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ABSTRACT. Suppose that S 1s the space of all summable sequences a with

uan = sup j| and J the space of all sequences B of bounded variation
n>0
with IBI!J = 'Bol + '8 . Then for a in S and 8 in J
i=1

l Z aijl S.““"S'B'J; this inequality leads to the description of the dual space
3=0
of S as J. It, related inequalities, and their consequences are the content of

this paper. In particular, the inequality cited above leads directly to the Stolz
form of Abel's theorem and provides a very simple argument. Also, some other

sequence spaces are discussed.
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1. INTRODUCTION.

Suppose S is the space of all summable sequences s = (sn):_o, with

norm given by ls = Sup j' the remainder in the sum of s after n-terms.
>0

An example of such an s, summable but not absolutely summable, is given by
-nH" 0. 1. 2. 3 °z° -n"

n ,n=20,1, 2, 3, ..., so that is an alternating convergent
o+l §=0 n+l

series. Here, as is readily verified, Ish, = Sup I = 1n 2, the

n>0 j-n j+l

the natural log of 2. This paper is based on the observation that S, with this
norm, is naturally isomorphic to c¢p, the space of all sequences having limit zero
endowed with the supremum norm. Moreover, if we consider S on its own, we get
several interesting results. For example, since S 1is isomorphic to c¢g and cg*,
the dual of c¢(p, 1s isomorphic to £;, the space of all absolutely summable
sequences, then it follows that S*, the dual of S, is isomorphic to 2;.
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However, if we compute the dual of S without using the isomorphism with c¢g, we
find that S* is isomorphic to J, the space of all sequences B of bounded
variation with

NSHJ = ‘Bol + |B - n— ; an example of such a B8 being given

n=1

by 8. =—'_ n=0,1, 2 3, ... so that 1, =1+ ] L-_1).a2
Toah n=l n o+l
Of course, J 1is isomorphic to ll. Another example is that we get the following

new inequality: If B e€J and s ¢ I i ' < W#sh, * WBN., which can be
=0 *58y S J

used to give a proof of Abel's Continuity Theorem.

Similarly, we consider the space H of all sequences \ = (J\n):_o such that

HAHH = sup I
n>0 j=0
that IAHH =1, We get the following inequality: If X e H, B € J, and p = 1lim B

is finite; for example An = (-1 n=0,1, 2,3, ..., s

then ,Aop + z A (o - B )' 5_nAnH-nBuJ. Consequently we have that ¢ e J* {if
n=1

oo
and only 1f ¢(B) = Xgp + ) A (p ~- B _y) for B e J.
a=1 D n
Also, we give characterizations of the bounded linear operators on S easily

obtained from a description of operators on cp. These results, however, may be
obtained using the uniform boundedness principle.
To make the presentation reasonably self-contained, we shall include a resume

of pertinent results and definitions.

2, PRELIMINARIES
DEFINITION 2,1, Let (X, | IX) and (Y, IY) be two sequence spaces, which are

Banach spaces with the respective norms. For a fixed y = (y ) € Y define the
o

mapping ¢y:X + R by ¢y(x) = ] x In for those x = (x ) in X for which the
n=0
series converges.

Assume that '¢y(x)| £ MlxllX with M some absolute constant, that is,
¢y is a bounded linear functional on X for any fixed y € Y. Let X* be the
space of all bounded linear functionals ¢ on X, endowed with norm

1ohy, = sup '¢(x)' and ¢ the mapping from Y to X* given by
Ixt =1
X

v(y) = ¢y. If ¢ 1is ounto and HyﬂY = "¢Y"X*’ then we say that Y 1{is

the dual of X, in this sense we Jrite ¥ = X¥,

DEFINITION 2,2. We define the sequence spaces S, &), 2.9 Co» and H respectively
by

S ={s = (sn)n=0’ summable sequences such that Islg = ::g ' Z sj'},

2y = {8 = (6)) 0, LI Zj=0 'sj' < =},

o= ()

© n’n=0’

o
[}

Hu“l = ;;g lujl < =},

cg = {y = (Yn):=0 , lim Y, = 0, Hyl = sup 'Y I}

n+e n>0
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n
Ho={x= ()" _, 1Al = sup
n’n=0 H >0 'j=

We believe that this is the first time that S 1is taken as a space with this

ole < =),

norme.

