖0 ≤ C‖g‖L2(L2). (4.10)

Inequality (3.8) yields
√
I0ζ‖β̈‖0 +

√
ρ0‖ẅ‖0 +

√
E‖β̇‖1 +

√
λζ−2‖∇ẇ− β̇‖0 ≤ C

(∥∥g(0)
∥∥

0 +‖ġ‖L2(L2)
)
. (4.11)
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Inequality (3.10) results in

‖w‖2 ≤ C
(∥∥g(0)

∥∥
0 +‖ġ‖L2(L2) +‖g‖L2(L2)

)
. (4.12)

Furthermore, ‖ẇ‖1 ≤ C(‖ẇ‖0 +‖∇ẇ‖0)≤ C(‖ẇ‖0 +‖∇ẇ− β̇‖0 +‖β̇‖0). Therefore, the
boundedness of w in L∞(H2), βα, β̇α,ẇ in L∞(H1), and ζβ̈α,ẅ in L∞(L2) are all uniform
with respect to the thickness. We can extract the convergent sequences

w −→ w̃ weakly star in L∞
(
H2),

βα −→ β̃α, β̇α −→ ˙̃βα, ẇ −→ ˙̃w weakly star in L∞
(
H1),

ẅ −→ ¨̃w weakly star in L∞
(
L2),

(4.13)

where, for simplicity, no ζ-dependence notation is used for the sequences. The relation
with time differentiation is trivial.

The initial conditions w̃(0,x)= ˙̃w(0,x)= 0 are a direct result of (4.6). Inequality (4.10)
implies

√
λ‖∇w− β‖0 ≤ Cζ‖g‖L2(L2) → 0⇒∇w̃− β̃ = 0. Meanwhile, the boundary con-

ditions on (βα,w) lead to β̃α|∂Ω = w̃|∂Ω = ∇w̃|∂Ω = 0. The last equation implies, for
smooth domain, ∂w̃/∂n|∂Ω = 0.

On the other hand, by (4.11), ζ2‖β̈‖0 → 0. Thus, the first two equations of (4.4) yield
EAα(β)− λζ−2(w,α−βα) → 0. That means λζ−2(w,α−βα) → EAα(β̃) = EAα(∇w̃). Then
the third equation of (4.4) gives ρ0 ¨̃w−E∇· (A(∇w̃))= ρ0 ¨̃w+D0∇4w̃ = g. The last equal-
ity can be easily verified with the definition of the operator A and considered in the weak
sense. Similar statement for the variational equation is straightforward. �

Remark 4.2. The generic constantC involved in the inequalities derived in Theorem 3.4 is
thickness dependent. So the boundedness of β andw in higher spaces may not be uniform
with respect to the thickness. It is worth noting that the boundary layer is found for static
problems of R-M plate [1]. With clamped boundary conditions, as in our case, ∂3β/∂n3 =
O(ζ−1) near the boundary, that is, ‖β‖3 = O(ζ−1/2). The boundary layer is expected for
the dynamics problem too, which warrants further investigation. Since β̃ =∇w̃, it is not
optimistic that we can have the convergence of w→ w̃ in the sense of H4, although the
corresponding K-L plate can have a strong solution w̃ in H4.

5. Summary

Existence and uniqueness of H1 solution of R-M plate for elastodynamics with homo-
geneous Dirichlet boundary conditions and general initial conditions were proved. The
solution with smoother data was further investigated and proved to be in H2. Further-
more, with higher smoothness of data and certain compatibility requirements satisfied,
higher regularity of the solution was proved. With the introduction of mass scaling, along
with the load scaling, the H2 solution of R-M plate was proved to approach the H2 weak
solution of K-L plate when the thickness approaches zero.
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