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ABSTRACT. A theoretical study is made of the nonlinear wave loading on offshore

structures using the diffraction theory of hydrodynamics. A nonlinear modification

of the classical Morison equation, D F + FD
for estimating wave forces on off-

shore structures is suggested in this paper. The modified equation is found in

the form D F% + Fn% + F
D

where Fn -= F
d
+ F + F is the nonlinear contri-

w q

bution made up of the dynamic, waterline, and the quadratic forces associated with

the irrotational-flow part of the wave loading on structures. The study has then

been applied to calculate the linear and the nonlinear wave loadings on a large

vertical cylinder partially immersed in an ocean of arbitrary uniform depth. All

.the linear and nonlinear forces exerting on the cylinder are determined explicitly.

comparison is made between these two kinds of forces. Special attention is

given to the nonlinear wave loadings on the cylinder. It is shown that all non-

linear effects come from the interaction between the bdy’s responses to the on-

coming wave’s fluctuating velocity and its fluctuating extension. It is found
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that the nonlinear effects are dominated by the sum of the dynamic and waterline

forces. The nonlinear correction to Morison’s equation increases with increasing

kb where b is the characteristic dimension of the body and k is the wave number.

This prediction is shown to be contrary to that of the linear diffraction theory

which predicted that the Morison coefficient decreases with increasing kb. Several

interesting results and limiting cases are discussed in some detail.

KEY WORDS AND PHRASES. Nonlinear Waves, Wave Forces, Morison equation, Wave
loading on Structures, Hydrodynamic Diffraction
1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 76B15, 76B20.

I. INTRODUCTION.

One of the most common problems in hydrodynamics deals with waves as well as

wave loading estimation for offshore structures. This problem is of considerable

mathematical and engineering interest due to abundant applications to marine

hydrodynamiss. In order to indicate our motivation and interest in the problem,

it is necessary to review some of the relevant works on the subject.

Based upon the classical works on linear diffraction theory for water waves by

Havelock [I] and for sound waves by Morse [2], MacCamy and Fuchs [3] developed a

linear diffraction theory for wave forces on a large cylindrical pile immersed in

oceans. This study was found to have limited applications because the nature of

water waves is inherently nonlinear.

In recent papers 4-5], Chakraborty has made an interesting extension of

MacCamy and Fuch’s work, and obtained analytical solutions of the second

order wave forces on a vertical cylinder based upon the Stokes flfth-order wave

theory. It is unfortunate that his scattered potential fails to satisfy the non-

linear free surface boundary condition and the radiation condition at infinity.

In order to eliminate these drawbacks of Chakraborty’s theory, Raman and

Venkatanarasaiah [6] have presented a nonlinear diffraction theory due to the

Stokes second-order waves for estimating the wave forces on a vertical cylinder.

Although their work has provided some interesting theoretical and experimental

results, the method of solution is extremely complicated.
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Historically, the wave loading estimation for offshore structures has been

based upon the work of Morison et al[ 7]. Morlson’s equation is generally used

for calculating wave forces on solid structures in oceans. This equation expresses

the total drag D as a sum of the inertial force, p V associated with the Irro-

rational flow component, and the drag force, 2 C
D
A U

2
related to the vortex-flow

component of the fluid flows. Mathematically, the Morlson equation is

(1.1)

M
where p is the fluid density, C

M (i + ) is the Morison (or inertial) coeffi-

cient, M is the added mass, V is the volumetric displacement of the body, U isa

the fluctuating fluid velocity along the horizortal direction, A is the projected

frontal area of the wake vortex, and CD
is the drag coefficient. It is assumed

that the inertial and drag forces acting on a fixed solid object in an unsteady

fluid flow are independent in the sense that there is no interaction between them.

There are two characteristic features of the Morison equation. One deals with

the nature of the inertial fo.rce which is linear in velocity U. The other indicates

that the drag force is nonllnaer in velocity U. It is generally believed that all

nonlinear effects in experimental data are associated with drag forces. However,

for real solid structures in real ocean waves, there is a significant nonlinear

force associated with the Irrotatlonal component of the fluid flow because of the

large amplitude of ocean waves. These waves are of special interest in wave

loading estimation. It seems necessary to incorporate all significant nonlinear

effects associated with the nonlinear free surface boundary condition in the

irrotational flow part of the wave loading on structures.