THF)IREM 2.3, The space S 1is a Banach space, isometrically isomorphic to cg.
The isometry T:S + ¢y being given by T(s) = (rn(s)):=0 and T'l:co + S by

)w

nen » Where rn(s) = Ja

-1
T (y) = (y_ -
n j=n

Yo+l

3
DEVINITION 2.4, Two Banach spaces (X, "X) and (Y, “Y) are 1isomorphic
equivalents 1f there exist a one-to-one and onto linear mapping T:X + Y such that

ﬂﬂ<“¥ < !ITxNY < M"x"X with N and M absolute constants. If there exists such a

such a T with ITxi, = lIxl

¥ X? then we say that X and Y are isometrically

isomorphic.

Notice in Theorem 2.3 T and T-! can be represented as infinite matrices,

— -
1 1 1 1 1 euu...
0 1 1 1 1 seuees
0 0 1 1 1 seuees
T = 0 0 0 1 1 seueus
1 =1 0 0 0 vevuus
0 1 =1 0 0 seeses
0 0 1 =1 0 eeuees
! = 0 0 0 1 -1 O...

THEOREM 2.5. M is a bhounded linear operator from co 1into cp 1If and only if M
{s represented by an infinite matrix with columns in cg and rows in ¢,
uniformly bounded in £;. That is if M = (mnk) then

i) 1m LI 0 for any fixed k,

n*®

i1) :;8 k£o'm“k| < =,

THEOREM 2.6, ¢ 1is in co* 1if and only if there is a § = (Gn) € 2; such
]

that for any y = (Yn) €co o(y) = ] Gnyn, in which case there is only one
n=0

such § = (6§ L | =

uc ( n) € 2 and |¢nc°* "5"11‘
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THEORE4 2.7. The space J 1s a Banach space, isometrically isomorphic to
)D

£,. The isometry U:J + 2, 1is given by L(B) = (Bn - B 0=0’

n-1
1 1 L ®
By =0, and L™ :2) »J by L7 (8) = (ys) =g with § = (8 ) e &) and
j=0 j/n n
g = (Sn) e J.
THEOREM 2.8. The space H 1s a Banach space isometrically isomorphic to 2 .

The isometry ¢:H » £ 1is given by ¥(}) = ( Z Aj)n-O and w‘lzlm + 1

) with p-y =0, u = (un) €L, A= (An) € H,

by ¥~ () = G = 1) 00

n-1

3. THE DUAL OF S

THEOREM 3.1 (Holder's type inequality). If s = (sn) €S and B = (Bn) e J

then | { s 3 I < UBIeTsig.

n=0 "
Proof: For N > 1, we notice that
N-1
| 1 58, - ro(s)so - 2 r ()8, = B 1| = [rg(e)8y| = |= ()] [8y]»
N N
n=0 n=1
where rn(s) = z s Now since s 1s summable and B 1is bounded, it

j=n
follows that It (S)I 'B ' >0 as N » =, Therefore we have proved that

¥ $nfn = ro(s)Bo + | r“(s)[Bn - Bn_ll; consequently
n=0 n=1
y s 8 gsupr(s)(80+
|n=0 n “| o' " I l l

RS |80 = Baa])s

so that the theorem is proved.
L

Consider the mapping ¢B:S + R defined by oB(s) - 2 san where
n=0
B = (Sn) is a fixed element in J. In view of Theorem 3.1, we have ¢, is

a bounded linear functional on S. At this point, a natural question is:
are these all the bounded linear functionals on S? The next result tells us

that the answer s yes.

THEOREM 3.2, (Duality Theorem). If ¢ € S then there is a unique 8 = (Bn) e J

such that ¢ = bgs that is, ¢(s) = § san
n=0
"¢"S* = anJ. Conversely 1if ¢(s) = ZO san then ¢ € S* so that the mapping
n=
= ¢B is an isometric isomorphism from J to S¥%,

for any s = (sn) € S. Moreover

p:J » S* defined by ¢(B)

