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ABSTRACT. Let p and q be odd primes with q---+3 (rood 8), p i (mod 8) a +

2
d
2

c + and with the signs of a and c chosen so that a c i (rood 4). In this

paper we show step-by-step how to easily obtain for large q necessary and sufficient

criteria to have (-l(q-1)/2 (p-1)/8
q (a-b)d/ac)J(mod p) for j i 8 (the cases

with j odd have been treated only recently [3] in connection with the sign ambiguity

in Jacobsthal sums of order 4). This is accomplished by breaking the formula of

A.E. Western into three distinct parts involving two polynomials and a Legendre

symbol; the latter condition restricts the validity of the method presented in sec-

tion 2 to primes q 3 (mod 8) and significant modification is needed to obtain slm-

ilar results for q--+l (rood 8). Only recently the author has completely resolved

the case q 5 (mod 8), j I, 8 and a sketch of the method appears in the clos-

ing section of this paper.

Our formulation of the law of octic reciprocity makes possible a considerable

extension of the results for q+/-3 (mod 8) of earlier authors. In particular, the

largest prime --3 (mod 8) treated to date is q 19, by von Lienen [6] when j 4

or 8 and by Hudson and Williams [3] when j 1,2,3,5,6, or 7. For q 19 there are

200 distinct choices relating a,b,c,d which are equivalent to (-q)(p-l)/8=((a-b)d/ac)J-
(mod p) for one of j 1,...,8. We give explicit results in this paper for primes

as large as q 83 where there are 3528 distinct choices.
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This paper makes several other minor contributions including a computationally

efficient version of Gosset’s [2] formulation of Gauss’ law of quartlc reciprocity,

observations on sums Yi,j where the Yi,j s are the defining parameters for the

distinct choices mentioned above, and proof that the results of von Lienen [6] may not

only be appreciably abbreviated, but may be put into a form remarkably similar to

the case in which q is a quadratic residue but a quartic non-residue of p.

An important contribution of the paper consists in showing how to use Theorems

2
i and 3 of [3], in conjunction with Theorem 4 of this paper, to reduce from (q+I/4)

to (q-l)/2 the number of cases which must be considered to obtain the criteria in

Theorems 2 and 3.

KEY WORDS AND PHRASES. Quartie and oic rsiduaeity ceria, A.E. Wtern’s
u,a, e fo.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary IOA15; Secondary IOG15.

i. INTRODUCTION.

2 2
Let p be a prime -=i (mod 4) so that p a + b and choose the sign of a so

that a -= I (mod 4). Let q # p be an odd prime. Necessary and sufficient criteria

in terms of a and b for p to satisfy (-i)(q-l)/2 (p-l)/4 )jq (b/a (rood p),

j 1,2,3,4, when q < 50, have been obtained by Cunnlngham [i] when j is even, see

[8, p. 248], and by Goaset [2] when j is odd. Contained in this paper as a neces-

sary preliminary (section 2, Theorem I), is a computationally efficient form of

Gosset’s formulation of Gauss’ law of quartic reciprocity which makes it possib,le

to extend considerably the results of Cunningham and Gosset.

The much more difficult problem of giving necessary and sufficient criteria in

2 2 2
d
2

terms of a,b,c, and d for a prime p i (rood 8) a + b c + 2 a c -= i

(rood 4), to satisfy (-l)(q-l)/2 (p-l)/8
q ((a-b)d/ac) j (rood p) has been treated

more recently by several authors, most notably by von Lienen [6], in the case that

q is a quartic residue (<=>j 4 or 8 <--> when ((a-b)d/ac)J--+l(mod p)). The results of

yon Lienen [6] (q < 41) extend considerably those of earlier authors (see references

in [6]) and clearly entail an enormous amount of work. Very recently Hudson and

Williams [3] have given similar criteria for q _< 19 when J 1,2,3,5,6, and 7.
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(p-l)/8
These were obtained for j 1,3,5,7, i.e., when q is a primitive eighth

root of unity, as a necessary step in resolving the remaining outstanding problem

regarding the sign ambiguity in the Jacobsthal sums of order 4 (see, e.g., [9],[i0]).

The arguments given in Theorems 1 and 3 of [3] for q 19, in conjunction with

Theorem 1 of this paper, suggested to the author a strategy for computerizing West-

ern’s formula, at least when q+3 (mod 8), thus making it possible to greatly

extend all earlier results for these primes.

Fascinating symmetries exist interrelating the results in Theorem 2,3, and 4.