Several studies have shown that the mathematical form of the Morison equation

is satisfactory. However, certain difficulties in using it in the design and

construction of offshore structures have been reported in the literature. These

are concerned with the drag force which has relatively large scale effects. The

shortage of reliable full-scale drag data in wave motions is also another problem.
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There is another important question whether a linear theory of the irrotatlonal-

flow response is appropriate at all to water wave motions wth a free surface.

Despite these difficulties, the use of the Morlson equation has extensively been

documented in the literature through plentiful data for determining the coeffl-

clents and C
D

Recently, Hogben et al [ 8] and Lighthill [ 9] have published comprehensive

review articles on the recent developments in the subject with a critical evalua-

tlon of both the methods and the results concerning the waves and hydrodynamic

loading on offshore structures. Lighthill has also suggested that the Morlson

equation needs to be amended by the incorporation of significant nonlinear terms

associated with free-surface effects on the irrotatlonal-’flow part of the wave

loading. He then discussed a general theory and results with many interesting

comments on the second-order wave forces on a large vertical cylinder imersed

in deep oceans.

Motivated by the above discussion, especially on the nonlinear irrotatlonal-

flow response theory, we became interested in the study of nonlinear effects on

wave loading estimation in order to examine the significance of these effects and

to incorporate them in the Morlson equation.

This paper is concerned with the study of the nonlinear wave loading on off-

shore structures using the diffraction theory of hydrodynamics. A nonlinear

modification of the Morison equation for estimating wave forces on offshore

structures is presented in this paper. It is shown that this modification is made

up of the dynamic, waterline, and the quadratic wave forces associated with the

irrotational-flow part of the wave loading on structures. All linear and nonlinear

wave loadlngs on a large vertical cylinder imersed partially in an ocean of

arbitrary uniform depth are calculated explicitly. A comparison is made among

the various nonlinear forces, and between the linear and nonlinear wave forces in

order to determine their relative importance. It is shown that results of

Lighthill for the case of deep oceans can be recovered as llmtlng cases of this

analysis.
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2. BASIC EQUATIONS FOR WATER WAVES.

We consider a large rigid vertical cylinder of radius b which is acted upon

by a train of two-dlmenslonal, periodic, progressive waves propagating on the

surface of a fluid of arbitrary uniform depth h. We assume that the fluid is

inviscid, incompressible, and that the motion is irrotational in the region bounded

by the free surface, rigid bottom boundary and the surface of the cylinder.

In this axisymmetric configuration with symmetry about the z-axis vertical

positive upward, the velocity potential (r,0,z;t) and the free surface elevation

(r,8;t) are governed by the following equations and boundary conditions:

3r2 r
2 302 3z

2
(2.1)

where b < r < , h < z < and w < 0 _< w

The dynamic condition at the free surface is

30 1/2 0 on z , r -> b, (2.2)
3t + g + (V) 2

where g is the acceleration due to gravity and the velocity components are

(Ur’U0’Uz) Y 30

The kinematic condition at the free surface is

3t 3z
r

(2.3)

The boundary condition at the rigid bottom is- 0 on z h, (2.4)

The radiation condition at infinity is

llm (kr) (-r + ik) s] O, (2.5)

where k is the wave number of scattered wave, Z + s is the total

velocity potential, and s represent the incident and the scattered wave

potentials respectively.
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3. IRROTATIONAL-FLOW PRESSURE DISTRIBUTIONS.

The irrotational-flow pressure distribution can be obtained from the

Bernoulli equation which is

+ gz + + 1 2
P -(V) O. (3.1)

This equation enables us to define three pressure distributions:

(i) The hydrostatic pressure distribution which has the value

Po- pgz, (3.2)

at a height z above the level z 0 where the atmospheric pressure is Po"
(ii) The dynamic pressure distribution which has the well known Bernoulli value

i 2
(U

2
q (3.3)

at a point where the fluid speed is q.

(iii) The transient pressure distribution which has the value- (3 4)P Dt

There is a certain resultant force with which each of these pressure components

acts on a solid body in a stream of homogeneous liquid of variable speed U.

The total derivative of (3.1) with respect to time t has the form

D- )+ g--Dt + )+ (V) 0, (3.5)

which can be written as

Dt Dt2
i 2+ .v(v) o,

where q is the velocity vector.