Proof: If ¢(s) = Z s B then we already have seen by Theorem 3.1 that ¢ |is
=0
a bounded linear functional on S, that is ¢ € S*. So it remains to prove the

first part. Let ¢ € S*; then using Theorem 2.3, we have

8() = 617! 0 T(s)) = (4 0 TH(T(s)) = (6 0 TH(C [To08) 7))
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Now autica that ¢ o ™! e co*, so that there is a y = (yn) € 2; (see Theorem 2.6)

such that

¢(s)=(¢o1—)((Zs) ) = Zy(Zs) and 19 o TN = iyl . (3.3)
j=n n=0 n=0 jsn Co 2

Ohbserve that (3.3) can be written ¢(s) = 2 s, Z y therefore we may let B = (Bn)

n=0 j-O
n
where Bn = z
j=0 Q1
Since B = (y), B 1is in 17J. Consequently given ¢ € S* there is a
B € J such that ¢ = ¢B. On the other hand Theorem 2.6 tells us that
-1 - : -7 = 1 L.
oo T Z Iynl, therefore 181 n-z:o'y“' 1o o T AT N0,
Now as HT='1 < 1, it follows that 181, < 141 ,. Also motice that Theorem 3.1

implies N¢lg, < 0B, (since ¢ = ¢B). Therefore putting together these last two
inequalities we have n¢n = HBHI; consequently the mapping y:J + S* defined
by ¢(8) = ¢S is an lsometry, so that the theorem is proved.

We have used Theorem 3.1 to characterize all bounded linear functionals on
S. Now we are going to use this theorem again to give a proof of Abel's continuity

theorem which is as follows.

THEOREM 3.4 (Abel's continuity theorem). If a = (an) is summable and

f(z) = § anzn, then 1lim f(z) = f(1), where z 1is restricted to approach the
n=0 z+1
1-z

l-Iz

point 1 1{in such a way that |z| <1 and remains bounded.

Proof: rirst of all, let C be a positive absoiute constant such that

1-z P Py®
< C and |z| <1, Notice that 2 a z"| < 1(zF) 1 (a )
l_lz— H |p=N ' p=N"31 o) papts

for N > 1 by the above inequality applied to the sequences (up) and (zp),
since (zp):=N is in J; 1in fact, since lzl <1

“(zp)p=N 5 |Z|N + lzN—zN+1|+|zN+1-zN+2| o =

AR e UC A R A E AR - 38

Now using the hypothesis we have !(zp)zleJ <1+ C. Consequently,

' Z a zp' < (1+C)H(a ) N's> 0 as N > = since (an) € S. Then
p=N

7 «a Z o zP - y o 2P = A+B, For € > 0
|p=0 p=0 p‘ ' p=0 p-o I 'p=N P P"N p' ?

fix N so that BS(2+C)H(up)m < €/2. For |z-1| sufficiently small,

I
g =

A< e/2. Hence 1lim ) a 2P =
z+1 p=0 p=0

ap. Therefore the theorem 1is proved.

IIMB'?
z
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4, THE DUAL OF J
Of course, for fixed s = (sn) in S the formula ¢S(B) = Z;_osjﬁj
defines a bounded linear functional on J. However, these are not all the

members of J*. As a key to our description of J*, we note that if
OO0 o
= h 8) = s + s (B,-p) =
8=(8) isin J with limit o then ¢ (8) = ( 2130 0 Ljags§(B5P)

Xgp + X;al Aj(p - Bj-l)’ where g = Z;,o sy and for § 21 Ay = 8y

lere Z;sokj = 0; so that A 1is in S.

THEOREM 4,1 (Holder's type inequality). If X = (An) € H, B = (Bn) e J, and

p =1im 8 then |Xgo + n§lxn(p = 8 )| < s

Proof: This inequality follows easily from the observation that

o © n
Mop + LA (p -8 ) =280+ [ (L A)B -8 _]; so that
n;1 n n-1 n=1 §=0 j’tn n-1

-] n o
Moo + LA (p =8 )| < sup Yo 8ol + LB -8 _. .
' n=1 0 nll n>0 |j=oj|| ' n,lln n-1

As we did for S, we consider the mapping ¢X:J + R defined

by ¢A(B) = Agp + nzlkn(o - Bn—l) where )\ = (An) is a fixed element in H,
Theorem 4.1 assures us that ¢A is a bounded linear functional on J.

The claim of the next theorem is that these are all the bounded linear
functionals on J. Here, our representation is in a slightly different sense

than that of the Definition 2.1, the latter appearing more natural to us.