Of particular interest is the fact that the k.’s in all three Theorems can be made

to agree in magnitude, sign, and order provided that a very special order is chosen

for the parameters u. relating c and d (see [3, Theorem 4] and the remark following

Theorem 3 of this paper).

The extent to which computerization contributes to the extension of earlier

results is indicated by the fact that when q 19 (the largest prime 3 (mod 8)

considered by von Lienen [6] or Hudson and Williams [3]), there are only 200 dis-

tinct choices relating the parameters a,b,c, and d which are equivalent to

(_q)
(p-l)/8 ((a_b)d/ac)J (rood p) for one of the possible values of j, j=l, 8

(25 for each j). When q 83 there are a staggering 3528 distinct choices

(21 x 21 x 8)! However, the method described here makes it possible to go far

beyond q i00.

A more interesting contribution of this paper from a theoretical standpoint is

the content of Theorem 4. If one looks at von Lienen’s [6, p. 115] result for

q 19 and the results for q 19 in Theorems 2 and 3, they appear as results from

different planets. Theorem 4 makes it clear that yon Lienens [6] results may be

put into a far more compact form and, more significantly, into a form so closely

analogous to Theorem 3 that one can immediately read off all results in the cases

that (_-q) (p-l) /8 +i (rood p), q 3 (rood 8), from the results when (-q)(p-l)/8
b/a (rood p). Indeed, it is shown (with a c E 1 (rood 4) and q 3 (rood 8)) that

c(mod q) <--> (-q)(p-l)/8 b/a (roodthe value of Yi,j such that b Yi,j
a yib (rood q), is identical with the value of Yi,j such that a yi,jc (rood p)<z>
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(_q)(p-l)/8
__

i (mod p), b %.ia (mod q), if q 3 (mod 16)’, Yi,j
(but not magnitude) if q ii (rood 16).

changes sign

The case q 5 (rood 8) is treated in section 5, followed by Tables and ExaM-

ples.

2. PROGRAMMING THE LAW OF UARTIC RECIPROCITY FOR PRIMES q AND THE LAW OF OCTIC
RECIPROCITY FOR PRIMES q 3 (MOD 8).

Elsewhere the author and Williams [4] have shown that Gosset’s [2] formulation

of the law of quartic reciprocity can be used to prove the following computationally

useful Theorem.

2
b
2

THEOREM i. Let q be a prime > 7, p i (rood 4) a + a 1 (rood 4),

q
4n+l if q i (mod 4)

4n-i if q 3 (rood 4).

Then (-i)
(q-l)/2 q(p-l)/4 +i, -i, or +b/a (mod p) respectively according as

%(a %b (mod q)) satisfies

n n /(a) A(k,n) k )k 0 (rood q),

k-O
n-k odd

(b) A(k,n) k %k 0 (rood q),

k--O
n-k even

n

(c) A(k,n) k %k 0 (mod q),

k=0

where A(k,n) =$ +l if n-k- 0,i (rood 4),

-i if n-k 2,3 (mod 4),

where +b/a applies when q 3 (rood 4) and -b/a when q 1 (rood 4).

Values of % such that (-l)(q-l)/2 (p-l)/4
q -- +b/a (rood p) are simply the neg-

atives of the values of % satisfying (c) above and, thus, clearly do not require

separate computation.

As mentioned in the introduction, Theorem I allows one to considerably extend

the results of Cunningham [i] (see [8, p. 248]), and Gosset [2]. For example, when

q 67, part (c) of Theorem i asserts that the values of %(a %b (mod q) ur wL.i
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2
b
2(_q)(p-l)/4 b/a (mod p), p 1 (mod 4) a + a 1 (mod 4), are the roots

(mod q) of

%17 + 17%16 + 65%15 + 57%14 + 35%13 + 24%12 + 19%11 + 49%10 + 56%9

+ 56%8 + 48%7 + 19%
6 + 24%5 + 35%4 + 57%3 + 65%2 + 17% + 1 (2.1)

With a little patience (or letting the computer do the work) one sees that (2.1)

factors as

(% 66) (% 14) (% + 24) (% 20) (% 57) (% 23) (% 35) (% 30) (% 38)

(% 26) (% 49) (% 33)(% 65) (% 19) (% 60) (% 39) (% 55). (2.2)

Of course, this factorization yields at once the desired values of %. Parenthetic-

ally, we note that the factors in (2.2) after % 66 have been ordered in reciprocal

pairs (14) (24) (20) (57) -...- (39) (55) i (mod 67)) and the sum of the roots of

(2.1) is --(q+l)/4 (rood q). Of course, the reason for the latter congruence is a

well known consequence of algebra; see e.g., [7, Theorem 15, p. 84]. More signifi-

cantly, from the point of octic reciprocity (as we will see in later analysis) is

the fact that-i is a root of (c) if q 3 (mod 16) but 1 is a root of (c) if q- ii

(mod 16).

