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ABSTRACT. This paper is concerned with functions of several complex variables analytic
in the unit jolydisc. Certain Banach spaces to which these functions might belong are
defined and some relationships between them are developed. The space of linear
functionals for the Banach space of functions analytic in the opcn unit polydisc and
continuous on the unit torus 1s then described in terms of analytic functions using

an extension of the Hadamard product.
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J. INTRODUCTION.

In 1950 A. E. Taylor [1] studied Banach spaces of functions analytic in the unit
disc. One of his principal results was a representation of linear functionals in
terms of functions analytic 1n the unit disc. In this paper, the results of Taylor are
extended to functions analytic in the unit polydisc in n-dimensional complex space.
The goal 1s the representation theorem for linear functions, Theorem 4.5, in which the
function~ls are expressed in terms of a Hadamard product. Taylor's results have proved
to be very useful in work involving certain singular linear differential operators.
His representation theorem for linear functionals was a key part of the work of Grimm
and Hall in [2], and of subsequent work of Hall in [3] and [4].

The following notation will be used extensively:

U = open unit disc in the complex plane C, (1.1)
T = unit circle in C, (1.2)
TC ={z € C: ]z| = 1l-¢}, 0 < g <1, (1.3)
’+ - ronnegative integers, (1.4)
Un =Ux U x,,.,x U, (n copies of U) the unit polydisc in Cn, (1.5)
T =T x T x...x T, (n copies of T) the unit torus in <, (1.6)
TZ = Te x Te X, .x% Tc' (n copies of Te)' (1.7)
Z: = Zf x Z+ X, .. Z+ (n copies of Z+). (1.8)
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If z = (zl,z ,...,zn) and w = (wl,w

2 2

eees2_W ). Further, if z ¢ Cn and o = (a,,a
n n 1

,...,an) € Z: define 2% by 2% =
% e *n

2

X n X
,...,wn) are in C , define zw by zw = (zlwl,zzwz,

2172, eecenzp and |a| by |a| =a, +a, +t...t o . Denote by A" the class of functions

1 2

on C" which are analytic in U" and define the function u, € A", for each a € Z:, by

u,(z) = z%. Also define the operators Ux:An > A" and Tw A" > A" by

n
Uxf = g, where x = (xl,x ,.o.,xn) ¢IR, and

2
1x ix ix

2
f(zle 1,z2e ,..“,zne n),

1x
g(z) = f(ze™ ")
wa = g, where w € u", and g(z) = f(wz).
The operators Ux and Tw are easily seen to be linear.
1f £ ¢ A" then f has the power series expansion
a

f(z) = z fz.
ae?® ¢
+

Denote fa by Ya(f) where Ya is the functional defined by
1 alele
oy a

9z n
1°°°°""n {z=(0,...,0).

Y (6 = (ataytia b)

2
3z

If f and g are in A" with power series

f(z) = I _ f£2z%and g(z) = I_gq2%
n a n o
ael ael
+ +
define the Hadamard product of f and g by
H(f,g;z) = I_£g2"
19iz) = n “a%% -
an+

H(f,g;z) is clearly in An, and the following also can be proved:
)
Y (T8 = wy (£),
H(f,g;2z) = H(g,f;2),
H(af+bg,h;z) = aH(f,h;z) + bH(g,h;z),

H(wa,g;z) = H(f,qg;wz),

z z dg dg
- (L,yn Y n 1 _n
ll(f'g.Z) = (21|’i) ,[T 5 . f(gllootlgn)g(gll'.'lgn) gl cee gn )
& €n

where |zi[ < ]£i| for 1=1,...,n.

Equation (1.20) can also take the form

1 n 2T f2m i6 i9n z. ~-if zn -i6

. = —— n

H(f,qg;2z) (Zn) Ié..fo f(rle IRRRNE M )g(;;e reesig® )del...den
n

n
where r, = 1 - ei and z € U .

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
(1.18)

(1.19)

(1.20)

(1.21)
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2 SPACES OF TYPL Ak.
Let B be a nontrivial complex Banach space, each element of which belongs to An.
Such a space will be called a space of type A. B may also have one or more of the
following properties.
Plz There cxists a constant A such that |Ya(f)| :_A||f|| if f € B and a € Z:.
The least such constant will be denoted Al(B)u
P : u ¢ B for all a € Z:. There exists a constant A such that ||uu|l <A
for all a. The least such constant will be denoted A,(B).
P.: Uxf e B1f f e B and x is a real n-tuple. Also ||Uxf|| = ||£]].

