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ABSTRACT. In [1] Laurent Schwartz introduced the spaces OM and 0& of multiplication
and convolution operators on temperate distributions. Then in [2] Alexandre
Grothendieck used tensor products to prove that both GM and Q% are bornological. Our

proof of this property is more constructive and based on duality.
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We use C, N, R, and Z, resp., for the set of all complex, nonnegative integer,

real, and integer numbers. For each q € N, the space

L = {f: ;" » C; Hf”2 = I fn xquDBf(x)|2 dx < + »} is Hilbert.
4 9 |a+Bl =q R

Here DBf stands for the Sobolev generalized derivative. We denote by L_q the strong
dual of Lq and by H'H_q the standard norm on L—q' Then the space $ of rapidly

decreasing functions, resp. its strong dual &', is the projlim Lq, resp.
>

ind lim L_ . 9

q-}oo

2 1
It is convenient to introduce the weight-function W(x) = (1 + |x| )1, x € R".

The mapping T, : f |~ ka: 3" > &', k € Z, is injective. We denote by kam,

k
k, m € Z, the image of Lm under Tk and provide it with the topology which makes

Tk :Lm > WkLm a topological isomorphism. Further, Oq, q € N, stands for the

ind 1im WPL , and © for its strong dual. It is proved in [7] that for each
p>o q -4
q € N, the space Oq is reflexive and O_q = proj lim W_pL_q. Finally, the space
p*®
OM of multiplication operators on $' equals projlim O , see [6].
q-}oo q
PROPOSITION 1. The strong dual 0& of OM equals ind 1lim ®_q.
q > ®
PROOF. The space $ is dense in each Lq, q € N. Hence § = WPS is dense in

WPLq for each p € N. Then $ , and a fortiori its superset 0M’ are dense in each
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0, = ind lim wPLq, q € N. By [3, ch. 1V, 4.4], the dual of 0, equipped with the

p-+oo
Mackey topology, equals ind lim 0 . The Mackey and strong topologies on 0&
q > ®
coincide since ®M, as a ptOJective limit of reflexive spaces Oq, is semireflexive,

see [3, ch. 1V, 5.5].

PROPOSITION 2. GM is the strong dual of ind lim o—q'
q > ®
PROOF. By [3, ch. IV, 4.5], the topology T of 0 = proj lim Oq is consistent
q—)oo

with the duality < O, ®M > . Hence T is coarser than the strong topology
B( O, Oﬁ ). On the other hand, it is proved in [5, Prop. 4] that T is finer than

gCoO,, 0&).

THEOREM 1. The space OM is reflexive and 0& is the strong dual.

LEMMA 1. Let r = 1 + [%3n], q € N. Then W_qu c Lq and every set bounded in

w-qu is relatively compact in Lq.

PROOF. Let B be an absolutely convex, bounded, and closed, set in w'qu. Then
B is weakly compact as a polar of a neighborhood in WrL_q. By [3, Ch. IV, 11.1,
Cor 2], B is weakly sequentially compact and every sequence in B contains a subse-

quence {fk} which converges weakly to some g € B. We may assume g = 0. ¢

since the set {WTIf; £ ¢ B} is bounded in LZ(R"), the set {WIf; £ € B} is
bounded in Ll(Rn) and for any n € N©, |a] = q, the set {ﬁaff; f € B}, where Ff is the
Fourier transform of f, is uniformly bounded and locally equicontinuous on R". Hence
{f } contains a subsequence, let it be again {f }, such that (0"F¢ (x)} converges
uniformly on R" for all a € N" , lal = q.

Take a non-negative function h € $, f h(x)dx = 1, and put h, (x) = i™h(ix), i€ N.
Then f % h + f as i > = in the topology of Lq uniformly on B. G1ven € > 0, there is

i € N such that [[f-f %h < e for any f € B. We fix this i. For every o, B € N",

i”q o B n
[a + B| < q, the sequence {WD (ka -fhi)} converges uniformly to 0 on R as k > @
and has an integrable majorant from $. Hence F(fk * hi) + 0, and a fortiori
f % hi + 0, both in the topology of Lq. 1f we choose k, € N so that ka* hin <€

k 0
< > o
for k > ko, then ”fk”q 2¢ for k k0

LEMMA 2. Let r =1+ [%n], q € N. Then W—rL_q < L_q and every set bounded in
Wan_q is relatively compact in L_q.