Equation (3.6) has been evaluated at z D to obtain

D Po 2@ t +[ q.V(V) 0D- - + ( + g + (V) 2 1 2]
t2 z= z= z=

(3.6)

(3.7)

If the atmospheric pressure is constant, the first term in (3.7) vanishes so that

(3.7) reduces to

2 + g (z) +t(V)2
t2 + 2q.V(V) 2] 0 on z n. (3.8)
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Retaining up to second-order term in (3.8), we obtain

2+g zat2
k(v, 2 (3.9)

This is the equation derived by Lighthill [9]. It is noted here that a simple

combination of equations (2.2) and (2.3) also gives the result (3.9).

4. PERTURBATION OF SOLUTION AND NONLINEAR WAVE FORCES.

We write the velocity potential, and the free-surface elevation function,

in the form

@ + @q + (4.)

l + q + (4.2)

where l, are the ordinary solutions satfsfylng ,the llnearfzed free-surface

conditions and q, q represent the quadratic correction of the order of the

squares of the disturbances (and higher order corrections are neglected). Thus

the following Taylor series expansion of about z 0 holds good and has the form

(r,8,n(r,8;t)) (r,8,0) + n z =0

(l + q + )+(q/+qq+ )[ + + + (4.3)
zffi0

Therefore

+ "q + r-Jz=O_ + (higher order terms), (4.4)

where the first term is the first-order term and the second one represents the

second-order term.

With a similar expansion by the Taylor series, we obtain

+ (4.5)

+ (4.6)

V@ V@l+ ? + nI (v@ +
q z=0

(4.7)
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Substituting these results into (3.9), we obtain equations for the linear

potential l and the quadratic potential q in the form

2@1 @l
2 + g ----- 0,

at
(4.8)

t2 + B1 z at2
(4.9)

We would like to make some comments on the equation (4.9) satisfied by the

quadratic potential @q, and the additional wave loading, generated by @q. For

making these comments, it is necessary to recall certain results of the theory of

irrotational fluid flows which is extremely useful for the study of both steady

and unsteady surface waves in oceans. In these studies when solid boundaries

are absent, there is no principal source of generation of vorticity. With the

linearized boundary condition at the free surface z O, the problem of determining

the irrotational flow field becomes a purely linear problem because the velocity

potential satisfies the well known Laplace equation. With such linear system of

equations, the irrotational-flow response to oncoming waves of every frequency

and direction in the ocean-wave spectrum can explicitly be determined. For

example, the sinusoidal waves of amplitude a propagating freely in the x-direction

in water of uniform depth h have the velocity of potential @, and the free surface

elevation B given by

co..sh k (z+h)(x,z;t) am
k sinh kh

cos(st kx), (4.10)

(x,t) a sin (rot kx), (4.11)

where m is the frequency and k is the wave number.

The linearized boundary condition at the free surface z 0 gives the well

known dispersion relation

2
m gk tanh kh. (4.12)
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In the case of deep water, these equations reduce to simple form

am kz 2-- e cos (cot kx), a gk. (4.Zab)

These simply mean that each water particle moves in a circular path at constant

speed which decreases exponentially with depth of the liquid.

With the aid of the above results (4.10) (4.12), we can rewrite the equation

(4.9) in the form

2q
2t

+ g qsz - [(vZ)2 + 1/2(tanhkh-l) (kZ)23. (4.14)

In the case of infinitely deep water, kh / so that tanhkh/l, this equation

takes the even simpler form

+ g z -o2
t

(4.15)

In other words, for the deep water case, the second term on the right hand

side of (4.9) or (4.14) disappears, and the quadratic potential q satisfies (4.15)

at the free surface with zero boundary conditions everywhere else.

Similarly, for a very shallow water, kh / 0 so that tanhkh/kh, we can also

write down the corresponding form of the equation (4.14).

It is also noted that the left hand side of equations (4.14) and (4.15)

has no terms in Z. This is because of the fact that the potential Z satisfies

the llnearized free-surface condition not only on z 0 but everywhere in the

fluid including z n. Physically, equation (4.14) implies that q is the

solution of the linearlzed wave motion generated in the presence of the body at

rest by the fluctuating free-surface pressure distribution

i
P[(Yl)2 + (tanhkh-1)(kl)2] or 0(V/)2

according as the fluid is of finite or infinite depth. The frequency of this

fluctuating pressure is twice of that of the oncoming waves.

