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ABSTRACT. Let F GF(q) denote the finite field of order q and F the ring of
mxn

m x n matrices over F. Let P be the set of all permutation matrices of order n
n

over F so that P is ismorphic to S If is a subgroup of P and A BEF then
n n n mxn

A is equivalent to B relative to if there exists PEP such that AP B. In sec-
n

tions 3 and 4, if P formulas are given for the number of equivalence classes
n

of a given order and for the total number of classes. In sections 5 and 6 we

study two generalizations of the above definition.
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i. INTRODUCTION.

In a series of papers [1-4,6-8] L. Carlitz, S. Cavior, and the author studied

various forms of equivalence of functions over a finite field through the use\.of

permutation groups acting on the field itself. In [9] the author defined two

matrices A and B to be equivalent if bij (aij) for some permutation of the

field while in [i0] B was said to be equivalent to A if B (A) where (A) was

computed by substitution. In the present paper we study another form of matrix

equivalence over a finite field through the use of permutation matrices and the

P61ya-deBruijn theory of enumeration.

b
Let F GF(q) denote the finite field of order q p p is prime and b > 1

mn
and let F denote the ring of m x n matrices over F so that ..IFmxnl q Let

mxn
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P be the set of all n x n matrices over F consisting entirely of zeros and ones
n

with the property that there is exactly one i in each row and column. In the lit-

erature, such matrices have been called permutation matrices. It is not hard to

show that P is a group under matrix multiplication which is isomorphic to S

the symmetric group on n letters and consequently has order n’. If PeP the iso-
n

morphlsm can be defined as follows. If

then define peSn by p(1) ei(i i n). Then T:P / S defined by T(P) pn n

is an isomorphism.

2. GENERAL THEORY.

If is a subgroup of P we may make
n

DEFINITION I. If A, B e F then B is equivalent to A relative to if there

exists P e such that AP B.

This is an equivalence relation on F so we let (A,) denote the order of

the class of A relative to and let () be the total number of classes induced

by .
THEOREM 2.1. If A,B e F then B is equivalent to A relative to P if andmxn n

only if the columns of B are a permutation of the columns of A.

PROOF. Suppose AP B where A (aij). In P suppose that for J l,...,n

the i in column J occurs in row ij. Then AP (aij)P (aiij) so that column J of

A becomes column i] of AP.

Conversely, suppose cqlumn J of A is colunm ij of B. Define P so that in

column J we have a 1 in row i. and zeros elsewhere. Then PeP and AP B so that
3

A is equivalent to B.

COROLLARY 2.2. If , BeF and B is equivalent to A relative to thennxn

det(B) + det(A).

In fact, if AP B and P corresponds to peS where Sp is an even permutation
n

then det(B) det(A) while if Sp is an odd permutation then det(B) -det(A).
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DEFINITION 2. If A F

P Q and AP A.

then P is an automorp.hlsm of A relative to if

If Aut(A,Q) denotes the set of all automorphlsms of A relative to , then it

is easy to check that Aut(A,Q) is a group under matrix multiplication whose order

will be denoted by (A,Q). It is easy to prove

THEOREM 2.3. If A F then for any subgroup of P
mxn n

where [] denotes the order of . (2.1)

If P E P let N(P,m,n,q) denote the number of m x n matrices A over GF(q)n

such that AP A.

THEOREM 2.4. If P corresponds to pgSn
N(P,m,n,q) qm(P).

and p has (P) distinct cycles then

PROOF. Suppose the distinct cycles of p are oI O(p). Using Theorem

2.1 it is clear that AP A if and only if within a given cycle of p the columns

of A are identical. The theorem then follows from the fact that a given column

m
can be constructed in q ways.

3. CYCLIC GROUPS.

If <P> is a cyclic group of permutation matrices where lfil s, let H(t)

denote the subgroup of fl of order t where t[s so that H(t) <ps/t>. If P corre-

sponds to eS let t(P) denote-the number of cycles of pS/t and suppose M(t,m
P

n,q) denotes the number of m n matrices A over GF(q) such that Aut(A,fl) H(t).

THEOREM 3.1. For each divisor t of s

mat (P)

M(t,m,n,q) V(a)q (3.1)

where (a) is the Mobius function.
m

t
(P)

PROOF. By Theorem 2.4 q counts the number of m x n matrices A over

GF(q) such that Aut(A,fl) < H(t). From this we subtract those for which the con-

tainment is proper. This number is given by

mt (P)
M(t,m,n,q) q 7.M(u,m,n,q), (3.2)

where the sum is over all uls, t lu and t u. After applying Mobius inversion
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to (3.2) we obtain (3.1).

COROLLARY 3.2. For each divisor t of s there are tM(t,m,n,q)/s classes of

s/t and

%() I Y. t M(t,m,n,q).
s t,ls

As an illustration, suppose q 2, m n 3, and

(3.3)

0 i 01P= 0 0 i

i 0 0

so that if <P> then II 3. One can easily check that M(3,3,3,2) 8 and

M(1,3,3,2) 504 so that there are 168 classes of order 3, 8 classes of order 1

and thus from (3.3), %() 176.