THEOREM (4.2) (Duality Theorem). If ¢ € J* then there is a unique

A=(r)ed such that 4 = ¢, that is, ¢(B) = Agp + | A (p-8_,) for any
n A n=1 ® n-1
B = (Bn) € J. Moreover "¢|J* = IXIH. Conversely if ¢ = °x then ¢ ¢ J*x,

So that the mapping Y:H » J* defined by ¢(A) = °A is an isometric iso-

morphism, Here, p = 1lim 8,

Proof: By the observation preceding the theorem we see that it remains to

prove the first part. Let ¢ € J*; then in fact using Theorem 2.7

4(8) = ¢(L7'o L(B)) = (6 o L=)(L(B)) = (4 o L~1)((B, = B__ )" 1), By = O.
Now notice that ¢ o A 1{, so that there is a u = (un) € L such that

y = ¥ un(Bn -8B __.).

n=0

-1 ®
(4.3) 6(8) = (4 0 L=)((B_ - 8 _ )7

n-1 n-1

n
By Theorem 2.8 u_ = ) ) for n > 0 and some X = (),) € H;
T y=0 ] - 3

®
consequently (4.3) becomes ¢(8) YO A8 -8 _)).
n=0 §=0 il n n-1
Observe now that
Pl GRS
A (B = B ) = xpBg + A )(B -8B )=
n=0 =0 j n n-1 0 n=t §=0 i n n-1
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N N
ARy + I A[B -8B 1 =B, + JA[B, -p+p-8 .]=
N =1 " N n-1 N n=1 ® N n-1

N
=20 £ [B, =-p0] ¥ A + 2 \lp=B ;). Taking the limit as N » =
N n -1
n=0 n=1
we get
I C T A)@ -8 _)=xpo+ [Arlp-8_.]
n=0  §=0 j n n-1 n=l ™ n-1
N

since [BN -0) 7 An »0 as N> » (p = 1im B). Therefore we have

: n=0

H(B) = rgp + M[p-s 1
n=1

=1
Again by Theorem 2.8 1l o L nl* = nuu = sup 'u | = sup| Z jl = lAl
1 1 1 e n>0 1 =0
or NAHH =14 o L™ !lr S."®"J*°HL' ] i "¢I since IL="1 S 1. On the other

hand Theorem 4.1 gives us that |¢(B)| < HAn“uBlJ(since ¢ = ¢x), which implies

ol < UM Putting together these two inequalities we have oN = WA

u* H*

so that the theorem is proved.
5. CHARACTERIZATION OF OPERATORS ON S

In this section we characterize all bounded linear operators on S, even
though an alternate proof can be given using the uniform boundedness
principle. We rather use the characterization of operators on cg. In fact

we have the following result.
THEOREM 5.1. The linear mapping A:S *» co 1s bounded if and only if there

is an infinite matrix (ank) such that for any s = (sn) €S

ay 3 302 *** Bpp °°* sp

ajo 811 8yp cre Byp cee 51

As = . .

. s

n

a0 81 %n2 *** %hn cct .

satisfying
1) 1im a_ = 0, for any fixed k > 0 i.e. the columns of the matrix are in cg,
rr)m

11) sup Y ’an(k-l) -an < {,e, the rows of the matrix are
n0 k=0 n uniformly bounded in J.

Here ( 1) =0 for n=20,1, 2 3, cee

Proof: Note that the operator P = AT where T-! 1s as in Theorem 2.3
T‘ A
maps cg 1into c¢g, that is Picg * S + ¢, so that applying Theorem 2.5 we

get the desired result.

THEOREM 5.2. The linear mapping B:S + S 1is bounded if and only if B {is

represented by an infinite matrix such that for some A:S + ¢y we have
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B=A- A, where A is defined by A = (ank) with a , = A+l )k*
~ -]
(A 1s a shifting of A up by one row) Note that a= zj-nbjk°

Proof: We define A:S % S 1 cg, where T 1s as in Theorem 2.3. That {s,
A=TB so that B = T 'a,
Now using the matrix representation for ™! we get
-1 0 0 O0...
1 -1 0 O0... _ . :
-1 0 ... | A=[1I-1IJA=IA-TA=A-A where

O O =

.
.
.
.

.
.
.
.

