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ABSTRACT. Let F = GF(q) denote the finite field of order q and men the ring of
m X n matrices over F. Let Pn be the set of all permutation matrices of order n
over F so that P_ is ismorphic to S . If Q is a subgroup of P_ and A , BEF then
n n n ’ mxn
A is equivalent to B relative to Q if there exists PePn such that AP = B. In sec-
tions 3 and 4, if Q = Pn’ formulas are given for the number of equivalence classes
of a given order and for the total number of classes. 1In sections 5 and 6 we
study two generalizations of the above definition.
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1. INTRODUCTION.

In a series of papers [1-4,6-8] L. Carlitz, S. Cavior, and the author studied
various forms of equivalence of functions over a finite field through the use\of
permutation groups acting on the field itself. In [9] the author defined two
matrices A and B to be equivalent if bij = ¢(aij) for some permutation ¢ of the
field while in [10] B was said to be equivalent to A if B = ¢(A) where ¢(A) was
computed by substitution. In the present paper we study another form of matrix
equivalence over a finite field through the use of permutation matrices and the
Pélya-deBruijn theory of enumeration.

Let F = GF(q) denote the finite field of order q = pb, p is prime and b > 1

. . mn
and let F denote the ring of m x n matrices over F so that fF | = ™. Let
mxn mxn
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P; be the set of all n x n matrices over F consisting entirely of zeros and ones
with the property that there is exactly one 1 in each row and column. In the 1lit-
erature, such matrices have been called permutation matrices. It is not hard to
show that Pn is a group under matrix multiplication which is isomorphic to Sn'

the symmetric group on n letters and consequently has order n! If PePn the iso-

morphism can be defined as follows. If

=}
Q

then define ¢Pesn by ¢P(i) =q,(i=1,...,n). Then ‘1’:Pn + Sn defined by Y(P) = ¢P

N
is an isomorphism.
2. GENERAL THEORY.

If Q is a subgroup of P; we may make

DEFINITION 1. If A,B ¢ men then B is equivalent to A relative to { if there
exists P € Q such that AP = B.

This is an equivalence relation on men so we let uU(A,) denote the order of
the class of A relative to 2 and let A(Q) be the total number of classes induced
by Q.

THEOREM 2.1. If A,B € men then B is equivalent to A relative to Pn if and
only if the columns of B are a permutation of the columns of A.

PROOF. Suppose AP = B where A = (aij). In P suppose that for j = 1,...,n

the 1 in column j occurs in row i

5 Then AP = (aij)P = (aiij) so that column j of

A becomes column ij of AP.

Conversely, suppose column j of A is column ij of B. Define P so that in
column j we have a 1 in row ij and zeros elsewhere. Then PePn and AP = B 80 that
A is equivalent to B.

COROLLARY 2.2. 1If A ,Banxn and B is equivalent to A relative to Q then
det(B) = + det(A).

In fact, if AP = B and P corresponds to ¢PsSn where ¢P i8 an even permutation

then det(B) = det(A) while if ¢P is an odd permutation then det(B) = -det(A).
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DEFINITION 2. If A € men then P is an automorphism of A relative to Q if
P € Q and AP = A,

If Aut(A,Q) denotes the set of all automorphisms of A relative to 2, then it
is easy to check that Aut(A,) is a group under matrix multiplication whose order
will be denoted by V(A,). It is easy to prove

THEOREM 2.3. If A€ F then for any subgroup Q2 of P
mxn n

u(A,)v(4,02) = |@, (2.1)

where || denotes the order of Q.

If P e Pn let N(P,m,n,q) denote the number of m x n matrices A over GF(q)
such that AP = A,

THEOREM 2.4, If P corresponds to ¢P€Sn and ¢P has £(P) distinct cycles then
N(P,m,n,q) = qmt(P).

PROOF. Suppose the distinct cycles of ¢P are 01”"’02(P)' Using Theorem
2.1 it is clear that AP = A if and only if within a given cycle of ¢P the columns
of A are identical. The theorem then follows from the fact that a given colummn
can be constructed in qm ways.
3. CYCLIC GROUPS.

