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ABSTRACT. This [aper is concerned wlth functions of several complex variables analytic

in the unit olydlsc. Certain Banach spaces to which these functions might belong are

defined and some relationships between them are developed. The space of linear

functlonals for the Banach space of functions analytic in the open unit polydisc and

continuous on the unit torus is then described in terms of analytic functions using

an extension of the Hadamard l)roduct.
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]. INTRODUCTION.

In 1950 A. E. Taylor [I] studied Banach spaces of functions analytic in the unit

disc. One of his principal results was a representation of linear functionals in

terms of functions analytic in the unit disc. In this paper, the results of Taylor are

extended to functions analytic in the unit polydisc in n-dimensional complex space.

The goal is the representation theorem for linear functions, Theorem 4.5, in which the

functlonels are expressed in terms of a Hadamard product. Taylor’s results have proved

to be very useful in work involving certain singular linear differential operators.

His representation theorem for linear functionals was a key part of the work of Grinur

and Hall in [2], and of subsequent work of Hall in [3] and [4].

The following notation will be used extensively:

U open unit disc in the complex plane C, (ii)

unit circle in C, (i2)

Iz e C: IZl I-6}, 0 e i, (1.3)

onnegatlve integers, (1.4)
+

U
n

U U .. U, (n col)ies of U) the unit polydisc in Cn, (1.5)

n [ [ (n colies of ) the unit torus in C
n..... (1.6)

In I I ... I (n copies of I ), (i 7)

Zn 7 Z ... (n copies o Z ). (i 8)+ + + +
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If z (Zl,Z2, ,z and w (Wl,W2, ,w are in C
n

(ZlW1n n
define zw by zw ,z2w2,

C
n Zn z

e
...,z w ). Further, if z e and (c1,2,...,c) e define by z

n n n +
el 2 an Anz
I

z
2 Zn and lal by II i + 2 + + n" Denote by the class of functions

C
n An Znon which are analytic in U

n
and define the function u e for each a e by+

An An An Anu (z) z Also define the operators U and 7. by
x w

IR
nUxf g’ where x (x

I x2,. ,xn) e and (1.9)

ix
I

ix
2 iXn)g(z) f(zeTM) f(zle z2e ..,z e (l.10)

n

U
n7. f g, where e and g(z) f(wz) (l.ll)

w

The operators ./ and 7. are easily seen to be linear.
x w

If f then f has the power series expansion

f(z) Z f z (1.12)
EZn

+

Denote fa by y(f) where ya is the functional defined by

-i II
Ya (f) (al!e2!’’an 1)

Zl Zn
n

z--(0, ..,0).

If f and g are in An with power series

f(z) Zzn f z and g(z)
ae aEZn

gez
+ +

define the Hadamard product of f and g by

H(f,g;z) Z
Zn fgz

+

H(f,g;z) is clearly in An, and the following also can be proved:

y((7" f) w Ya (f)
w

(1.13)

(1.14)

(1.15)

(1.16)

H(f,g;z) H(g,f;z),

H(af+bg,h;z) aH(f,h;z) + bH(g,h;z),

H(7. f,g;z) H(f,g;wz),
w

H(f,g;z) (2#)n 17.
where Izil lil for l=l n.

Equation (1.20) can also take the form

Zl Zn.) dl d
n

f(l n)g(
1 i "’’--nn

E
n

H(f,g;z) (2) n
f(rle

0

where r. 1 _. and z e Un.

i@ z
I

-i8 z -i8
n 1 n nrne g (e

1
,----e d@I. .dO
r n
n

(1.17)

(1.18)

(1.19)

(i20)

(1.21)
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2 SPACES OF TYPE A
k.

Let B be a nontrivial complex Banach space, each element of which belongs to An

Such a space will be called a space of type A. B may also have one or more of the

following properties.

ZnPI: There exlsts a constant A such that Iye(f) AI Ifl if f e B and e E +.
The least such constant will be denoted AI(B)

ZnP2: U B for all e There exists a constant A such that lu < A

for all e. The least such constant will be denoted A2(B).