Programming Western’s [8] (see [3], section 2) law of reciprocity requires

carrying through step-by-step the process outlined in the proofs of Theorems 1 and

3 of [3]. The first step is to find the values of % satisfying Theorem i, parts

(a), (b), and (c).

We proceed now for q 3 (mod 8) as follows.

STEP 2. Find all values of , 0,1,...,q-i for which 2 + 2 is a quadratic

residue of q.

STEP 3. Find all values of , 0,1,...,q-i for which 2 + 2 is a quadratic

non-residue of q.

STEP 4. Taking m and setting

m m k

k=O k=0

give the polynomials in Z [x],
q
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m-i m-3 m-5
F(x) h x + x + h x + + h

0m-I hm-3 m-5

m-2 m-4
G(x) h x

m + h x + h x + + hI
x.

m m-2 m-4

STEP 5. Evaluate F(x) and G(x) for the values of in Steps 2 and 3

9
x
7 3

(for q 19, F(x) 9x
8 + 3x

6 + 10x
4 + 16x

2 + 16, G(x) x + 4 + 10x
5 + 12x +

llx).

EXAMPLE. For the values of obtained in Step 3 it is easy to show (indeed,

easy to show for arbitrary q) that G() vanishes. Moreover, with p I (mod 8)

2
b
2 2

2d
2

a + c + c Dd (mod q),

16 if x 0, -+I, +5
F(x) 9x

8 + 3x
6 + 10x

4 + 16x
2 + 16 (2.3)

3 if x -+4, +7.

Comparing (2.3) with (3.10) of [3] we see that we have, in fact, evaluated the co-

efficient of i in the computation of ( + i )9 (the most tedious step in

applying Western’ s [8] formula).
2

STEP 6. Compute + 2
when 0 (q) and

i
when 0 (q) for the

2, 2+i] <2 + i)

values % satisfying Theorem i, part (b), and the values given in Step 2 (see

Step ii if q is large).

%2+ 1STEP 7. Compute
2

D +2

the values given in Step 3.

for the values % satisfying Theorem i, part (c), and

STEP 8. Take the square root (mod q) of all entries in Steps 6 and 7 choosing

for the moment the positive square root < (q 1)/2 (the actual sign to be fixed

later).

STEP 9. Evaluate .(%) ()2 + 1)[.’J R(%) where R(%) is the polynomial given

on the left-hand side of Theorem i, part (a); e.g., for q 19,

(%) (%2 + 1)2(1 + 9%2 + 5%4) (Note that R(%) is the imaginary part of

(% + i)(q+l)/4).
STEP i0. Evaluate R(%) for the values of % given by Theorem I, part (c) (see

(3.9) of [3]) for the values of % given by Theorem i, part (b) (see (5.8) of [3]).
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From Steps 7 and 8 we have obtained, up to sign, the values of 8 given in

Theorem i of [3] and the values of y given in Theorem 3 of [3]. Since y(mod q)

(see row 2 of Table 2 and (3.16) of [3], one crucial missing element remains in

the evaluation of Western’s [8] formula, namely the determination of the sign of

the y’s and the sign of the k’s. (Once these are determined all the results in

Theorems 2 and 3 follow at once). In [3] the author has shown that for primes q--3

(mod 8) (but not, unfortunately, for primes q 5 (mod 8)) the signs of the y’s

and the k’s in Theorem 2 may be completely determined through knowledge of the

Legendre symbol ), and the signs of the y’s and k’s in Theorem 3 may be com-

pletely determined through knowledge of the Legendre symbol q ), c d (mod q).

TO obtain Theorem 2 we need only multiply together the three parts of Western’s

formula, namely the values F(j), i < j < (q + i)/4, the values R(%i) l<i_<(q+l)/4,

and the Legendre symbols
8i,j

), i < i j < (q + i)/4. If the product of the 3q
I 2i/8

numbers is (q+12) then (-q)(p-l) (a- b)d/ac (mod p) (the in

1(i + i )/2 is interpreted as the positive integer < q and (rood q), i.e.,

(q + 1)/2, see (3.10), (3.11), and (3.12) of [3]).