PROOF. Let B be an absolutely convex, bounded, and closed, set in W_rL_ . By
the same argument as in Lemma 1, every sequence in B has a subsequence {fk} which
converges weakly to some g € B. We again assume g = O.

. .~T r
Denote by ”'”—r,-q’ resp. h.”r,q’ the norm in W L_q, resp. WL

closed unit ball in Lq’ B

q° Let A be the
o the open unit ball in erq, and a = sup{HfH_r’_q; f € B}.
Choose € > 0. By Lemma 1, A is compact in the topology of Wqu. Since Lq is dense
in erq, there exists a finite set {¢i; i € F} ¢ Lq such that A ¢ U{wi + ¢ Bo; i €F}.
For any ¢ € A, there exists ®; such that H@-wiHr,q < ¢ and for any k € N we have

<o, g,>0 = <w-o £ 2] + <o, 6] =lo-oll o U+ <oy, £<]

= €a + |<(pi,fk>|. If we choose k., € N so that |<<pi fk>[ < ¢ for all i € F and

0

k > kg and the sequence {fk} converges in L_q
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PROPOSITION 3. For each q € N, O_q is a Schwartz space.
PROOF. By Lemma 2, for every p € N the closed unit ball is W_r-pL_ , where

r=1+ [%n], is compact in w—pL_q. By [4, Ch. 3.15, Prop. 9], the space
0_ = proj lim WPL is Schwartz.
q p > -q
PROPOSITION 4. Let El c E2 C... be locally convex spaces with identity maps:
Ek -> Ek+1’ k € N, continuous and E = ind lim Ek Hausdorff. Assume:

> ®
(1) every set bounded in E is boﬁnded in some Ek’
(2) every Ek is a Schwartz space.
Then E is a Schwartz space.
Proposition 4 is slightly more general than Prop. 8 in [4, Ch. 3.15] and its
proof requires only minor changes of the proof presented in [4].
THEOREM 2. Oh is a Schwartz space.

PROOF. We have 0& = ind lim O_q. Each space O_q is Schwartz and Frichet.
q >

Further, Oﬁ is reflexive, hence quasi-complete, which in turn implies fast complete-
ness. By [8, Th. 1], the assumption (1) of Prop. 4 is satisfied and 0& is a Schwartz
space.

THEOREM 3. 0& is complete.

PROOF. The space B of C - functions, whose derivatives vanish at ® was intro-
duced in [1]. We denote the space W B by ém and provide it with the topology for
which f[—+ Wi B > ém is a topological isomorphism. Then the strong dual OC of 0&
equals ind lim Bm, see [2, Ch. 2, 4.4]. Also, OC is isomorphic to 0& via Fourier

transformation. Hence it suffices to prove that ind lim Bm is complete.
m’FW

Let F be a Cauchy filter on OC’ G a filter of all O-neighborhoods in OC’ and H
the filter with base {A+B; A€F, B€G}. By [4, Ch. 2.12, Lemma 3], there exists
m € N such that H induces a filter Hm on ém which is Cauchy in the topology inherited
from DC. On each ball {x ¢ Rn, lxl <n}, r > 0, the filter Hm converges uniformly
pointwise to a function f € ém' Then f adheres to Hm on the subset ém of OC and by
[4, ch. 2.9, Prop. 1] the filter F converges to f.

THEOREM 4. The spaces GM and Oﬁ are ultrabornological.
PROOF. By Exercise 9 in [4, Ch. 3.15], the strong dual of a complete Schwartz
space is ultrabornological. Hence OM is ultrabornological by Theorems 1, 2, and 3.
The space 0& is ultrabornological as an inductive limit of Fréchet spaces
O_q, q € N.

THEOREM 5. The spaces 0C and its strong dual Oé are both complete, reflexive,
and ultrabornological spaces.

PROOF. The space OM is complete as a strong dual of a bornological space. Since
the Fourier transformations F: OM - 0& and F: 0& > DC are topological isomorphisms,

Theorem 5 follows from Theorems 1, 3, and 4.
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