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ABSTRACT In this paper we generalize Bownds’ Theorems (I) to the systems dY.(t)
dt

A(t) Y(t) and
dX(t) A(t) Xt) + F(t X(t)) Moreover we also show that theredt

always exists a solution X(t)-of t A(t)X + B(t) for which limt+ooSUpl IX(t) II >

o (= oo) if there exists a solution Y(t) for which
lira sup Iy(t) > o (= oo)
t
_
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I. INTRODUCTION.

In this paper we shall study the stability behavior of the following systems

dY(t) A(t)Y(t) 0 < t < (I.i)
dt

and

dX(t)
dt

A(t)X(t) + F(t,X(t)), 0 -< t < (1.2)

where A(t) is a continuous matrix on R
n

for all 0 < t < , F(t,X(t)) is a real

valued continuous n-vector defined on [0,) X R
n

and X(t) and Y(t) are n-vectors.

Consider special equations of (i.i) and (1.2)

y" + a(t)y 0, 0 < t < (1.3)

and
x" + a(t)x g(t,x,x’), 0 -< t < (1.4)
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where a(t) C[0,) and g(t,x,x’) is continuous on [0,)R R. From some theorems

of stability theory, Bownds [i] showed that (1.3) has a solution y(t) with property

lim sup (ly(t) + lY’(t)I) > 0 (i 5)t_oo

He also established that (1.4) has the property (1.5) provided that the zero solu-

tion of (1.3) is stable and there exists a function y(t) 6L[0,) such that

Ig(t,x,x’) < y(t) (Ixl + Ix’ I)

for (t,x,x’) E [0, oo) x R x R.

Thus in the following section we shall extend the above results to systems

(i.i) and (1.2). In section 3 we shall consider a nonhomogeneous system

dX(t) A(t)X(t) + B(t) 0 < t < (I 6)dt

where B(t) is a continuous vector for 0 _< t < oo. We shall prove that there always

exists a solution X(t) of (i 6) for which
lim sup llX(t) ll > 0(= ) if there exists
t+

a solution Y(t)of (] i) for which
lim sup lly(t) ll > 0(= oo) Here II II is an
t+oo

appropriate vector (or matrix) norm.

2. ASYMPTOTIC BEHAVIOR FOR (i. I) AND (i. 2).

Before stating main theorems, let us recall a theorem from Coppel [2, p. 60].

THEOREM 2.1. (Hartman [2, p. 60]). Suppose that, for every solution Y(t) of

(i.i), the limit
lim IY(t) (2 i)

t _o

exists and is finite. If there exists a nontrivial solution Y(t) of (i.i) for

which the limit (2.1) is zero, then
t

t A(s)ds + as t +
r

t
o

From the above theorem we will obtain the following corollary which is a gen-

eralization of Theorem i in [i].

COROLLARY 2.1. Suppose that

t A(s)ds <
r

t
o

Then there exists a nontrivial solution Y (t) of (I.i) for which
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>0
t _+o

PROOF. Suppose, to the contrary, that all solutions Y(t) of (i.i) satisfy

From Theorem 2.1 we obtain

lim sup

t
t A(s)ds /- as t + This leads to a contra-r

to

diction. The corollary then follows.

Throughout this paper we shall denote $(t), the fundamental matrix of (i.i)

with initial condition (0) I (identity matrix).

Now we shall prove the following theorem via the Schauder-Tychonoff Theorem

[2, p. 9].

THEOREM 2.2. Suppose that the null solution of (I.I) is stable and that there

exists a solution Y(t) of (i.i) for which

lim sup llY(t) ll > 0
t/oo

(2.2)

Suppose also that there exists y(t) E Ll[to’) such that for some positive con-

stant ,
llF(t,x) ll < Y(t) llxl E

(2.3)

Then there exists a nontrivial solution X(t) of (1.2) for which

lim sup llX(t) ll > 0
t+oo

PROOF. Since the null solution of (i.i) is stable, there exists a positive

constant k such that

(2.4)

for all 0 < t < s and there exists a nontrivial solution Y(t) of (i.i) for which

(2.2) holds and

IIY(t) ll -< 1 (2.5)

for t t and for given small positive constant g (<i).
o

Since y(t) E Ll[to,), there exists To (> to) such that

k (s)ds < for all t T
o

t
(2.6)

Via the Schauder-Tychonoff Theorem we shall establish the existance of a solution
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of the integral equation

X(t) Y(t) (t) I $-l(s) f(s,X(s))ds t -> T
t

o
(2.7)

Consider the set

F {U; U(t) X(t) is continuous on Jo [To’) and

IIU(t) II I for t e T }
O

and define the operator T by

TU(t) Y(t) ; (t) -l(s) f(s,U(s))ds.
t

(2.8)

First, we shall show that TF c F. Taking the norm to both sides of (2.8) and

using (2.3), (2.4), (2.5), and (2.6), we obtain for U 6 F

IITU(t) II < IIY(t) ll + I lib(t) -l(s) f(s’U(s))llds
t

< i E + k I lf(s’U(s))l Ids
t

-< 1 e + k f y(s) [IU(s) llds
t

< 1 e + k f y(s)ds
t

It is clear that TU(t) is continuous on J This proves TF F.
O

Second, we shall show that t is continuous. Suppose that the sequence {U
n

in F converges uniformly to U in F on every compact subinterval of J We claim
O

that TU converges uniformly to TU on every compact subinterval of J Let be a
n o i

small positive number satisfying e I
< i. Since y(t) Ll[to’)’ there exists

TI
> To so that for t e TI

k y(s)ds < -t
(2.9)