P : Trf ¢ Biaf f ¢ B and r = (rl,r ,..,rn) with 0 :_ri < 1. There exists a

2!

constant A such that ||Trf|] §_A||f[ . The least such constant will be

denoted A4(B).

B will be called a space of type Ak if B is of type A and also satisfies axioms

Pl,...,Pk.

Let B* denote the space of continuous linear functionals on B. Then by Pl'

Yn € B* and 1t can be shown that

A (B) = supllyall, and (2.1)
a
A,(B) = szpl[ual . (2.2)

Other relations satisfied by the constants Ak(B) are

A,(B) = suplITrH. (2.3)
r

1 <A (B)A,(B), (2.4)

1<a,(8) (2.5)

Let B be a space of type Al' For any fixed g ¢ An and z € Un define

N(g;z) = sup IH(f,g;z)l. (2.6)
[l1£]]=1

The following are clear from the properties of the Hadamard product.

N(g+h;z) < N(g;z) + N(h;z) (2.7)
N(ag;z) = |a|N(g;z) (2.8)
N(T g;z) = N(g;wz), |w] < 1. (2.9)

THEOREM 2.1. Let B be a space of type AB' Then the function N(g;z) has the

properties:
~ n n ~
N(g,z) = N(g,z), where g ¢ A, z ¢ U and z = (|zl',|zz|,..‘,]zn]), (2.10)
N(g;(rl, ..,rn)) is a nondecreasing function of each ri, i=l,...,m, (2.11)
where 0 i.ri <1,

N(g;(rl,...,rn)) = 0 for all (rl,...,rn) if and only if g = 0. (2.12)
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PROOF. Let M denote the set of all nonzero elements of B and define, for £ ¢ M

M(f;z) = H(f; 12) (2.13)

where g is fixed in A", Also define

M(z) = sule(f;z)I. (2.14)
feM

Observe that M(z) = N(g;z) and also, for x € Rn and z € Un

MU £52) = M(£;ze%) . (2.15)

n X
Let z ¢ U be fixed. Then

]

[M(£;2) |

'H(ﬂj‘l’g :972)|

1

TTETT|H(f:g;z)| (2.16)

1

T]_f_rrilfu”gal |2*]

In

1
<TreT E M@l g, |2°]

a
A, (B) ﬁ lg, | 1271

Hence, for fixed z € Un, |M(f;z)| is bounded as f varies over M.

Now for x € Rn, Uxf varies over all of M as f varies over all of M since f =
Ux(Uxf), anéd so by (2.15) we get M(z) = M(;) if x is chosen carefully, and (2.10) is
proved.

Next, let R = (Rl,...,Ri,.,..,Rn) and r = (rl,...,ri,...,rn) with 0 < R =1 < 1
for k=1,...,n, k # i and O j_ri < Ri < 1. Also suppose f € M. Then let zR and zr be
the points on the tori {z: lzk| = Rk} and {z: |zk| = rk}, respectively, at which

IM(f;z)| assumes its maximum value. The maximum principle for polydisc functions now

yields
IM(f;zr)| < IM(f;zR)]. (2.17)

But IM(f;zR)| < M(zp) = M(z_) = M(R) and so

[M(£:0) | < [M(f;zr)l < M(R), (2.18)

which implies M(r) M(R), and (2.11) is proved.

<

Finally, if g 0, N(g,r) = 0 for all r. 1If g # 0, then Ya(g) # 0 for some a.

[+1 a
: 1
Let f= u, for this a. Then H(f,qg;r) = Ya(g)rl ceexy " which is nonzero if r, # 0,
k=1l,...,n, and the proof is complete.
3. THE SPACES B' AND B°.
Suppose B is a space of type A3. Two related spaces which will be used later in

characterizing B* will be defined as follows:

n ) .
B' = {FeA": N(F;r) is uniformly bounded in r, 0§;k<l, k=1l,...,n}, (3.1)
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80 - {FeA”: lim H(f,F;r) exists for each f e B}. (3.2)
r~(1,...,1)

For F € Bl define N(F) = sup{N(f;r): 0 <r <1, k=l,...,n}. By (2.11) we have

k

N(F) = lim N(F;r) (3.3)
r (1,...,1)
THEOREM 3.1. If B is a space of type A3 then B' is a Banach space with norm N(F).
PROOF. From the properties of the Hadamard product and N(F;r), and from theorem
2.1, B' is clearly a normed linear space with norm N(F). To prove completeness
proceed as follows.
Let {FJ} be a Cauchy sequence in B'. Then there is a J > 0 such that if j > J,