STEP ii. A great deal of CPU time may be saved if one only computes values in

the first and second rows and first and second columns if q ii (rood 16) and in

the first and last rows and first and second columns if q E 3 (mod 16). Indeed, in

extending Theorem 2 beyond q i00, this enormous time-savlng device should be

entered into the program no later than Step 6 (we were wasteful because we had no

proof of the validity of this simplification until after we ran our program for

q < i00). Henceforth, for brevity, we call the first and second rows the relevant

rows if q E II (mod 16) and the second and last rows the relevant rows if q 3

(mod 16). (Note, e.g., the second row, second column, of Table 2 contains the

entry Yl,l 13).

The (q + 1)/4 entries y which appear in the relevant row (and in the state-
i,j

ment of Theorem 2) are now obtained very easily as follows:
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Yi,j i/Bi,j, I < i -< (q+l)/4, 1 < .J < (q+l)/4,

Yi,j
=-i if F(Uj) (%iq

(2.4)

Yi,j
+i if F(Uj) # R(%i)q

The values of k i < j < (q+l)/4 are obtained in Theorem 2 as follows. Each

entry in the relevant row is multiplied by 1 or by -i according as the entry

%i/Bi,j in the relevant row and second column is i or-1 (in order to make k
I

I).

Then the k.’s#l < j < (q+l)/4, are simply the reciprocals (mod q) of the entries in
3

the relevant row.

EXAMPLE. For q ii, q 19, we have at the end of Step ii the following

values in the relevant rows and columns.

(a)" q=ll

F)
(-i)

3

4 5

Column
i

(b): q 19

$ 4 7 R(Xi)-- 16 16 3 16

-i 2 4

Row 1

2

2 3 4

16

3

3

Colum
I

o 1 4 5

3 9

T 5

II 2

13 -3

].8 - -8 -6 9

2 3 5

-5

6

Row 1

8i’J -i if (R(%i))(F(Uj))where the signs have been assigned so that q
(mod q) and ’J +i if (R(Xi))(F(Uj)) (mod q). One may use (2.3) and the

q

example following Step 9 to check this assertion for q 19; q ii may be easily

checked once F(x) 5x
4 + 2x

2 + 4 and (l) (%2 + i)(3%2 I) have been evaluated.

Multiplying the second row in (a) by -i (since the second row, second column

entry is -i) and then taking reciprocals of entries in the second row of (a) we

have (i) -I i (mod ii), (-2) -1 5 (mod ll), (-4)
-1 8 (mod Ii). Moreover,

i / -i I0 (mod ii), 3 / 4 9 (mod ii), 4 / 5 3 (mod ii). Consequently, kl,k2,
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and k
3

in Theorem 2, for q ii, are 1,5, and 8 respectively, and the long desired

Y1 i’ Y2 i’ Y3 1
are i0, 9, and 3. (Note that in the Tables, the Yi,j s begin in

the 2nd and end in the (q+5)/4-th rows.

(i)

Similarly, taking reciprocals of entries in the last row of (b) above, we have

-i -I -I -i -i
i (19), (-8) 7(19), (-6) 3(19), 9 17(19) and (-5) 15(19);

moreover, 3 / 9 13(19), 7 / 5 9(19), ii / 2 15(19), 13 / -3 2(19) and

18 / 1 18(19), yielding Theorem 2, for q 19.

Glancing at Tables i and 2 it should be clear how to generate the ((q-3)/4)

entries not listed, namely by simple multiplication (mod q) (a great saving over

going through the entire process described above). For example, the entry 2 in the

last row and last column of Table i, (Y3,3), is simply Y3,1 k3 3 8 2 (mod ii).

(The author showed in Theorem 4 of [3] that the k.’s in Theorem 2 which render

possible the reduction of cases which need formally be considered coincide with the

k.’s in Theorem 3 in magnitude and can be ordered alike (see remark after Theorem

3). It is clear on numerical grounds that they agree also in sign. A proof of

this conjecture would be very interesting. Although the time saved by considering

just two rows and columns is not great when q ii, since only 4 cses are elimi-

2
nated (see (a)), when q 83, a whopping ((83 3)/4) 400 cases are eliminated

(something even a computer can begin to appreciate).

In proving Theorem 3 which yields values of Yi,j’ b Yi,jc (rood q), for

which (-q)
(p-l)/8 b/a (rood p), one must multiply together values G(Uj),

1 < j < (q+l)/4, (%i) i < i < (q+5)/8, and the Legendre symbols

UjYi,j
q

(c ujd (rood q)). If the product of these three numbers is +i, then

(_q)(p-l)/8 b/a (rood p), as is evident from (5.7), and (5.8)-(5.11) of [3].