By the uniform convergence, there is an N N(I, TI) such that if n -> N, then

lf(s U (s)) f(s U(s))II < i
n 2kTl

T < s < T
I

(2.10)
O

Then using (2.8) (2 9) (2 i0) (2 3) (2 4) and the fact that []U (t)l[ < I and
n

llU(t) ll-< i for T < t < oo, we obtain the following inequalities
O
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lTUn(t)- TU(t)II I[ (t)-"
t

(s)f(s’Un(S))ds I (t)-l(s)f(s’U(s)dsl

.TI
< It l(t)-l(s)ll lf(s’Un(S)) f(s0U(s))l]ds

l(t) (s) ll lf(S,Un(S))llds + l(t)-1

T
1

(s) ll

<k If(s,Un(S)) f(s,U(s)> Ids + 2k
t T

1

7(s)ds

for n >- N.

This shows that TU converges uniformly to TU on every compact subinterval of J
n o

Hence T is continuous.

Third, we claim that the functions in the image set TF are equicontinuous and

bounded at every point of J Since TF F, it is clear that the functions in TF
o

are uniformly bonded. Now we show that they are equicontinuous at eact Doint of

J For each U F, the function z(t) TU(t) is a solution of the linear system
o

dV A(t)V + f(t,U(t))
dt

Since lz(t)[i IITU(t) II 1 and lf(t,U(t))ll is uniformly bounded for U E F on

dz
any finite t interval, we see that is uniformly bounded on any finite interval.

Therefore, the set of all such z is equicontinuous at each point of J (see [2, p.6]).
o

All of the hypotheses of the Schauder-Tychonoff Theorem are satisfied. Thus

there exists a U F such that U(t) TU(t); that is, there exists a solution X(t)

of

X(t) Y(t) (t) -l(s) f(s,x(s_))ds
t

Thus, from the hypotheses and the above equality, we obtain

lira sup IX(t) Y(t)[I 0 (2.11)
t-oo

Since
lim .sup lly(t) ll > 0 (2 Ii) implies that

lim sup l[X(t) ll > 0 This proves
t ’, t

the theorem.

It is clear that (1.4) can be written as the form (1.2) with
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A(t)
-a(t)

and F(t,X)
0 g(t,x,x’)

where X colum(x,x’). Thus we can apply Theorem 2.2 to (1.4) to obtain the fol-

lowing corollary which is a generalization of Theorem 2 in [i].

COROLLARY 2.2. Suppose that the null solution of (1.3) is stable and that

there exists y(t) Ll[to’) such that for some positive constant

Then there exists a nontrivial solution x(t) of (1.4) for which

lim sup
t-

(Ixl + x I) > 0

PROOF. Since t A(t) 0 for Corollary 2.1, we know that there exists a sol-
r

ution Y(t)of (I.I) for which

lim sup
IIY(t)II > 0

t

If we take ]IXI] ]x[ + Ix’l, then the corollary follows from Theorem 2.2.

3. ASYMPTOTIC BEHAVIOR FOR (1.6)

In this section we shall show that if there exists a solution Y(t) of (I.I)

for which
lim sup ly(t)ll > 0 (= o) then there exists a solution X(t) of (I 6)
t

for which
lim sup ]IX(t)]i > 0 (= )
t

THEOREM 3.1. Suppose that there exists a solution Y(t) of (I.i) for which

Iim sup Y (t) > 0
t

(3.1)

Then there exists a solution X(t) of (1.6) for which

lim sup :’X(t)’l > 0

PROOF. From the variation of constants formula we know that any solution

X(t) of (1.6) can be written as the form below

X(t) (t)c + (t) -l(s) B(s)ds (3.3)

Hence we shall choose c so that Y(t) (t)c satisfies (3.1).

First, let us suppose

lim sup II *(t) -l(s) g(s)dsll > O.
t
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Let Xl(t) X(t) Y(t). It is clear that Xl(t) is a solution of (1.6). Thus

from (3.3) and (3.4) we obtain

lim sup lim sup iX(t) y(t) llt llXl(t)ll t

lim sup l(t) -I
t/

(s) B(s)ds[[ > 0

Thus there exists a solution Xl(t) of (1.6) for which (3.2) holds.

Second, suppose that

t ooiim II (t) I -l(s) B(s)dsll 0 (3.5)

Taking the norm to both sides of (3.3) and using (3.1) and (3.5) we obtain
t

limt sup lX(t)ll >_ limt oosup (I IY(t)l] I(t) fO -l(s) B(s)dsl I)

t

> lim sup lly(t) ll lim sup fO -i
t t

I(t) (s)

_> lim sup ly(t)ll > 0
t

This shows that X(t) satisfies (3.2). The theorem then follows.

Using the same argument as Theorem 3.1 we also can obtain the following theorem.

THEOREM 3.2. Suppose that there exists a solution Y(t) of (i.I) for which

lim sup iy(t)ll
t

Then there exists a solution X(t) cf (1.6) for which

lim sup Ix(t)II
t

PROOF. Since the proof is almost the same as Theorem 3.1, we shall omit the

detail.

REMARKS. It is interesting to note that Hatvani and Pintr [3] have studied

this type of problem for equation (1.4).
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