Making reference to Lighthill [9], the quadratic force F generated by the
q

second-order potential Sq is defined by the integral
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iF W0[(VI)2 + (tanhkh-l) (k/)2]dS.q
z=o

(4.16)

where W is the vertical velocity of the fluidat the free surface due to the

horizontal translational oscillations of the body. The value W at z 0 can be

determined by solving a simple linear problem.

Although the equation (4.16) is very convenient from the computational point

of view, however, this quadratic force F can also be determined by the traditional
q

method of fluid dynamics using Green’s theorem combined with the application of

the radiation condition at infinity. We shall discuss this simple approach to

estimating F in a subsequent section.
q

In addition to the quadratic force F derived from the quadratic part @q of
q,

the velocity potential, there is a significant contribution to the second-order

force generated by the linear potential, @Z" In fact, this additional second-

order force arises from the pressure distributions derived from the potential Z.
These pressure distributions have second-order terms which exert an additional

wave loading on a structural component. Actually, two forces constitute this

additional second-order contribution. One corresponds to the dynamic force, F
d

1 2 2)which is the resultant of the dynamic pressure, -q (q2 (V) over the

surface of the body. Thus the force F
d
has the following integral representation

I 2F
d (Vz) dS (4.17)

where S is the body surface and n is the direction cosine between the outward
x

normal and the direction of the force Fd. It should be pointed out that the

potential includes the responses of the body to both fluctuating motions and the

fluctuating extensional motions due to waves.

Another force provides a second-order contribution to the wave loading on

structures whenever the body penetrates the free surface of the liquid. It is

directly associated with the transient and hydrostatic pressures of the irrota-

tional flow. According to Lighthill, this additional second-order horizontal

x-component of the force, F acting at the waterline w (where the structural
W
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component intersects the free surface of the fluid) is given by
2

Fw
w
g’---) dy, (4.18)

where the integrand is the horizontally resolved force per unit length acting at

the waterline and the integral gives its resultant in the x-direction.

We denote the linear force F which is equal to the resultant of the transient

l,
pressures -tP-. This force can therefore be written as

l,
F1 (-p --] dS.

S

This force is generally calculated using purely linear analysis.

(4.19)

It follows from the above discussion that the total second-order contribution

to the irrotational-flow loading on an offshore structure is equal to Fd+Fw+Fq,
whereas the linear wave loading on such structure is F. The accuracy of the

wave loading can thus greatly be increased by combining F with the nonlinear

contribution, (Fd+Fw+Fq). The latter provides a nonlinear modification of the

Morison equation which has a new form

D F + Fn + F
D

(4.20)

where Fn F
d
+ F + F is the nonlinear contribution which is made up of the

w q

dynamic, waterline, and the quadratic forces associated with the irrotational-

flow part of the wave loading on offshore structures. It will be shown in sub-

sequent sections of this paper that the nonlinear contribution to the wave loading

on structures is quite significant.

5. LINEAR FORCE AND MORISON’S COEFFICIENT BASED UPON THE LINEAR DIFFRACTION THEORY.

Havelock [i] developed the linear diffraction-theory potential for a long

vertical cylinder of radius b in an oncoming wave train in deep water described

by the potential given by (4.13a). This potential has the form

Re[--] exp(imt + kz) ’an n(kr)cs
n=o

where Re stands for real part, o i, a
n

2(-i)
n
with n > 0, and

(5.1)



600 L. DEBNATH and M. RAHMAN

Cn(kr) Jn(kr)
H(2)n (kr) J(kb)
(2)’
n

Since our interest only in the cos 0 term in , therefore

at0

Re[- exp(imt / kz)(-2i)(kr)cos

Thus the linear force, F(z,t) is given by

2

F(z,t)
o -p--jrffib(-COS O)bdO, (5.4)

Re[2P ab
2 m2

kb
exp (it #

CM (pgab2) cos(mt+), (5.6)

where Morlson’s coefficient C
M

and the phase 8 are given by

eiB 2 4i
l(kb) 2 (2)’(kb) n

1
(kb)

(5.7)

and the coefficient specifies the cylinder’s inertial reaction to a fluid

acceleration advanced in phase by the phase lead 8 over its value on the cylinder

axis.

