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ABSTRACT. Let R be a ring with 1, 9 an automorphism of R of order 2. Then a nor-
mal extension of the free quadratic extension R[x,9] with a basis {1,x} over R with
an R-automorphism group G is characterized in terms of the element (x-(x)x) for
& in G. It is also shown by a different method from the one given by Nagahara that
the order of G of a Galois extension R[x,P] over R with Galois group G is a unit in
R. When 2 is not a zero divisor, more properties of R[x,P] are derived.
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1. INTRODUCTION.

Let C be a commutative ring with 1 and with a finite automorphism group G.
Then it is well known that C is Galois over CG (= {r inC/ (r)d=r for each™ in
G}) with Galois group G if and only if the ideal generated by {(r-(r)x) / r in C
and ot in G} is C ([1], or [2], Proposition 1.2, P. 81). The sufficiency of such a
characterization of Galois extensions for non-commutative rings does not hold. How-
ever, for free quadratic extensions R[x,P] (see definition below) with respect to an

automorphism  of R (not necessarily commutative), the above characterization be-
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comes that R[x,9] is Galois over R with Galois group G if and only if G = {1,0l/

02 = 1} and (x-(x)®) is a unit in R[x,9] ([3], Lemma 2.3). In fact, the element
(x-(x)\) will play an important role in the study of R[x,{]l. The purposes of the
present paper are to characterize a normal extension R[x,] over R with an R-auto-
morphism group G in terms of the elements (x-(x)&) for ol in G, and to show by a dif-
ferent method from the one given by Nagahara ([3], Lemma 2.3) that 2 is a unit in R
if R[x,9] is Galois over R. More properties of R[x,p) are derived from the informa-
tions of (x-(x)o!) when 2 is not a zero divisor. At the end, examples are given to
demonstrate our results.

2. PRELIMINARIES.

Throughout, let R be a ring with 1, and ¢ an automorphism of R of order 2.

Then a free quadratic extension R[x,PJ} with respect to ¢ is a ring with a free basis
{l,x} over R such that rx = x(rp), x2 = b which is an element in U(C?) (= the set of
units in the center C such that (b)f = b) ({41, [51, [6] , and [3]). An R-automor-
phism &t of R[x,] is a ring automorphism such that (r+xt)d = r+((x)x)t for r and t

in R. A ring T is called a normal extension of a subring S with respect to an auto-

morphism group G of T if 76 = S, where 76 - {tin T/ (t)t =t for each & in G}. A

ring T is called a Galois extension over S with a finite Galois group G if it is nor-

mal over S and if there are elements {ai, bi inT/1i=1, ..., n for some integer n}

such that Zaibi =1 and Zai(bi)ol' =0 for eacho # 1 in G ({71, or[21, P. 81).

3. NORMAL AND GALOIS EXTENSIONS.

In this section, we shall characterize a normal extension R{x,?7 in terms of
the elements {(x—(x)o() /oL in G}, where G is an R-automorphism aroup of R[x,{ 7.
When G is of order 2, it is known. Hence we have a different method from Nagahara
(L3J, Lemma 2.3) to show that 2 is a unit in R if R[x,f] is Galois over R with Galois
group G. We begin with several lemmas.

LEMMA 3.1. The R-linear map & such that (x)X = p+xq for some p, g in R is an
R-automorphism of R[x,p3 if and only if {1) vrp = p(rp) for each r in R, and (',\5?) =
-p, (2) q is in U(C), the set of units in the center C, and (3) p2+b(q5>)q = b

where x2 = b in U(C?}.
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PROOF. Since r(xa) = (rx)X = (x(rp))& = (x&)(rp), conditions (1) and (2) hold
immediately. Using that (xoz)2 = (xz)d.= b, we have condition (3). The converse is
straightforward.

Let oL be an R-automorphism of R[x.,P], and Ar(x-(x)a) the right annihilator of
(x-(x)t) in R. Then we have:

LEMMA 3.2. RIx,f] is normal over R with respect to an automorphism group G if
and only if (}){Ar(x-(x)ol) = {0'} for all & in G.

PROOF. Since (x-(x)X)r = xr-(xr)t for r in R and & in G, (x-(x)o{)r = 0 if and

only if xr = (xr)l. But (xr) is in R if and only if r = 0, so the lemma follows.

LEMMA 3.3. Assume 2 is not a zero divisor in R. Let (x)®X = p+xq, for some &

in G. Then p% = 0 and (q)¢ = q 1.
PROOF. Since (p)g = -p and rp = p(rp) by condition (1) of Lemma 3.1, p% = -p?
(for r = p). Hence 2p2 = 0. But 2 is not a zero divisor by hypothesis, so p2 = 0.

By condition (3) of Lemma 3.1, p2+b(q?)q = b, so (qp)g = 1. Thus (qp) = q'l.

Lemma 3.2 gives a different method from the one given by Nagahara ([3], Lemma
1.1) to show the normality of R[x,fJ over R with respect to an R-automorphism group
G.

THEOREM 3.4. (T. Nagahara) If (x-(x)&) is not a zero divisor in R[x,¢J, then
R[x,¥] is a normal extension over R with respect to the cyclic R-automorphism group
oL,

PROOF. Assume R[x,93 is not normal over R with respect to <& Then
AT (p)NAT(1-q) # {0} by Lemma 3.2. Let u # 0 be in the intersection. Then
(x-(x)0)u = (-p+x(1-q))u = 0. This contradicts to that (x-(x)a) is not a zero di-
visor. Thus R[x,fJ is normal.

The converse of Theorem 3.4 holds in case 2 is not a zero divisor.