P3: U f B if f B and x is a real n-tuple. Also llUxfll IflX

P4: T f B if f e B and r (rl,r2,..,r) with 0 r. i. There exists a
r n l

constant A such that ll[rfll Allfll. The least such constant will be

denoted A4(B).
B will be called a space of type A

k
if B is of type A and also satisfies axioms

Pl,...,Pk.
Let B* denote the space of continuous linear functionals on B. Then by PI’

Yn e B* and t can be shown that

A
1
(B) supl IyeIl, and (2.1)

Other relations satisfied by the constants (B) are

A4(B) supllTrll,
r

(2.3)

1 <_ AI(B)A2(B), (2.4)

1 < A
4
(B) (2.5)

An U
n

Let B be a space of type AI. For any fixed g e and z define

N(g;z) sup IH(f,g;z) I. (2.6)

The following are clear from the properties of the Hadamard product.

N(g+h;z) < N(g;z) + N(h;z)

N(ag;z)

N(T g;z) N(g;wz), lwl i.
W

(2.7)

(28)

(2.9)

THEOREM 2.1. Let B be a space of type A3. Then the function N(g;z) has the

properties:

n n
N(g,z) N(g,z), where g e z e U and z

n

N(g;(r
I

r )) is a nondecreasing function of each r., i=l ,m,
n

where 0 r. i,

N(g;(r
I ,rn )) 0 for all (rl, rn if and only if g 0.

(2.10)

(2.11)

(2.12)
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PROOF. Let | denote the set of all nonzero elements of B and define, for f A{

where g is fixed in Am Also define

M(z)

R
n n

Observe that M(z) N(g;z) and also, for x e and z e U

M(U f;z) M(f;zeXX).
x

(2.13)

(2.14)

(2.15)

n
Let z e U be fixed. Then

f

1

I%1 Izl-

Hence, for fixed z e Un, IM(f;z) is bounded as f varies over 4.
n

Now for x e R U f varies over all of as f varies over all of since f

U (U f), and so by (2.15) we get M(z) M(z) if x is chosen carefully, and (2.10) is
x x
proved.

Next, let R (RI’’’’’Ri’’’’Rn) and r (rl,...,ri,...,rn) with 0 _< r
k

< i

for k=l,...,n, k i and 0 r. < R < 1 Also suppose f e . Then let z and z be
l i R r

the points on the tori {z: IZkl } and {z: IZkl rk}, respectively, at which

IM(f;z) assumes its maximum value. The maximum principle for polydisc functions now

yields

I(f;Zr) ! I;zl.
But IM(f;zR) M(zR) M(ZR) M(R) and so

(2.17)

IM(f;r) <_ IM(f;Zr) < M(R), (2.18)

which implies M(r) M(R), and (2.11) is proved.

Finally, if g 0, N(g,r) 0 for all r. If g 0, then ye(g) @ 0 for some e.

e
I a

nLet f= u for this e Then H(f,g;r) ye(g)rI ...r which is nonzero if r
k M 0e n

k=l,...,n, and the proof is complete.

3. THE SPACES B’ AND B.
Suppose B is a space of type A3. Two related spaces which will be used later in

characterizing B* will be defined as follows:

B’ {FeAn: N(F;r) is uniformly bounded in r, 0<_rk<l k=l,...,n}, (3.1)
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B
0 {FEAn: lim H(f,F;r) exists for each f e B}.

r(l ,i)
1

For F e B define N(F) sup{N(f;r) 0 r
k

< i, k=l,...,n} By (2.11) we have

(3.2)

N(F) lim N (F;r) (3.3)
r (i, I)

THEOREM 3.1. If B is a space of type A
3
then B’ is a Banach space with norm N(F).

PROOF. From the properties of the Hadamard product and N(F;r), and from theorem

2,1, B’ is clearly a normed linear space with norm N(F). To prove completeness

proceed as follows.