In the case of a fluid of finite depth h, the corresponding results for C
M

and

8 are given by

CM eiB 2__
kb i

(kb) l-e-kh) tanh kh,

l-e )tanh kh4i(
-kh

(kb)
2 H2)" (kb)

(5.9)

where the value of l(kb) is replaced by (5.2) along with the following results

i( 2
Jl(kb) H 2) (kb) H 2)(kb) Jl(kb) ikb

(5.10)

a2)(kb) Jl(kb) iYl(kb) (5.)

Finally, the values of C
M

and B are explicitly given by



NONLINEAR WAVE LOADING ON STRUCTURES 601

(1-e.,kh)tanh kh
1

(kb)2 Jl (kb)+Yl (kb)

(5.2)

(5. 3)

LYI (kb)

One of the most significant conclusions of this section is that the Morlson

coefficient decreases or increases according as kb increases or decreases.

Physically, when kb is large (the characteristic dimension b of the body is large

compared with k-1) the body becomes efficient as a generator of dipole wave

radiation, and the force on it becomes more resistive in nature. This implies

that at high frequencies the magnitude of the force increase more slowly than

would a purely reactive force.

On the other hand, for small kb (the characteristic dimension b of the body is

small compared with k-1) the body radiates a very small amount of scattered-wave

energy. This corresponds to a case of a rigid lld on the ocean inhibiting wave

scatterlng.

6. NONLINEAR WAVE LOADINGS ON A VERTICAL CYLINDER.

We now calculate the linear wave loading, FZ, and the nonlinear wave loading

terms F F
d

and F on a long vertical cylinder of radius b(<<k-I) which penetratesq’ w

the free surface of water. With the axis of the cylinder as x y 0, and the

presence of the oncoming wave train with potential (4.10), the fluctuating velocity

is equal to the value of the horizontal velocity in the undisturbed wave on the

cylinder axis. In other words, the fluctuating velocity U(z,t) can be expressed

as

cosh k(z+h)U(z,t) (a k sin t)
sinh khx=o

(6.1)

To a first approximation, the irrotational response to this fluctuating

horizontal velocity produced by the cylinder of radius b is the simple dipole

field. The associated velocity potential is given by
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b
2

U(z,t)(r + -) cos 8 (6.2)

in cylindrical polar coordinates (r,8,z).

Thus the values of the potential and of the horizontal velocity on the cylinder

surface r b are

(l)
r=b

2bU cos8 ( -2U sinS,)8 fr=b
(6.3ab)

In addition to the fluctuating velocity produced near the cylinder by the

oncoming waves, waves can also generate significant fluctuating extensional motions

as indicated earlier. This extensional motion is the value of the horizontal

velocity gradient (a_) in the undisturbed wave train (4 i0) on the axis of the
x2

cylinder. In other words, the extensional motion is given by

E(z,t) /a_ =k(-am cos rot) cosh k(z+h)
Ix2; sinh kh

(6.4)

\ !x=o
In fluid dynamics, this extension can be treated as a linear combination of a

pure dilatation and a dilatationless straining. The local irrotational response

to the pure dilatation is the simple monopole field with the velocity potential,

E
r
2

( -2b
2

log r). The corresponding response to the dilatationaless straining

is a quadrupole field with the potential (r2 +b4r-2)cos 28 Thus the4

combined velocity potential has the form

E
r
2 E 2( -2b21og r) + (r b

4
+ -) cos 28,

r
(6.5)

and the horizontal velocity on the cylinder surface is equal to

( i)*I;)q/r’b -Eb sin 28, (6.6)

The equations (6.3ab) give a linear force equal to the resultant of the

transient pressures p so that the linear force per unit height of the

cylinder, F is

F(z,t) P ,(- cos (6.7)
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where the classical Morison coefficient in (6.7) is C
M 2.

The total linear force, F exerting on the cylinder is given by

o

Z Fz(z,t)dz 20 ag b
2
tanhkh

h

cos t (6.8)

The total drag force, F
D exerting on the cylinder is equal to

!o i
U
2F

D
A C

D dz,
h

(6.9)

12 I sinh 2kh kh
2--pga C

D
tanh kh sin2mt +

2 sinh kh sinh kh
(6.10)

Thus the sum of (6.8) and (6.10) gives the total drag D involved in the Morison

equation.