This immediately yields the rule for determining the sign of ]’i,j"
STEP 12. In determining values of Yi,j’ b Yi,jc(mod q) for which

(_q)
(p-l)/8 b/a (mod p), the relevant rows and columns are the second both for

q 3 and ii (mod 16). The other values may be obtained by straightforward multi-

plication modulo q.
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EXAMPLE: q 19. At the conclusion of Step i0, and after assigning signs in

the second row and column, we have

1 o

-I 2

1 5

Column

1 -I 1 -i -I

8 9 Row 1

3

(IiI 0 <=> d 0 (rood q) with an abuse of notation) and the signs of Yl,l i,

71, 2 2, 71, 3 7 are chosen as in (5.17) of [3]). For example, the negative sign

is given for the entry YI,4 (row 2, column 5) as, then, (%1 (G(4)) 19

(i) (-i) (2_-16 /\. +1, precisely the required condition. Indeed, we could obtain the

entry 73,5 2 in the last row and last column by precisely the same reasoning

)G(5) +i) but how very much simpler it is to simply note

Y3 1
x Yl 5 7 x 3 21 2 (rood 19)!

The fact that there are only ((q+5)/8) + i columns listed in Tables 3-4 rather

than the ((q+l)/4) + i celumns that are listed in Tables 1-2 follows from the fact

(see Step i0) that values of y given by Theorem I, part (b), occur in pairs (each

the negative of the other) but this is not so for the values of given by Theorem

i, part (c). Since, in Theorem 3 (or equivalently in Tables 3-4) the value of Yi,j
is independent of the choice of sign of i’ it is necessary to llst only

((q+l)/2)-+ 1 (q+5)/8 columns of i,j’s which makes Tables 3-4 slightly more

compact. On the other hand, O, +2, -+5 may be thought of as five distinct yi’s for

q 19 (see Table 4), as it is only by means of this delineation that one can show

that the row sums in Tables 3-4 must be a multiple of q(l + 2 + 2 + 7 + 7 19).

(It is in the latter sense that we say in the introduction that there are 3528

distinct choices when q 83 ((83+1)/4) 2 x 8 3528)).

3. NECESSARY AND SUFFICIENT CONDITIONS.

We prove necessary and sufficient conditions for primes p i (mod 8)
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2
b
2

c
2

a + + 2d
2

a c i (mod 4) to satisfy (_q)(p-l)/8 ((a_b)d/ac)J
j I, 2, 3, 5, 6, 7; q 3 (rood 8) < 100. In Theorems 2 and 3, %. is defined by

a %.bl (mod q) whereas in Theorem 4, it is defined by b %ia (mod q). Results

in Theorems 2 and 3, and implicitly, results in Theorem 4 are explicitly stated

only for j I, 4, and 8 (i.e., (a-b)d/ac, b/a, and i). Set a yi,jd (mod q) in

Theorem 2, b yi,jc (mod q) in Theorem 3, a yi,jc (rood q) in Theorem 4, and set

c -p.d (mod q), d 0 (mod q), in each Theorem. If (a-b)d/ac, in Theorem 2, is

replaced by ((a-b)d/ac) j, j 3, 5, or 7, then the congruences in (3.1) are satis-

fled if and only if % is replaced by -% if j 3, p is replaced by -p if j 5, %

is replaced by -% and is replaced by -p if j 5, % is replaced by -% and is

replaced by -p if j 7 ((a-b)d/ac) 3 ((a+b)d/ac). If b/a in Theorem 3 is replaced

by -b/a, then the congruences in (3.2) are satisfied if and only if Yi,j is replaced

by -Yi,j and the identical remark clearly applies to the cases j 8 and j 4,

i.e., if (-q) (p-1)/8
+i (mod p) is replaced by (-q)

(p-l)/8 i (mod p).

Putting together the above, we have

2
b
2 2THEOREM 2. Let p a + c + 2d

2
1 (rood 8) be a prime with a and c

chosen so that a c i (mod 4) and let q be a prime 3 (rood 8). Letting

pj, R(i) i _< i < (q + i)/4, F(j), I < j < (q + 1)/4, and Yi,j’ i -< i, j <_ (q+l)/4

by (2 4))be defined as above we have (with i,j related to 13i, j

_k 1(_q)(p-l)/S Z (a-b)d/ac) (rood p) (%i F(j)( (rood q)

> a %ib Yi,’3 k.d3 (mod q) (3.1)