If Q = <P> 1s a cyclic group of permutation matrices where || = s, let H(t)

/t>.

denote the subgroup of { of order t where t|s so that H(t) = <p® If P corre-

sponds to ¢ eSn let lt(P) denote the number of cycles of ¢Ps/t and suppose M(t,m,
P
n,q) denotes the number of m x n matrices A over GF(q) such that Aut(A,Q) = H(t).

THEOREM 3.1. For each divisor t of s

ml__(P)
at
M(t,m,n,q) = Z u(a)q , 3.1)
al%
where u(a) is the Mobius function.
nf (P)
PROOF. By Theorem 2.4 q counts the number of m x n matrices A over

GF(q) such that Aut(A,R) < H(t). From this we subtract those for which the con-

tainment is proper. This number is given by

ul, (P)
M(tsmsnsq) =q = ZM(u’m,naq)’ (3°2)

where the sum is over all uls, t|u and t # u. After applying Mobius inversion
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to (3.2) we obtain (3.1).
COROLLARY 3.2. For each divisor t of s there are tM(t,m,n,q)/s classes of

s/t and

AQ) =

0=

Lt M(t,m,n,q). (3.3)
tls

As an illustration, suppose q = 2, m = n = 3, and

0o 1 0
P=|0 0 1
1 0 O

so that if Q = <P> then |2| = 3. One can easily check that M(3,3,3,2) = 8 and
M(1,3,3,2) = 504 so that there are 168 classes of order 3, 8 classes of order 1
and thus from (3.3), A(R) = 176.

4. THE CASE Q = Pp.

In this section we consider the group Pn of all permutation matrices of order
n so that, as noted in the introduction, Pn is isomorphic to Sn’ the symmetric
group on n letters. We will employ the Pbélya theory of enumeration to determine

the number of classes induced by Pn' Suppose the permutation group K acts on a
b, b b

1 r
1 %9 ...xr where for

t=1,...,r bt denotes the number of cycles of ™ of length t. The polynomial

et of r elements. If m € K consider the monomial x

b, b b
-1 1.2 r
Pp(Xyseeesx ) = || ng XK Tx 4.1)

is called the cycle index of K. It is well known [5] that

k2 kn -1 kl k kn
— ] 1 [ --
Psn(xl,...,xn) = Z(kl.k2.2 ...kn.n ) X TRy eex where the sum is over all

+ ... =
kl + 2k2 + nkn n.

In the Pélya theory of enumeration, let the domain D be the set of n columns
and let the range R be the set of qm possible column vectors so that

|RD| = qmn = |F |. If K is a permutation group acting on D then Pélya's theorem

[5, p. 157] states that the number of distinct classes is given by PK(‘R|,...,|RI)

so that A(Pn) 2 Psn(qm,...,qm). It follows directly from Theorem 2.1 that A(? )

is also the number of distributions of n indistinguishable objects into qm labelled

n + q@ -1)
n

cells, or ( so that we have proven
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Theorem 4.1, If A(Pn) is the number of classes induced by Pn then

m

_m+q -1
Ay =T

).

Suppose A€F has t distinct columns so that we have a partition of n with

mxn
t parts say n = o, +...+ m, where each distinct column occurs my times. By Theorem
t n
= ' =
2.1 for each such A we have v(A,Pn) igl m ! so that by (2.1) u(A,Pn) (ml,...,mt).

The number of such A is the same as the number of functions from D into R whose

range is of size qm, whose domain is of size n and whose preimage partition has
. = . i i i ' + e =

type m1+. +mt n. We may rewrite this with distinct m's say jm m,+ +jmsms n

where jm +...+jm = t. Then the number of such functions is (qm)th(jm ,...,jm )
1

1 s s
where h(Jm ,...,jms) is the number of partitions of n of type jmlml+...+jmsmS =n
and is given by Cauchy's formula

jml jms
= ! ' [] ] . '
h(jml,...,jms) nl/((m 1) (jml)....(ms.) (Jms)-)

and (qm)t = qm(qm-l)...(qm-t+1) is the falling factorial which assigns image
values to the partition blocks. Hence we have proven

COROLLARY 4.2, The number of classes induced by Pn of order (ml,.?.,ms) is

m
(qt)(jml,.?.,jms).