4. THE CASE

In this section we consider the group P of all permutation matrices of order
n

n so that, as noted in the introduction, P is isomorphic to S the symmetric
n n

group on n letters. We will employ the P61ya theory of enumeration to determine

the number of classes induced by P Suppose the permutation group K acts on a
n b

1
b
2

b
et of r elements. If K consider the monomial xI x

2
...x r where for

r

t l,...,r b denotes the number of cycles of of length t. The polynomial
t

PK(Xl ,xr) IKI -I
b b b
i 2 r (4.1)Z xI x

2
x
r

is called the cycle index of K. It is well known [5] that
k
2 kn)-l_, k

1
k
2 kn

PS (Xl’’’’’Xn) (klk2"2 ...knn xI x2 ...Xn where the sum is over all
n

kI + 2k
2
+ + nk n.

n

In the Plya theory of enumeration, let the domain D be the set of n columns

m
and let the range R be the set of q possible column vectors so that

RDI q Fmxnl. If K is a permutation group acting on D then elya’s theorem

[5, p. 157] states that the number of distinct classes is given by PK(IRI,..., IRI)

m)so that %(Pn Psn(qTM,... ,q It follows directly from Theorem 2. i that %(P
n

m
is also the number of distributions of n indistinguishable objects into q labelled

(n + qm-i)
cells, or n so that we have proven
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Theorem 4.1. If %(Pn is the number of classes induced by P then
n

%(p (n + qm I).
n n

Suppose AEF has t distinct columns so that we have a partition of n withmxn

t parts say n mI +...+ m
t
where each distinct column occurs m

i
times. By Theorem

t n2.1 for each such A we have u(A,Pn) =i=l m..’l so that by (2.1) v(A,Pn) (ml,...,mt).
The number of such A is the same as the number of functions from D into R whose

mrange is of size q whose domain is of size n and whose preimage partition has

type ml+...+mt n. We may rewrite this with distinct m’s say Jmlml+....+Jmsms=n
where Jml+...+jm t. Then the number of such functions is (qm)th(Jml ’Jms s
where h(Jm

1
’Jm is the number of partitions of n of type ]mlml+.. "+]m ms n

s s
and is given by Cauchy’s formula

Jm
I Jm

h(Jm
I

(ms") (Jm)"’Jm n./((mI (Jml),....
s

s s

and (qm)
t

qm(qm-1)... (qm-t+l) is the falling factorial which assigns image

values to the partition blocks. Hence we have proven

nCOROLLARY 4.2. The number of classes induced by Pn of order (m
1 ,ms is

m

(qt t
(Jm

I ’Jms
As an illustration of the above theory suppose q 2 and m n 3 so that we

are considering the 512 3 x 3 matrices over GF(2) under the action of the symmetric

group S3. Thus from Corollary 4.2 when t i we have n 3 so that there are

(8 1
i)(i 8 classes of order I, when t 2 we have n 1+2 so that there are

8 2)(2)(1,1 56 classes of order 3 and when t 3 we have n I + i + I so that

8 3
there are (3)(3) 56 classes of order 6 so that A(P3 120. Moreover, from

Theorem 4.1 we also see that A(P3 (130) 120 classes.

5. A GENERALIZATION

In this section we generalize Definition I by considering a notion of matrix

equivalence which is similar to the idea of weak equivalence of functions over a

finite field considered by Cavior and the author in [3] and [8]. Let P be the
m

group of m m permutation matrices over GF(q). If i is a subgroup of P and
m

2 is a subgroup of P we may make
n
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DEFINITION 3. If A BEF then B is equivalent to A relative to i and 2
if there exist Q E i and P E 2 such that QAP B.

Thus PEP permutes the columns of A while QEP
m

permutes the rows of A so that
n

i acts as a permutation group on the range R and 2 is a permutation group acting

on the domain D. Clearly if I {Id.} we obtain the previous cases considered In

sections 3 and 4. In this more general setting we will make use of the extended

P61ya theory of enumeration.