(p-l)/4
where the h

i
are the integers for which (-q)--b/a (mod p) and the values

of k. are determined from the p. satisfying c +p.d (rood q).
3 3 3

From Theorem 2 we obtain for 3 < q < 100,

q= ii:

k. 115 8
3

q 19: Yi,j
k. 1 7 3 17 1151
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q 43:

No

j

42 37

1 25

0 1

ii 33

ii

16

41

19

35

30

II

22

40

13

26

28

20

14

34

29

36

15

35

27

34

17

17

17

19

q 59: i,j
k
J

j

1 8 19 28

1 49 5 20 29

1 ii 34 56 14

2 3 4 6

36

22

37

43

46

10

39

37

5

15

41

23

36

17

42

12

24

18

46

53

29

21

49

40

22

52

34

17

24

53

35

44

25

q 67: Yi,j
k.
3

j

14 19

4O

13

23 2

2B

26

43

32

30

44

40

33

ii

i0

35

42

26

12

38

3

53

16

39

51

37

18

49

37

58

19

55

56

21

57 60

20 55

17 65

24 26

65

22

27

66

i

60

30

%. 2115
q 83: Yi,j163 7

kj 1 70

75

80

23

15

38

8

24

58

36

I0

26130

42! 4

581 4

13114

36142 43145146 56

22 110 24

41149 17

17122 24 125 126 27

58 6_

28 2]

12 3]

28 2

71 7

51 7;

7

30 31

73 7z 76

31 8] 18

74 2 35

34 3 37

82

82

38

Thus, for example, for q ii, we have

a --b i0 kjd (mod ii),

(-ii)
(p-I)/8 (a-b)d/ac (mod p) a 3b 9 kjd (mod ii)

4b 3 k.d (mod ii)
3

where k. i, 5, or 8 according as c O, +2d or +4d (mod ii).

2 2 2
d
2THEOREM 3. Let p a + b c + 2 1 (rood 8) be a prime with a and c

chosen so that a c 1 (rood 4) and let q be a prime 3 (rood 8). Letting hi, j,
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R(%i) i < i < (q + 5)/8, G(j), i < j < (q + 1)/4, and Yi,J’ i < i < (q + 5)/8,

i < j < (q + 1)/4, be defined as above, we have

(_q)
(p-l) / 8 JTi’J +lb/a (rood p) > R(%i) G(j) q

> a llb and b -71,j kjc (rood q) (3.2)

where the h
i

are the integers for which (-q) (p-l) /4 _--i (rood p) and the values of

kj, j > i, are determined from the j satisfying c +jd (rood q); kI i, i I

arises when d E 0 (mod q).

From Theorem 3, we obtain for 3 < q < i00

h
i

q 11: Yi,j
k.

0 5

i0 6

i 5

0 i

q-- 19:

i

Yi,j
17 15

3

i

q 43: i,j
ko

uj

42

I0

25

25

ii

36

3

21

12

32

ii

14

17

41

12

15

41

3O

20

20 36 34

i0

17

18

i

q 59: Yi,j

kj

q 67: Yi,j
k.
3

j

58 37

ii 34

19

11

30

56

29

15

17

14

20

21

36

22

26

25

I0

46

12

65

13 46

23

30 57 IIi 0

3 28 32! 40

331 13 22i 29

27

13

16

41

i0

17

36

14

24

13

29

28

40

16

49

ii

501

261 53

Iii 25

371 58 56 17

151 14! 321 28

65

31

8 60

i0 9
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q 83: Yi,j
k
J

j

70

79

80

41

13

41

38

21

14

65

47

33

20

49

58

19

21

66

12

31

12

41

5

34

38

49

15

35 39

31 70

17 43

7 20

67

32

65

3

12

6

31

40 II

78’74

16:39

20

23

35

18

15

35

REMARKS. Values of k in Theorem 3 coincide in order, magnitude and sign with

the k’s in Theorem 2. In [3, Theorem 4] the author showed that a necessary condi-

tion for such an order to coincide, k > l, is that for c jd (mod q) in Theorems

2 and 3 the ljl’s are ordered in Theorems 2 and 3 so that the product of their

squares is 4 (rood q). For example, when q 83, the eighth value of ljl in

Theorem 2 is 17 whereas the eighth value of lj,l in Theorem 3 is 5. Since

(17)(5) 2 (mod 83) we have (172)(52 4 (mod 83).

4. THE BEAUTIFUL SI}IILARITY OF THE RESULTS FOR (-q)(p-l)/8 -+b/a (MOD e AND

THE RESULTS FOR (-q)(p-l)/8 E +I (MOD e).