As an illustration of the above theory suppose q = 2 and m = n = 3 so that we
are considering the 512 3 x 3 matrices over GF(2) under the action of the symmetric
group S3. Thus from Corollary 4.2 when t = 1 we have n = 3 so that there are
(g)(i) = 8 classes of order 1, when t = 2 we have n = 1+2 so that there are
(g)(lfl) = 56 classes of order 3 and when t = 3 we have n = 1 + 1 + 1 so that
there are (g)(;) = 56 classes of order 6 so that X(PB) = 120. Moreover, from

Theorem 4.1 we also see that A(P3) = (;?) = 120 classes.

5. A GENERALIZATION

In this section we generalize Definition 1 by considering a notion of matrix
equivalence which is similar to the idea of weak equivalence of functions over a
finite field considered by Cavior and the author in [3] and [8]. Let Pm be the
group of m X m permutation matrices over GF(q). If Ql is a subgroup of Pm and

92 is a subgroup of Pn we may make
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DEFINITION 3. If A_,Bemen then B is equivalent to A relative to Ql and Qz

if there exist Q € Ql and P € Q, such that QAP = B,

2
Thus PePn permutes the columns of A while Qer permutes the rows of A so that
Ql acts as a permutation group on the range R and QZ is a permutation group acting
on the domain D. Clearly if Q, = {id.} we obtain the previous cases considered in
sections 3 and 4. In this more general setting we will make use of the extended
Pélya theory of enumeration.
THEOREM 5.1. (Polya-deBruijn) The number of classes induced by permutation
groups 92 of D and Ql of R is
z, 4z, +... 2(z,tz,+...)

9 9 172 2 74
Po,( 327 Tz, T e reee) 6.1

2 %1 1 _
zl=zz=...—0

Consider the qm possible column vectors of R in an m x qm array so that in

i+l

row 1, we have qm- sets where in each set one element of GF(q) is repeated

q:"-1 times. For example, if q = 2 and m = 3 we list the 8 column vectors as

o 1 0 1 0 1 0 1
o 0 1 1 0 O 1 1 . (5.2)
o 0 o0 o0 1 1 1 1
Suppose now that { is the cyclic group of order m generated by the permuta-
tion ¢ = (12...m). By .letting § permute the rows of the m x qm array, we induce
a permutation group-Q1 on the column vectors of the range R. For example, if

¢ = (123) then the column vectors (Cl""’CS) of (5.2) are permuted to

Q
(Cl’CS’CS’C7’C2’C4’C6’CS)' If
1 0 1
A= 1 1 0 = [C4C7C6]
| 0 1 1
and Q is the permutation matrix
[0 0 1
Q= 1 0 O
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0 1 1
then QA = 1 0 1]=1[cCcC,l.
1 1 o0

By the isomorphism defined in section 1, ¢Q € S3 corresponds to the permuta-
tion matrix Q. Thus by applying ¢Q to the rows of the m x qm array, we induce a
permutation on the column vectors of the range R. This is turn induces a permu-
tation of the rows of A which is equivalent to just permuting the rows of A by
using the permutation matrix Q. Hence we can permute the rows of any matrix by
simply permuting the rows of the m x qm array.