I 1is the identity matrix and I 1s formed by the shifting of I up by one row.
Notice Theorem 5.2 is equivalent to saying that B:S + S 1{s a bounded

operator if B 1is an infinite matrix such that each column of B {is summable,

and if we consider the matrix r(B) with r(B) = (ynk), where Yok = ) bjk’ then

J=n
then the rows of r(B) are uniformly bounded in J.

THEOREM 5.3. The linear mapping C:cg * S 1is bounded if and only if C 1{is

represented by an infinite matrix such that for some M:cg + cg we have
C=M-M, M 1is a shifting of M up by one row.

Proof: Notice cg § S f cg, T as in Theorem 2.3. So define M = TC;
therefore C = T’IM =M - ﬁ,

Note here that the M's are special A's as are the B's., The C's are
special B's. The reader might wish to compare these last three theorems with
Exercises 45 and 46, pg. 77, of [1l].

We would like to point out that the spaces H and J may also be found in [1]
(pg. 240). Another space there, denoted by cs, is the space of all

summable sequences s (s ) normed with norm on H, max ' j' It may be
n>0 " j=0

shown, as pointed out there, that cs* looks like J. We hasten here to note

that J 1s not the dual of c¢s 1in the sense of Definition 2.1, 1In particular,
the inequality I Z j j' < nsh s-lBl does not hold. Consider the example:
j=0

Let = (sn) be given by

S
sg =1, s) = s =s3 =s, =0, s5 =-2, s = 87 = .,.. = 0; also, B = (Bn):
Bo= 0, By = -l By = =2, B3 = =3, By = =4, Bg = Bg = se0u = =4,

Notice that { s.8, =8, 181 =4 and Ush__ = max

= 1, Therefore
320 b j cs >0 'j,o jl

I < [max l] ISN does not hold.

Z
l 5% n>0'j=0 3
To illustrate further the difference between c¢s and S, we note that cs

and S are equivalent Banach spaces: 1if s 1is in S then lslcs < 2lslS

*
and sl < 2nslcs. So that ¢ 1is in S if and only if ¢ 1is in cs*,

S
For j > 0 let e, be the sequence T such that t, =1 and if k #Jj 71, = 0.

k

3 3
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Now for ¢ in S*,4(s) = 13=Osj°(ej); the sequence {¢(ej)};=0 is in J and

|{¢(ej)}"J = I$h %, But if B is the sequence of the example and ¢ is defined on
S by ¢(s) = ):°;=08jsj (so that Bj = ¢(ej)) then 181 = 4. So the natural
assoclation of ¢ 1in cs* with the sequence {¢(e;)} in J {is not an isometry.
There is an isometry from cs* onto J, obtained by noting that cs is
isometrically isomorphic to the space c of all convergent sequences normed with
norm in ¢_; the dual c* being isometrically isomorphic to £;. This represen—
tation of c¢c* as 2;, and also the representation of cs* as J, is complicated by
the fact that the sequence {e } does not have dense span in c. However,

the latter representation (of cs* as J) is made somewhat simpler by applying

Theorems 2.7 and 3.5. For s in S 1let SN(s) = Egaosj, the Nth partial
sum of s, and o(s) = 2§=o*1' Let ¢ be in cs* with ¢(ej) = Bj. Now,
with L as in Theorem 2.7, we have ¢(s) = 2?=osj¢(ej) = X;=ijsj =

Borg(s) + Iy r ()8 - B 1) = Bools) + Loaplo(e) = Sy ()18 =B 4] =

a(s)vg + 2n=1 SRCAN (vo = lim By, v =8, ~ B); so v = L(u), with
po = lim B, w,o= 1im B + Bg - Bn' These computations suggest that if one

uses (as in [1]) the space cs rather than S the norm to be used in J

should be given by IBM = llim BI + Z:=1'Bn - Bn—l" However, the norm

used there is the same as ours (see 1, pg. 239). With this norm, #81, on J,

the Holder's type inequality we get is |Z;=O°j8j| < lulcslsl, a in S and

g in J.
The reader might wish to compare the remarks of this last paragraph with some

of D. J. H. Garling in pages 999-1000 of [2] and page 964 of [3].
These ideas were suggested by a norm on certain power serles spaces introduced

by the latter author in an investigation [4] of Fourier sine series and Lidstone

series.
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