In the following theorem, we show that the results of von Lienen [6], when

q 3 (rood 8) (and the same is true for q 5 (rood 8)), may be put into a far more

compact form; more significantly, they may be put into a form imost identical to

the form in Theorem 3 (consequently, one may use Tables 3-4 to check numerical

examples). Details of the proof of the following Theorem which are clear from the

proof of Theorem 3 of [3] are omitted.

2 2
c
2THEOREM 4. Let p a + b + 2d

2
I (mod 8) be a prime with a and c

chosen so that a c 1 (mod 4) and such that %i’ j’ and Yi,j’ i < i < (q+5)/8,

i < j < (q+l)/4, satisfy b %ia (mod q), a -i,jc (rood q), c -= jd (mod q).

Then, if q is a prime 3 (mod 8), we have

(_q)(p-1)/8 1 (rood p) (4.1)

if and only if the conditions in (3.2) are satisfied when b is replaced by a and

Yi,j is replaced by -Yi,j when q ii (rood 16).

PROOF. For brevity, all congruences in this proof are understood to be modulo

q unless otherwise stated. If the conditions on the right-hand side of Theorem 3
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are altered as indicated above a direct computer search shows that (4.1) holds for

each q 3 (mod 8) < i00.

Conversely, suppose that (4.1) holds and that b 0 (mod q). Then, by

Western’s [8] formula for q 3 (mod 8), we have

p(q-3)./8 (a + bi)(q+l)/4 (c di )(q-l)/2 i (rood q) (4.2)

where the i replaces the i in (5.6) of [3]. From Gosset [2], we have that

a bi
(q+l)/4

i (mod q) (4.3)
a+bi

i d provided d 0 (rood q).and so we have a . j Yi,j
1

(q-l)/2 .Yi,j and a b we haveBut, then, as dq-l i, j Yi,j q i

provided b and d are not 0 (rood q). It is easy to show from (4.3) (parentheti-

cally, it follows also from (4.2) of this paper and (5.7) of [3] in conjunction

with the vanishing of the imaginary part of (- i )(q-l)/2) that the real part

(i)(q+l)/4of ()t
i
+ i)(q+l)/4 and the imaginary part of + 1 and i:he imaginary part

(i ) (q+l)/4
of

1 + 1 must be 0 (od q). But it is clear that the imaginary part of

(% + i)(q+l)/4 and the real part of (i + Xi)
(q+l)/4

differ by a sign if and only if

(q+l)/4 3 (rood 4), i.e., if and only if q ii (rood 16). The remainder of the

argument, provided b 0 (mod q), coincides with the argument in Theorem 3 of [3].

When b 0 (rood q) (something that cannot happen in Theorem 3 of [3] in light

of (4.3)), the argument is again easy. Clearly b %ia, b 0, parallels the case

a % b, a 0, in Theorem 3 of [3]. Indeed, we have in the two cases, from (4.2)

above and (5.6) of [3] that (with the conditions on % and

b(q-3)/4(bi) (q+l)/4
i(a (q-l)/2) (mod q) (4’)

from which it is clear that the sign of Yi,j
(rood 16) since a(q-1)/2 b(q-1)/2 (jYi,J

must be changed if and only if q ii

d)
(q-l)/2

and of course, i
(q+l)/4

i

or-i according as q 3 (rood 16) or q Ii (rood 16).
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5. A BRIEF TREATMENT OF PRIMES q 5 (MOD 8.

We first treat the case that q(p-l)/8 E -+i, +b/a (rood p) ( q is a quartlc

residue of p). We may give a Theorem exactly in the form of Theorem 3 (although

the i ’s must be determined dlfferently). We wll, however, give our results in
,J

terms of necessary and sufficient criteria for q to satisfy q(p-l)/8 i (rood p).

As explained in 4 the changes necessary to re-state the criteria for q to satisfy

q(p-l)/8 --l,b/a (rood p) follow from Theorem 4 (the roles of 3 and Ii (rood 16)

are played by 13 and 5 (rood 16)).

It is easy to see from [8] that if q is an octic residue of p(a -i k c,J J
(rood q)) then the entry TI,I must be +i for every q 13 (mod 16) and -i for every

q 5 (rood 16).

The magnitude of Ti,J may be determined exactly as in the first ten Steps in

2. Moreover, the sign and magnitude of Ti,1 may be similarly determined. As

Yi (Ti,l) (TI for each i and j > 2 it remains only to show how to choose the

sign of T1 This step (which, of course, now seems obvious) eluded the author
,J

for more than a year. One must choose the sign so that -G(j)(mod q) if

G(j) is a quadratic non-resldue of q and so that jl,j G(j,)(mod q) if G(j) is

a quadratic residue of q provided q 13 (mod 16) whereas these congruences must be

reversed if q 5 (mod 16). The reader may verify these assertions using the

proof of Theorem 3 of [3].