If Ql is the cyclic group of prime order m acting on the qm column vectors
induced by a cyclic group of prime order m acting on the rows of the m x qm array,
it is not difficult to prove that

m

(xq + (m—l)qu (qm'Q)/m). (5.3)
1 1"m *

=)

PQ (xl,...,x m) =
1 q

We are now ready to prove

THEOREM 5.2. 1If Ql is cyclic of prime order m and QZ is cyclic of order n

then if m [ n

_ 1 m/t n/t
X(Qz,Ql) = o= LI ¢(t)(q + (m-1)q " ), (5.4)
t|n
while if m|n
M) = 1 r e @™ @S + 2 1 ee™", (5.5)
mn n
t|n t|n
t#km t=km
PROOF. We must evaluate (5.1) which becomes for fixed t|n
n/t m q(z +z,+...) (@™-q)(z_+z, +...) (5.6)
$(t) 9 e (zl+22+...) +H(m-1)e 172 e m 2m
mn an/t
t z, = 0.

If t = 1 (5.6) reduces to llmn[qmn + (m-l)qn]. If m I nand t > 1 is a divisor

of n we have M = ¢(t)/mn(qmn/t + (m—l)qn/t) which proves (5.4) upon summing over

all tln. If mln and 1 < t # km for some positive integer k the (5.6) contributes

m/t

M as before while if 1 < t = km for some k, (5.6) contributes (¢(t)q )/n from

which (5.5) follows.

As an illustration, suppose ¢ = m = n = 2 so that we are considering the 16



510 G.L. MULLEN

2 x 2 matrices over GF(2). Let Ql be the cyclic group of order 2 acting on the

two rows of the 2 x 4 array

and let 92 be the cyclic group -of ‘order 2 acting on the 2 columns of D. Then
from (5.5) we have A(Qz,Ql) =5+ 2 = 7 distinct classes which may also be easily
verified by direct calculation.

6.. A FURTHER GENERALIZATION

In this section we consider a further generalization by allowing Ql to act
directly on the column vectors of R rather than on the rows of the m x qm array.
As before suppose 92 acts on the set of n columns of D. Thus, after a matrix is
permuted by columns, it is then acted upon be a more general permutation of the
column wectors of R rather than just permuting the rows of the given matrix. For
example, using the example from section 5, suppose Ql is the cyclic group of order

8 generated by ¢ = (12...8). Then if ¢ is applied to the matrix

1 0 1
A= 1 1 0} = [64C706]
0 1 1
we obtain the matrix
0 1 O

[050807] =0 1 1

1 1 1

which cannot be obtained from A by just permuting the rows of A. Hence we have a
more general setting than that considered in section 5 where equivalent matrices
were obtained by simply permuting the rows and columns of the given matrix.

Suppose Ql is cyclic of order qm acting on the qm column vectors of R while

92 is cyclic of order n acting on the n columns of D.

THEOREM 6.1. If p [ n

L mn/t
)‘(92)91) = nqm tz|:n ¢(t)q (6.1)
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while if .p|n
M0 = 2 4 @d™ 4 amehp g™ 6.2)
ng |tfn t|n 1
t#kp t=kp

PROOF. Since q = pb where p is a prime and b > 1 we have

q

bm bm bm-1i
= 2% xg + I (pi—pi 1)x .
q i=1 p

P, (xl,...,x )-—}5 Iz ¢(t)x2m/t

Substituting PQ and PQ into (5.1) we obtain for a general term with t fixed

1 2
3n/t +... bm . bm + ...
N = ¢(:1) —7e (Z +z ) + (pi_pl 1)eP (z i 22 i )
nq oz / i=1 P p
zi=0

Ift=1, N= qmn/(nqm) while if t°> 1 and p [ n then t # kpi so that

m/t

= (1/nqm)¢(t)q from which (6.1) follows after summing over all t|n. In the

case where pIn, if t is a divisor of n and t # kpi for some k then N is the same

as in the above case. If t kpi then N = (1/nq )¢(t)(pi—pi -1 +1)qmn/t

so that
summing over all t|n yields (6.2).

As an illustration, if q = p = m = n = 2 then using (6.2) we see that
A(Qz,Ql) = 3 so that the 16 2 x 2 matrices over GF(2) are decomposed into 3 dis-

joint equivalence classes.
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