N(Fj) - N(FJ) <1, and N(Fj) 1s bounded by, say, E. Let 0 <r < 1 for k=1,...,n and

k
m
consider, for a € Z+,

a - - R
!YOL(Fj-Fm)r | H(u Fm,r)l (3.4)

I A

[lu |[N(F.-F ) < A (B)N(F,-F ).
a j m — 2 j m

Thus, {ya(FJ)} is also a Cauchy sequence for each a € Ziv Now define au=lim Yq(Pj) and
j-»oo

. . n .

note that convergence is uniform in a and that the sequence {aa}, a € Z+, is bounded.
. . a : .

Using the above argument with Fm = 0 we obtain IYa(Fj)r ] E_AZ(B)E which yields

|aa| < A,(B)E. Next define

F(z) = L az. (3.5)
n a

Clearly F ¢ A, and it will be shown that F ¢ B' and lim Fj = F.

]-»co
Consider, for fixed r, and f € A,
a
|H(£,F_;x) - H(E,Fix)| < Ily (E)r suply (F,) - a |. (3.6)
J . @ e @3 a
Since lim(y (F.)-a ] = O uniformly in a,
P a
lim H(f,F.;r) = H(f,F;r). (3.7)
e )
Further, for f ¢ B
IH(f,Gj;r)| < HfllN(Fj) < E||£]] (3.8)

which implies |H(f,F;r)| §_E|]f|| or N(F;r) < E. Hence, F € B'.
Finally, for e > 0, choose jo(e) such that if j,m 3_j0(e) then N(Fj-Fm) < €. For
f € B (3.5) yields
[H(f,F]-Fm;r)| iN(Fj-Fm)HfH < ell£]]. (3.9)
As m > « (3.4) yields IH(f,Fj-F;r)| < ellgl], if 3 > jo(€), which means N(F,-F) < e
and the proof is complete.

THEOREM 3.2. If B is a Banach space of type A3 then BO is a linear subset of B'

and is a Banach space of type A4 with norm N(F) .
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0
PROOF: Clearly B is a linear subset of A, For f ¢ B and F ¢ BO let wr(f) =

H(f,F;r) define a functional of f over B. Then
sup |y ()| = n(Fsx), (3.10)
Hell=1

and since F ¢ BO then N(f;r) is bounded as a function of r by the uniform boundedness
principle. Thus, BO 1s a linear subset of B',

In order to show that BO is closed in B', let {Fj} c BO and F € B' be such that
lim N(F_-F) = 0 For f ¢ B
e

|H(f,F;r)—H(f,FJ;p)If_lli(f,F—E‘j;r)|+|H(f,Fj;r)-H(f,Fj;p)|+|H(f,Fj-F;p)|

(3.11)
i2N(Fj—F)||f|I+lH(f,Fj;r)-H(f,Fj;o)|,

For f ¢ B fixed and € > O choose j large enough so that 2N(Fj-F)([f|| < ¢/2 and choose
r and p close enough to (1,1,...,1) so that

0
|H(f,F‘;r)-H(f,F.;p)<s/2, Therefore lim |H(f,F;r)~H(f,F;p)l =0and F € B,
J ]
r,p>(l,e0.,1)

4, REPRESENTATION OF LINEAR FUNCTIONALS.
In this section a series of results which culminate in a representation of the
space B* and 1ts relationship to the spaces B' and Bo will be proved.

THEOREM 4.1. Let B be a Banach space of type A4. If y € B* let

G(z) = Zn y(ua)za, zeu. (4.1)
QAEZ
+
Then G ¢ B' and ||G|| = N(G) <a, @yl

PROOF: G ¢ A" since [y(u)| < ||v]|a,(B). Also, y(u) = Y4 (6) = G . Let £ e A
and w € U". Then wa e B and

YT 6 =5 £ yeHu’ =5 £6w" = HIEGW. 4.2)
a a
If £ € B then
|H(£,6;0)| = ly(Trf)I <a, @ v []g]]. (4.3)
Hence N(G;r) =  sup ‘H(f,G;r)I < A4(B)llyl{ and G € B'. Also,

Hell=1

[ell = N

sup N(G;r) j_A4(B) Hvll.
r

The passage from y to G given by (4.1) defines an operator T': B* + B' where
I'(y) = G.

THEOREM 4.2. Let B be a Banach space of type A4. Then T is a linear operator
and |[F|| = A4(B). [ has an inverse if and only 1f the linear subspace of B spanned

by {ua}, a € Zi, is dense 1n B.