THEOREM 5.1. (Polya-deBruljn) The number of classes induced by permutation

groups 2 of D and i of R is

Zl+Z2+’’" 2 (z2+z4+...)
P2 PI

Zl=Z2--...--0
m m

Consider the q possible column vectors of R in an m x q array so that in

m-i+l
row i, we have q sets where in each set one element of GF(q) is repeated

i-i
q times. For example, if q 2 and m 3 we list the 8 column vectors as

0 i 0 i 0 i 0 i

0 0 i i 0 0 i I

0 0 0 0 i i I i

Suppose now that is the cyclic group of order m generated by the permuta-

m
tion (12...m). By letting permute the rows of the m x q array, we induce

a permutation group ’I on the column vectors of the range R. For example, if

0 (123) then the column vectors (CI,...,C8) of (5.2) are permuted to

(el, C3, C5 ,C7, C2, C4,C6 ,C8). If

i 0 i

A i i O [C4c7c6
0 i i

and Q is the permutation matrix

0 0 i

i 0 0

0 i 0
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then QA

0 i I

1 o ]. [cc6c4].
1 1 0

By the isomorphism defined in section i, Q g S
3
corresponds to the permuta-

m
tlon matrix Q. Thus by applying Q to the rows of the m x q array, we induce a

permutation on the column vectors of the range R. This is turn induces a permu-

tatlon of the rows of A which is equivalent to just permuting the rows of A by

using the permutation matrix Q. Hence we can permute the rows of any matrix by

m
simply permuting the rows of the m x q array.

If i is the cyclic group of prime order m acting on the q column vectors

m
induced by a cyclic group of prime order m acting on the rows of the m x q array,

it is not difficult to prove that
m

Pfl (Xl’’’’’x m) (xq + (m-1)xq]xm (qm-q)/m)"
q

(5.3)

We are now ready to prove

THEOREM 5.2. If I is cyclic of prime order m and 2 is cyclic of order n

then if m n

(qmn/ n/t
%(2 i

i y. (t)
t + (m-l)q

mn

while if m. ln
%(2’i iron Y’ (t)(qmn/t+(m-l)qn/t) + i r (t)q

mn/t

tl n
n tl n

t#km t=km

(5.4)

(s.5)

PROOF. We must evaluate (5.1) which becomes for fixed

(t) n/t q(zl+z2+...) (qm-q)(Zm+Z2m+...)
mn zn/t

eqm(zl+z2+’’" +(m-l)e e

t

(5.6)

zi=O.

If t i (5.6) reduces to I/mn[q
mn + (m-l)qn]. If m n and t > i is a divisor

of n we have M (t)/mn(qmn/t + (m-l)qn/t) which proves (5.4) upon summing over

all t In. If m In and I < t # km for some positive integer k the (5.6) contributes

mn/t
M as before while if i < t km for some k, (5.6) contributes ((t)q )/n from

which (5.5) follows.

As an illustration, suppose q m n 2 so that we are considering the 16
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2 x 2 matrices over GF(2). Let i be the cyclic group of order 2 acting on the

two rows of the 2 x 4 array

0 1 0 1

0 0 1 1

and let 2 be the cyclic group-o-order 2 acting on the 2 columns of D. Then

from (5.5) we have .(2,i) 5 + 2 7 distinct classes which may also be easily

verified by direct calculation.

6., A FURTHER GENERALIZATION

In this section we consider a further generalization by allowing i to act

mdirectly on the column vectors of R rather than on the rows of the m x q array.

As before suppose 2 acts on the set of n columns of D. Thus, after a matrix is

permuted by columns, it is then acted upon be a more general permutation of the

column vectors of R rather than Just permuting the rows of the given matrix. For

example, using the example from section 5, suppose i is the cyclic group of order

8 generated by (12...8). Then if is applied to the matrix

A

1 0 1

i i 0 [4C7C6
0 i i

we obtain the matrix

0 1 0

[C5C8C7] 0 1 1

1 1 1

which cannot be obtained from A by just permuting the rows of A. Hence we have a

more general setting than that considered in section 5 where equivalent matrices

were obtained by simply permuting the rows and columns of the given matrix.

m m
Suppose i is cyclic of order q acting on the q column vectors of R while

2 is cyclic of order n acting on the n columns of D.

THEOREM 6.1. If p 2o n

%(2’i Im 7. @(t)qmn/t (6.1)
nq t In
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while if -pln

%(2’i) =--imllnqtin
(t)qmn/t +t.ln i (t)(pi-pi-l+l)qmn/t]

[t#kpI t=kp

(6.2)

b
PROOF. Since q p where p is a prime and b > i we have

Pal(Xl,...,x m ._Im 7.
m (t)xqm/tt

q q tlq

x + 7. (pi_pi-l)
m

q i=l p

Substituting PI and P2 into (5.1) we obtain for a general term with t fixed

N (t) n/t [ bm bm bm )Ie
p (Zl+Z2+’’’) + l (pl-p1-1)eP (z

i
+z +...

m zn/t
i=l P 2pi

nq
t

zi=0
If t i, N qmn/(nqm) while if t’} 1 and p n then t # kp

i
so that

N (i/nqm)(t)qmn/t from which (6.1) follows after summing over all tln. In the

case where pln, if t is a divisor of n and t # kpI for some k then N is the same

as in the above case. If t kp
i
then N --(i/nqm)#(t)(pi i-I mn/t

-p +i) q so that

summing over all t In yields (6.2).

As an illustration, if q p m n 2 then using (6.2) we see that

%(2,i) 3 so that the 16 2 x 2 matrices over GF(2) are decomposed into 3 dis-

joint equivalence classes.
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