Let {F be a Cauchy sequence in B’o Then there is a J > 0 such that if > J,

N(F.) N(F i, and N(F.) is bounded by, say, Eo Let 0 < r
k

1 for k=l,...,n and
J

m
conslder, for g Z+,

17(F -F )rel H(u F -F ;r) (34)
m ’ m

e m m

Z
n

Thus, {ya (F3)} is also a Cauchy sequence for each + Now define ae=lim, y(Fj) and

3

note that convergence is uniform in and that the science {a }, e e Z, is bounded.

Using the above argument with Fm 0 we obtain ’((Fj)r _< A2(B)E which yields

a _< A2(B)E. Next deflne

F(z) a z (3.5)
Z

n
+

Clearly F e A, and it will be shown that F e B’ and lim F. F.

Consder for fxed r and f e

IH(f,F ;r) -H(f,F;r) < ZIy(f)resuply(F a (3.6)

Since lim[7 (F0)-a 0 uniformly in s,
j+

e e

lim H(f,F.;r) H(f,F;r). (3.7)
j

Further, for f e B

which implies IH(f,F;r) < E Ifl or N(F;r) < E. Hence, F e B’.

Finally, for e > 0, choose jo(e) such that if j,m > jo(e) then N(F.-F < e. For
m

f e B (3.5) yields

IH(f F -F ;r) < N(F -F )I Ifll < El Ifll (3.9)
m m

As m (3.4) ylelds IH(f,Fj--F;r) _< ellfll if __> j0(e), which means N(F.-F)3 < e

and the proof is complete.

THEOREM 3.2 If B is a Banach space of type A
3
then B

0
is a linear subset of B’

and is a Banach space of type A
4

with norm N(F)t,
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PROOF: Clearly B
0

is a linear subset of A.
H(f,F;r) deflne a functional of f over B. Then

B
0

For f e B and F e let r(f)

sup lr(f) N(F;r), (3.10)

B
0

and since F e then N(f;r) is bounded as a functlon of r by the uniform boundedness
0

principle. Thus, B is a linear subset of B’o

In order to show that B
0

is closed in B’, let {F0} B
0

and F e B’ be such that

lm N(F -F) 0 For f 6 B
j

IH(f,F;r)-H(f, F ;0)I<IH(f,F-F.;r)I+IH(f,F.;r)-H(f,F.;0)
(3.11)

<2N(F.-F) If I+IH(f,F. ;r)-H(f,F. ;0)

For f B flxed and 0 choose large enough so that 2N(F.-F) Ilfll < /2 and choose

r and Q close enough to (i,i,...,I) so that

IH(f,F.;r)-H(f,F.;0)<e/2 Therefore lim IH(f,F;r)-H(f,F;p) 0 and F B0.
r, 0+ (i,... ,i)

4. .REPRESENTATION OF LINEAR FUNCTIONALS.

In thls section a series of results which culminate in a representation of the

space B* and ts relationship to the spaces B’ and B
0
will be proved.

THEOREM 4.1. Let B be a Banach space of type A4. If y B* let

e n
G(z) Z y(u )z z e U (4.1)

eZ
n

+

Then G B’ and IGI N(G) <_ A4(B) Iyl I.
AnPROOF: G since IY(ue) IYl IA2(B)-

and e U
n

Then [ f e B and
w

AnAlso y(u) y(G) G Let f e

y(T f) E f y(z)w(- I f G w H(f,G;w). (4.2)

If f B then

IH(f,G;r) Iy(Trf) A4(B) IYI Ifl I.
Hence N(G;r) sup [H(f,G;r) A4(B) [y[ and G B’. Also,

llfll--
IGII N(G) SUp N(G;r) <_ A4(B) II l-

r

(4.3)

The passage from to G given by (4.1) defines an operator F: B* B’ where

F(7) G.