PROOF. By Theorem 4.1 T is linear and ||F|| :_A4(B). By (4.2)

A

v el < [1£l] [lel]

< el Hetl Tyl

. (4.4)

Now choose Y so that ||y|| = 1 and |y(Trf)[ ||Trf|| so that ||Trf|‘ < el v,
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hen | [T _[| < [IT|] and & (8) < [|T[]. Hence [|T|| = a (B).

Suppose T'(y) = 0. Then Y(ua) = 0 for all a € Z: and hence saying that F_l exists
if and only if y(ua) = 0 for all a € 22 is equivalent to saying y = 0. Thus F-l exists
1f and only if {ua} is total in B which is equivalent to the subspace spanned by {“a}
being dense in B.

For f ¢ B, H(f,F;r) defines a linear functional with norm N(F;r), so if F ¢ BO

Y(£) = 1lim H(f,F;ir) (4.5)
r+(1,...,1)

Gefines an element of B* corresponding to F. The passage from F to y given by (4.5)
defines an operator A : BO + B* where A(F) = vy.

THEOREM 4.3. Let B be a Banach space of type A4. Then A is a linear operator,

TA(F) = F, for F ¢ BO, and (4.6)
[aEr ] < weE) < A4(B)||A(F)||, for F ¢ B. (4.7)

Thus A defines an injective mapping, with bounded inverse, of BO onto a subspace of B*,

PROOF: Let F e B, A(F) = v and I'(y) = G. Then

v, (6) = v(u) = lim H(u ,Fir) = lim vy (F)r® =y (F), and so T'(A(F)) = F.
r>(l,...,1) r~(1,...,1) ¢ o
Also, since |H(f,F;x)| < ||£]| ||F|| it follows that |y(£)| < ||£]]| ||F|| where

Yy = A(F). Thus, from (4.6)

Hell = [iraen || < [IT[] [Ta@ ] = 2. |[aE ] (4.8)

If the space B satisfies an additional axiom, viz.,

P. : If feBthenT fe Band Llim ||T_£-£]] = o,
5 r r
r+(l,...,1)

0 X . X .
then B*, B' and B~ turn out to be isometrically isomorphic.

THEOREM 4.4. Let B be a Banach space of type A4 also satisfying PS' Then
BO = B' (4.9)
A is bijective and isometric, and (4.10)
-1
A =T. (4.11)
PROOF: By (1.19) H(Trf,F;p) = H(Tpf,F;r) and so
H(f,F;x) - H(f,F;p) = H(f-Tpf,F;r) + H(Trf-Tpf,F:o) + H(T £-£,F;0). (4.12)
Therefore, if f ¢ B and F ¢ B'
|u(£,F;r) - H(f,F;p)[:_[2l|f-Tpf|[ + ||Trf-Tpf||]N(F), (4.13)
d
and by P5
lim |B(E,F;0) - H(E,F;0)| = O, (4.14)

r,p>(l,...,1)

0 0
so F ¢ B, Since B < B' already, this means B' = BO.
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From P.,  lim T ]| = [1€]]. 1zf |wi| =r, <1, i=l,...,n, and T f is
r>(l,...,1)
analytic in w then ||TWf|l = |lTrf|| by P,. Hence from the maximum modulus theorem

for functions with values in a Banach space (see [3], p. 21l) ||Trfl| is a nondecreasing
continuous function of r. This yields A4(B) = 1 and by Theorem 4.3 i is isometric.
Now suppose f € B and Yy € B*. Then
[A(T(y))]1(£f) = 1lim H(£,T(y);:r)
r>(l,...,1)
(4.15)
= lim Y(Trf) = y(f).
r>(1,...,1)
As a corollary of Theorem 4.4 the following theorem provides a representation
of B* in terms of the Hadamard product.

THEOREM 4.5. Under the hypotheses of Theorem 4.4 every linear functional y e B*

is representable 1in the form

Yy(f) = lim H(f,F;x) =
r>(1,...,1) (4.16)
Y r d§ da¢
1l .n n 1
lim (=) f € 1coerE JF(Treee, =)o
e (Lyea ) 2™ Jn x x L nogy Eh 81 &
el en

0 . s
where, 0 < e, <1, 0<r, <§ <1, i=l,...,n and F € B . F uniquely determines and
i i i

is uniquely determined by y and ||y|| = N(F).

Equation (4.16) can be expressed in terms of real integrals using (1.21).
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