THEOREM 3.5. Assume 2 is not a zero divisor in R. If R[x,9] is a normal ex-
tension over R with respect to a cyclic R-automorphism group <d>, then (x-{(x)a) is
not a zero divisor in RIx,$3.

PROOF. Let {(x)ot = p+xa for some p, a in R. Then AT (x-{x)o) = Ar(p)f)Ar(l-q}

Now let R[x,] be a normal extension over R with respect to (%> Ther
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AT(p)NAT(1-q) = {0} by Lemma 3.2. For u+xv in R[x,P] such that (x-(x)t)(u+txv) =

0s we have that -putb((1-q)@)v = 0 and pv+(1-q)u = 0 ... (*). By multiplying p

in equation (*), Lemma 3.3 implies that p((l-q)?)v 0 and p(1l-q)u = 0 ... (**) (for

=1 which is in U(C), so p(1-g)v = 0 and

p(1-q)u = 0 from equations (**). Hence pv and pu are in AT(1-q). But p2 =0, SO pv

b is in U(C?)). By Lemma 3.3 again, (q)? =q

and pu are also in A"(p). Thus pv and pu are in AT(p)NAT(1-q) which is 0, and so
pv and pu are 0. This implies that v and u are in A"(p). But then equations (*)
become that (l-q)g'v =0 and (1-g)u = 0. Noting that (q)p = q'l, we have that
(1-q)v = 0 and (1-q)u = 0. Thus v and u are also in A"(1-q). Therefore, v and u
are in Ar(p)f\Ar(l—q) which is 0; and so v = 0 and u = 0. Similarly, we can show
that (u+xv)(x-(x)ot) = 0 implies that v = 0 and u = 0. Thus (x-(x)x) is not a zero
divisor.

Next, we determine all R-automorphism groups of R[x,f) of order 2 such that
R[x,£1 is a normal extension over R.

THEOREM 3.6. Let R[x,91 be a normal extension over R with respect to a cyclic
automorphism group {&.». Then, the order of & is 2 if and only if (x)X = p-x such
that rp = p((r)p), (p)$ = -p, and p° = 0.

PROOF. Let (x) = p+xq for p, q in R satisfying three conditions of Lemma 3.1
and d? 1. Then (x)o(2 = (xd)t = x. This implies that p+pg = 0 and q2 = 1. Hence
p(1+q)
R[x L] is normal over R with respect to <d), So g

dition 3 of Lemma 3.1, p2+b((—1)y)(-1) = b, s0 p2 = 0. Thus, (x)d = p-x such that

2

n

0 and (1-q)(1+q) = 0. But then (1+q) is in A"(p)NA"(1-q). By hypothesis,

-1 by Lemma 3.2. Also, by con-
rp = p(rP), pp = -p (Lemma 3.1), and p° = 0. The converse is easy to verify.

We are going to show that 2 is a unit in R if R[x,f) is Galois over R by a dif-
ferent method from Lemma 2.3 in [31.

COROLLARY 3.7. If R(x,§] is Galois over R with Galois group G, then 2 is a
unit in R.

PROOF. By Lemma 1.2 in [37, the Galois group G of R[x,P1 is of order 2 and
(x-(x)ot) is a unit, where G = <o(>. But RIx,P7 is normal over R with respect to <a).
This implies that 2bv-pu = 1 ... (1), and 2utpv = 0 ... (2). Multiplying p in (2),
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2 . 0 by Theorem 3.6). But p(pu) = 0, so pu is in A" (2)NA"(p)

we have 2pu = 0 (for p
which is {0} by Lemma 3.2. Thus pu = 0. Thus equation (1) becomes 2bv = 1. There-
fore, 2 is a unit in R.

The following are more properties of AT (x-(x)0).

THEOREM 3.8. Assume 2 is not a zero divisor. Then (1) Ar(x-(x)m) is an in-
variant ideal I of R under ¢ (that is, (I)§ = I), and (2) AT (x-(x)d) = A](x-(xﬁl),
the left annihilator of (x-(x)X) in R.

PROOF. (1) For r, s in I and t in R, clearly, (r-s) and (rt) are in I. Since
(x-(x)t)tr = (tP)(x-(x)o)r = 0, (tr) is in I. Hence I is an ideal of R.

Also, let (x)0l = p+xq for p, q satisfying 3 conditions in Lemma 3.1. Then (x-(x))r
=0 if and only if -pr = 0 and (1-q)r = 0. Hence (-pr)¢ = 0 and ((1-g)r)9 = 0; that
is, p(rp) = 0 and (1-q)(rg) = 0 (for (p)¢ = -p and (q)§ = q'1 by Lemma 3.3). Thus
(rg) is in I.

(2) Let r be in I. Then (r9) is in I by Part (1). Since r(x-(x)) =
(x-(x)oO(ry) =0, r is in A](x—(x)dJ. Conversely, let r be in A](x-(x)a). Then
r(x-(x)) = (x-(x)&)(rf) = 0. Hence (r?) is in I. Thus r (= (rp)¢) is in I.

4. EXAMPLES.

We conclude the paper with three examples to demonstrate the results in Section
3. 1. Let Z be the ring of integers, and ¢ an automorphism of R (= 2Z[{31) defined
by (n+mJ§)9 = n-mJ§ in R. Then R[i,$1] is normal over R, where 12 = -1, with respect
to an R-automorphism group <#> such that (i) = -i.

2. By replacing Z with Z/(4), Example 1 becomes a non-normal extension.

3. Let Q be the rational field. By replacing Z with Q, Example 1 becomes a

Galois extension over R with Galois group <),
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