THEOREM 4.2. Let B be a Banach space of type A4. Then F is a linear operator

and IFI A4(B). F has an inverse if and only if the linear subspace of B spanned

Znby {u }, e is dense n B+

PROOF By Theorem 4.1 F is linear and IFI A4(B) By (4.2)

IY(Irf) <_ I[fll IIGtl < Ilfll IIFII I111" (4.4)

NOW choose y so that I1tl i and (</rf) Ilrrfll so that ((rrf[( _< Ilfll Ilrll.
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Then lit II Ilrll and A4(B) Ilrll,. Hence Ilrllr

ZnSuppose F(y) 0 Then y(u 0 for all a e and hence saying that F
-I

exists
+

2nif and only if (u 0 for all e is equivalent to saying y 0. Thus F
-I

exists
+

if and only if {u is total in B which is equivalent to the subspace spanned by {u

being dense in B.
0

For f e B, H(f,F;r) defines a linear functional with norm N(F;r), so if F e B

y(f) llm H(f,F;r) (4.5)
r+(l,...,l)

defines an element of B* corresponding to F. The passage from F to y given by (4.5)

defines an operator .% B
0

B* where A(F) y

THEOREM 4.3. Let B be a Banach space of type A
4.

Then A is a linear operator,

FA(F) F, for F e B0, and (4.6)

IA()I <_ (F) <_ N () 1^() I, for F e BO. (4.7)

Thus A deflnes an injective mapping, with bounded inverse, of B
0
onto a subspace of B*.

PROOF: Let F s B0, A(F) y and F(y) G. Then

y(G) y(u lim H(u F;r) lim y (F)r, y(F), and so F(A(F)) F.
r >(i i) r+(l, i)

Also, since IH(f,F;r) < lfll IFII it follows that Iy(f) < lfll IFII where

A(F). Thus, from (4.6)

(4.8)

If the space B satisfies an additional axiom, viz.,

If f e B then T f B and lim llTrf-fll__ 0P5 r
r+(l,...,l)

0
then B*, B’ and B turn out to be isometrically isomorphic.

THEOREM 4.4. Let B be a Banach space of type A
4

also satisfying P5"
B
0

B’

A is bijective and isometric, and

-i

PROOF: By (1.19) H(T f,F;p) H(T f,F;r) and so
r p

H(f,F;r) -H(f,F;0) H(f-[ f,F;r) + H(] f-] f,F;0) + H(T f-f,F;0)
p r p p

Therefore, if f e B and F e B’

IH(f,Ftr) H(f ;)1 [-I If-r fll + Irrf-rpfl
and by P

5

B
0

so F g

lim IH(f,F;r) H(f,F;p) O,
r,p+ (i,... ,i)

0
B
o

Since B B’ already, this means B’

Then

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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From P5’ lim IITrll I1=11. if Iwl r
i

< 1 i=l ..,n, and ]" f is
r+(l i)

w

analytic in w then ITwfll lTrfll by P3" Hence from the maximum modulus theorem

for functions with values in a Banach space (see [3], p. 211) ITrfll is a nondecreasing

continuous function of r. This yields A4(B) 1 and by Theorem 4.3 .’ is isometric.

Now suppose f e B and B*. Then

[A(F())] (f) lira H(f,F(y);r)
r(l, i)

lim y(T f) (f).
r

r(l, ,i)

(4.15)

As a corollary of Theorem 4.4 the following theorem provides a representation

of B* in terms of the Hadamard product_

THEOREM 4.5. Under the hypotheses of Theorem 44 every linear functional y e B*

is representable in the form

lim

r(l ,i)

y(f) lira H(f,F;r)
r+(l i)

)n f(l (n)F --, () i nT x...xT
e
I

e
n

(4.16)

< < 1 i=l, ,n and F B
0

F uniquely determines andwhere, 0 6. I, 0 < r
i i1

is uniquely determined by y and Y If N(F).

Equation (4.16) can be expressed in terms of real integrals using (1.21).
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