We now consider the case that q (p-l)/8 +(a+b)d/ac (mod p) (> o is not a

quartic residue of p). A Theorem exactly in the form of Theorem 2 may be given.

Only the determination of the sign of the 8i,j ’s (and hence, the yi,j s) differen-

tlates the cases q -= 3 (mod 8) and q 5 (mod 8). In the latter case it is not

difficult to use Theorem I of [3] to show that to have q(p-l)/8 (a-b)d/ac (rood p)

we must choose the sign of 8i,j
as follows.

If R(%i) F(j) (El,j -= +1/2 (mod q), we choose the sign of i,j so that it is

+/-i if i,j is a quadratic residue of q and so that it is +/-i if i,j is a quadratic

non-residue of q.
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For q -< 37 our results agree with those of yon Lienen (our fozmulatlon is,

of course, much more compact). We will only cite one example here.

2 2 2
2d

2
For p a + b c + i (rood 8), a c i (rood 4), we have for

c- pjd (mod q), j -> 2,

a 36 kjc (mod 37)

aa 14 k.c (mod 37)

37P_lj8t i (rood p) <=> 7 kjc (rood 37)

16 kic (rood 37)

19 k.c (rood 37)

where ko I, 22, 17, 9, 31, 25, 13, 33, 5, or 3 according as

Uj 0, i, 3, 5, 6, 9, I0, ii, 16, or 18.

6. TABLES AND NUmeRICAL EXAMPLES.

Tables i-2

Values of %i’ IPjl, and Yi,j such that a %ib -Yi,jd (rood q) if and only if

(_q) (p-l) /8 ((a-b)d)/ac (rood p), a b (mod q) c Ujd (mod q) q ii 19

2 2 2
d
2

p # q i (rood 8) a + b c + 2 a c i (rood 4), and values of

(q+l)/4

Ej =I ]

Table l" q ii

k
i

1 3 4

i0 9 3

6 1 4

3 6 2

(q+)/

j=l

Table 2" q 19

13

15

1

7 Ii

9 15

6 i0

8 7

8

j 228 12q

13 18

2 18 57

14 12 57

6 16 38
2 38

11 . 38
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Tables 3-4

Values of I%ii, IUjl, and Yi,i such that b Yi,jc(mod q) if and only if

(_q)(p-l)/8 b/a (mod p), a %.b (mod q), c .d (mod q), q ii, 19, p # q I

2 2 2
d
2

(mod 8) a + b c + 2 a c i (mod 4) and values

(q+5) / 8

lj YI,j + 2 i=E2 Yi,j Setting b %la (mod q) and a i,jc (mod q) values

of Yi,j given below occur if and only if (-q)(p-l)/8 _- i (rood p) if q 3 (mod 16),

and if and only if (-q)(p-l)/8 --i (mod p) if q Ii (rood 16).

Table 3: q Ii Table 4: q 19

(+)/

j=l

lO 6

6 8

3

22

22

11

j 55 5q

2 7 14 ll

8 17 15 5

3 15 iI lO

19

57

57

57

j 209 ii q
j=l

Numerical examples illustrating Tables 1-4 for q 3 (mod 8) > 19, p 1

(mod 8) a
2 + b

2
c
2 + 2d

2
(congruences are mod q unless stated otherwise).

i. q 19, p 41 52 + 42 (-3)
2 + 2(4)

2

a 6b 6d (mod 19), %4 -13, 3 4 > (-19)(p-l)/8 (a+b)d/ac (mod p)

(since the value of )4 differs in sign from that in Table 2, but the

value 4,3 6 agrees).

Indeed,
(a+b)d 14 (-19)

5
(mod 41).

ac

2. q 19, p 17 12 + 42 (-3)
2 + 2(22 (see Table 4)

b 5c (mod 19), 3 5, U4
-8-- (-19)

(p-I)/8 b/a (mod p)

Indeed,
b_

4 (-19)
2

(mod 17).
a
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3e q 19, p 233-- (13)
2 + 82 (-15)

2 + 2(2)2 (recall that b E Xia)
(p-l)/8

-i (rood p)a- 8c (rood 19), %3 5, 2 =- 2 > (-19)

in Table 4 is Ii -8 (mod 19); q 3 (mod 16))
(since the entry Y3,2
Indeed, -i (-19) 29 (rood 233).

Extended Table
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