We next note that the function W involved in the formula (4.16) for the

quadratic force represents the effect of the fluid flows at the free surface

generated by the horizontal translational oscillations of the cylinder with unit

amplitude and frequency 2m. This function is also directly proportional to cos @

which can also be confirmed by the exact diffraction theory. Therefore, the

approximate value of W near the cylinder for small k5 can be expressed by a simple

dipole form

b
2

W (4k) (-- cos 8) (6.11)

where the factor 4k is extracted from the linearized boundary condition

@tt + g@z 0 on z 0, for oscillations of frequency 2m in order to relate the

vertical velocity W at the surface to a local velocity potential given by the

second factor in (6.11) so that its radial derivative is cos 8 on the cylinder

surface r b.

In view of the proportionality of W to cos 8, the only cos 8 terms that may be

2 2
present in (V) and (kz) involved in (4.16) are of interest in this analysis.

The term

l I l
2
li (6.12)

can be computed using the dipole potential (6.2), the combined potentiai (6.5)
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and the basic potential (4.10). It follows from (6.2) and (6.5) that the square

of the horizontal speed is

U
b2 E b

2 E b
4 8] 2

+ T-) +

b2 b
4 812+ U(l +-)sinS+ E(r +-) sin8 cos

r r
(6.13)

The free surface value of this quantity gives a term in cos 8 in the form

i 2 [ b
4

b
6

(ak) sin 2rot coth kh 2r 2b-2 + + -Icos 8 (6.14)
r r J

Similarly, using (6.2) and (4.11), the cos 8 term in the veritcal speed squared

is given by

/)(hZ am cosmt + amk inmt (6.15)

The cos 8 term in this expression is involved only with the cross-term between the

two terms in the third bracket of (6.15), and is equal to

1 2
-2--g(ak) sin 2mr tanhkh (2r + 2-b2)cos 8. (6.16)

r

A simple addition of (6.14) and (6.15) gives the cos 8 term in the total fluid

speed squared at the free surface in the form

g(ak) sin 2mr coth kh b-2 b4 b6
3 -) + (2r + -) (tanh2 kh-i

r r
(6.17)

2
It turns out from (4.10) and (6.2) that the free surface value of (kZ) is

am cos mt cothkh + Uk(r + -)cos 8 (6.18)

The cos 8 term involved in this expression is also obtained only from the cross-

term between the two terms within the third bracket of (6.18), and has the value

b
2

g(ak)2(r + -) cothkh sin2mt cosS. (6.19)

Invoking the results (6.11), (6.17) and (6.19), the quadratic force F is
q
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given by

B 2

F -0 rdr (-4k) (_--- cos 8) (V) + (tanh kh i) (k)2]dS,
q

b o

(6.20)

when b r < B and the upper limit B will be determined later on.

Evaluation of (6.20) gives

b
4

b
6

F 20g k3(ab)2 B 3b
2
+ +sin2mt (4 b21og

4q 2B
2

4B
4)

+ (B
2

b
2 + 2b

2
log )(tanh2kh + tanhkh- (6.21)

The overturning moment about the bottom of the cylinder is given by M h F
q q

It may be pointed out that the result (6.17) has an interesting implication

for the magnitude of the quadratic force F In fact, the positive coefficient
q

of the first term in (6.17) clearly indicates that the nonlinear correction to

Morison’s equation increases with kb. This shows a striking contrast with the

result (5.13) based on the linear diffraction theory which predicted that the

Morison coefficient decreases with kb. In other words, the nonlinear effects

become significant in the diffraction regime.

We next estimate the dynamic force, F
d
which is the resultant of the dynamic

1 2 2
pressure, -(V) where (V#) is to be evaluated on the cylinder surface r b.

It follows from (6.13) that the square of the horizontal speed on r b is

k--/
+ -/Jr=b (2U sin0 + Eb sin 20)2 (6.22)

Similarly, the square of the vertical speed on r b is evaluated from (6.14)

and (6.2) to obtain

(2b ka sint cos O + a cost) .2 slnh2k(z+h)
r=b sin h2 kh

(6.23)

so tha a simple addition of (6.22) and (6.23) gives the required result for

2(V.) on r b in the form

2 2
(V) [2U sin0 + Eb sin20] +

+ [2bk a sint cos 0 + a cost] 2 sin h2k(z+h)
sin h

2
kh

(6.24)
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With this result, the dynamic force per unit lenght of the cylinder is given by

Fd(Z,t) [- (Vl) ](-cose) bde,
0

(6.25)

I2p b
2
UE[- tanh2k(z+h)], (6.26)

where this result is made up of the contributions only from the cross-terms be-

tween the terms in the square bracket of the expression (6.24).

The total dynamic force, F
d

exerting on the cylinder is given by

0

IF
d Fd(Z, t)dz

-h

(6.27)

p(ab)2gk tanhkh inh2kh
sin 2t.

sinh
2
kh

(6.28)

The overturning moment M
d

for this case is obtained In the following form

0

Md I (z+h)Fd(Z’t)dz
-h

p(ab)2sin 2t [ ]16k sinhkh
(2kh)sinh(2kh) cosh(2kh)+l-6k2h2

Finally, the magnitude of the waterline force F is given by
w

2

Fw 2g\t ](-cs 8) bdS,

0

(6.29)

(6.30)

where

ag sin mt\--] ]z=o
(2ab gk cost cos- )2 (6.31)

Evaluation of the integral (6.30) gives the following result

2
F p(ak)ag b sin 2rot.
W

(6.32)

The overturning moment of F about the bottom of the cylinder is simply
W

M hF rg(ak) ah b
2

sin ,.,_.
W W

(6.33)
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It is important to point out that in the above calculation, neither the

response to the fluctuating velocity by itself nor the response to the fluctuating

extension by itself has produced any nonlinear contributions to various wave

forces. In fact, all nonlinear contributions come from the interaction of the

two kinds of response. In other words, these contributions were found to result

only from the cross-terms involving products of the local responses to the

fluctuating velocity (6.1) and to the fluctuating extension (6.5).

For the deep water case (kh / ), the forces F and F
d

are calculated from

(6.8) and (6.28) in the limit kh / to obtain simpler results due to Lighthill

[9].

20g ab
2
cost, (6.34)

IF
d (ak) 0g ab

2
sin 2t. (6.35)

A simple comparison of these forces reveals that the linear force is Indepen-

dent of the wave number k, whereas the dynamic force varies linearly with k. This

means that the relative importance of the dynamic force increases with the wave

steepness ak.

Finally, the total nonlinear contribution to the Morlson equation force is

equal to the sum of (6.21), (6.28) and (6.32) for the case of fluid of finite depth

h.

For the case of deep ocean (kh + ), the quadratic force assumes the following

limiting form

F 2g0 (ak) (bk)214b21og B 3b
q [ b 4 + sin 2t

2B
2 (6.36)

so that the total nonlinear contribution to the total drag is the sum of (6.32),

(6.35) and (6.36).

It is interesting to compare these nonlinear contributions in order to

determine their relative importance. In the Morison equation limit of small kb,

the contribution from F is relatively small compared with those from F
d

and Fq w

which give
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(d + Fw) (2)(ak)gp ab
2
sint cosmt. (6.37)

It follows from this result that the waterline force F is four times larger
W

than the dynamic force Fd. It is also evident that in the limit kb / 0, the non-

linear effects are dominated by the sum of the dynamic and waterline forces. On

the other hand, the contribution of the quadratic force to the Morison equation

increases with increasing value to kb. This means that in the diffraction regime,

the nonlinear effects become more important.

For comparison, the Morlson equation (I.i) gives a value of the total drag as

D 2gpawb
2
cosmt + 1/2pga2b C

D
sin2t. (6.38)

The significance fo the nonlinear contribution (6.37) is that it gives an

increased positive peak of the total drag force when both cos mt and sint are

positive.

7. SIMPLE APPROACH TO CALCULATING THE QUADRATIC FORCE.

We assume the following form of the linear potential @ and the quadratic

potential @q:
2it, Re[# e ], (7.1)

2imt
@q Re[q e ]. (7.2)

Inserting these values in equation (4.9), we obtain

g z ]z= (7.3)

where 4m2m
g

With the potential due to a unit translation oscillation of the body in the

form Re[ e2imt], it follow that on the surface S of the body,

n and 0,
S x L n .Is

where n is the x-component of a unit inward normal to the surface S.
X

(7.4ab)
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Furthermore

a
[n- K] 0 on z 0,

where , llke satisfies the radiation condition at infinity.
q

This leads us to apply Green’s theorem

a q
dS, (7.6)[v2 v2v ]dV= [qq q

V SDzffio

where the surface integral is taken over the boundaries of the fluid (S and z 0)

and n is a normal outward from the fluid.

Since both and satisfy the Laplace equation, the left hand side of (7.6)
q

valnshes so that (7.6) gives

[q --- g 3n-]dS O.

SDz=o

(7.7)

After performing the indicated integration in (7.7) and applying the conditions

(7.4ab) and (7.5), it follows from (7.7) that

[az- K q]dX dy n dS.
q x

z--o

Thus the quadratic force F can be written as
q

a
Fq [- p a]nx_ dS,

2it
Re[- p 2i e n dS]

q x

(7.8)

(7.9)

(7.o)

Invoking (7.8) and (7.3), it follows that

Fq Re -2io)e
o

K q]dX dy

z=o

gK
(_2 + g }dx d

e
zffio az2

z-o

(7.11)

(7.12)
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(7.13)

where W =<@Zlz=o is the vertical velocity on the free surface associated with the

unit translational oscillation of the body.

In order to determine the vertical velocity W, it is necessary to find the

solution for the potential . As stated earlier, the function satisfies the

Laplace equation, the condition (7.4ab) on the cylinder r b, the free surface

condition on z o and the radiation condition at infinity. The solution can

be expressed in the following form

[i__ f Kl(lIr) eiZd(r,8,z) (P) +
2e
Kz HII2)(Kr)]COS @,

K HI(2) (Kb)
(7.14)

where (P) denotes the Cauchy principle value of the integral and Kl(X) is the

Bessel function of imaginary argument.

It is noted that the integral in (7.14) represents the standing wave part of

the motion and the non-integral part is the radiation component of the motion.

The r-derivative of the integral on r b is a simple Fourier integral which can

2Kz
easily be evaluated as i e and the r-derivative of the radiation component

on r b is 2eKz so that the potential satisfies the boundary condition,

\rir=b
cos O.

Some simple algebraic calculatiSn gives the real integral form of W

W

H 2) (Kb)J
(7.15)

From the asymptotic nature of the Bessel function for small Kr and Kb,

it turns out that

KI (Kra) ] Kb 2
lim

’(Kbe) ---Kr/o KI
Kb+o

(7.16)
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2
Thus the integral in (7.15) is asymptotically equal to , and the non-integral

r
2Kb

2
term is approximately as both Kr and Kb tend to zero. This leads to the

r

final asymptotic value of W as

2
W

Kb
cos 8 (7.17)

r

which is identical with the form (6.10).

In order to estimate the effective range b < r < B within which (7.17) holds,

we can define B by the equation

Re dr Kb21og( cosS. (7.18)

On the other hand, it follows from (7.15) that

a2K K(Kb) i2 K H (Kb)
(7.19)

We next use the asymptotic result for small Kb as

K (Kba) I [lg(2!Ka2e)
,w_ Kb

2 + y]

to obtain the asymptotic representation for (7.19) in the form

(7.20)

W dr [Kb2 {log( + Y} + 2Kb2{log() + y + -}]cos 8
b

(7.21)

where y is Euler’s constant.

This result agrees with (7.18) provided that

I i -y -i -I(2e-Y) (e )(k tanhkh) C(k tanhkh)B

l-ywhere C Ee is a numerical constant.

It is noted here that beyond the limiting radius r B, W is oscillatory and

hence makes a small contribution to the quadratic force F discussed in theq

previous section.

(7.22)
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8. CONCLUDING REMARKS.

This work has been devoted to a nonlinear modification of the classical

Morison equation. It has been shown that the nonlinear contribution to the Morison

equation is (F
d
+ F + F which is the sum of the dynamic, waterline, and thew q

quadratic wave forces associated with the irrotational component of the fluid flows.

The salient feature of the nonlinear theory has been illustrated by means of a

large vertical cylinder immersed in an ocean.

With regard to the geometrical shape of offshore structures, it can be added

here that the present theory is general enough to incorporate any other axlsym-

metric solid structures of practical interest.
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