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ABSTRACT. In this expository paper, it is shown that if an entire function of
exponential type vanishes at least once in the complex plane and if it has exactly
the same number of zeros (counting multiplicities) as its second derivative, then
this function must take the form Asin(Bz + C).
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We give here a characterization of the sine function, and present a proof
that uses several of the standard results of the elementary theory of functions
of one complex variable. We make no claim to depth or originality of method.

Our intention is mostly expository - to provide an illustration of the elementary
theory in action. We have taken pains to keep the exposition elementary and

complete. Since more advanced methods (see, e.g. Wittich [8]) can be used to
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get stronger results in much less space, the reader could consider this article
as an invitation to the use of Nevanlinna theory in the study of differential
equations.

In the set of entire functions, it is customary to classify functiomns
according to the growth of their modulus. In this spirit, we give the following
definition: an entire function f is of exponential type if there exist two real
positive constants C and T such that

|£¢2)]| = CetlzI for all z € ¢
where ¢ designates the complex plane.

If f is a function of exponential type, then for every z € ¢ such that
lzl = r > 0, we may write

£'(2) '%{ f 2_(5)._2“
|g-z]=1 (z-2)
in order to get the estimate

[£'¢z)| < max | £¢0)|
[z]srt1

s ce™FHD) i,

‘The last inequality is obtained via the preceding definition of a function of
exponential type, and we may deduce from this inequality that the derivative of a
function of exponential type is itself a function of exponential type.

The theorem we are about to establish may be formulated in the following way:

THEOREM A. Let f be an entire function of exponential type, possessing at
least one zero. If f is such that z is a zero of multiplicity m of £ 1f and only
1f z 18 also a zero of multiplicity m of f", the second derivative of f, then f
necessarily has the form

£(z) = A sin (Bz + C) 1)

where A, B and C are three complex constants.
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To facilitate the exposition, we introduce the class S of entire functions f
of exponential type that have at least one zero in the complex plane and that
have the following property: z is a zero of f if and only if z is a zero of f",

counting multiplicities. For convenience, we shall eliminate the function

constantly O from S. The functions

iz -1z iz, -1z

£ "t ' and cos(z) =& ;e

sin(z) = 21

are examples of members of S. More generally, f(z) = A sin (Bz + C) 1s a function
in S, and the preceding theorem asserts that every element of S is of this form.
We turn now to the proof of theorem A.

Let f be a function in S. Then the function

is an entire function without zeros, and we shall show that, in this case, it

must take the form ¢(z) = eh(z)

for some entire function h. We observe that
¢'/¢ 1s itself an entire function that must be the derivative of an entire
function ¢, i.e. V' = ¢'/¢. Consider now the new function

H(z) = ¢(2) O
If we calculate the derivative of H, we get

B (z) = eV {4'(2) - $(2)¥" (2)}

= e V@ ) - 4 %'(%l}

=0,
and we may conclude that
H(z) = ¢(2) e ¥ g,
Here, C 1s a constant. Hence each element f ¢ S satisfies the differential

equation

£(z) = £(z)eM(? (2)
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for some entire function h.
We show now that in fact the function h must be a polynomial of degree at

most one. To do this, we shall use Jensen's formula (cf. Conway [1], p. 283):
log |£(0)| = 1- fz' log lf(reie)l do - ; log ()
™ Jo k=1 Ta,]

Here it is supposed that f is holomorphic in |z| < r, and that 8y, ..., 8 are
the zeros of f contained in |z| < r, repeated as many times as their multiplicity

indicates. From this inequality, we deduce that
2%
log |f(0)| < %; f log ]f(reie)l de.
(o]

With the notation
log t for t21 (o] for t>1
log+t - and log t =

0 for O0<t<l -log t for o<t<1

we may write
log t = log't - log t.
Thus, if f 18 in S, and if we moreover suppose that [f(o)[ 2 1, then we have

05 log |£(0)] < 1= Iz" log |£(zel®)| do
T Jo
Yi
= %— f logh If(reie)l do -
T 7o

2
1 J’ - 16
T 0 log  |£(re™ )| do

and we thus obtain
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2n 2%
I log~ If(reie)l de < I log+|f(reie)| de
0 0

2x + Tr
< J log (Ce ") deo
0

< Clr

for a constant Cl. Finally, using the triangle inequality, we deduce the result

27 2% 27
I |log|f(re1°)|| de s J log_lf(reie)l do + I log+|£(reie)] de
0 0 0

< chr.

In the same fashion, we could demonstrate that, for another constant cz,
2w 10
Io [10g[£"(xe ") || do < 2¢,r,

on supposing also that |£"(0)] 2 1.

Returning to the function h of the identity (2) and writing
h(z) = u(z) + iv(z)
we may use equation (2) to write
log|£"(rel®)| = 1og|E(re!®) | + u(rel®y.

This leads us (taking account of the preceding inequalities) to the inequality

2% 27 2%
I [u(rel®)| ao s I |10g|£(ret®) || a0 + J ]loglf"(reie)ll de
0 0 0

< C3t

for a constant C3. Finally, we write the representation of h as a complex Poisson
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integral (cf. Rudin [7], p.228):

2r 16 i¢
14, 1 2re” + re 16
h(re™) = 5= IO {—_—Zreio n x:e“} u(2re”) do

and use the last inequality to obtain

2n 10 1¢
lh(re“)l < 51— I lu2rel®) | a6) max ﬁ{éﬁi—
T 0 0<0<2w !2re™’ - re ¢
0<és2m
c,D
3
< —27 r

where the constant D, independent of r, satisfies the inequality

nax 2re16 + rei¢ < D
0<0<2~w Zreie - rei¢
0<¢<2w

Since h is an entire function that grows no faster than a constant multiple of the
independent variable, we may use a direct consequence of Liouville's theorem to
conclude that h is a polynomial of degree at most 1.

Thus, if we summarize the present situation, we have, for every f ¢ S such
that

[£(0)| 2 1 and [£"¢0)| 2 1, 3
the identity
£'(z) = £(z) e **B
or equivalently
£"(z) = CeAzf(z) (4)

for two possibly complex constants A and C. We now show directly that the two
hypotheses in (3) only constitute a simple normalization. In the first place, if
we had £(0) = 0 (and hence £"(0) = 0 since f € S), the trouble would be that

[£¢0)| <1 or |£7(0)] < 1, so we could take £,(z) = af(z) where
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The function f1 belongs to S and satisfies (3). If f1 takes the form indicated in
theorem A, then f also does. In case £(0) = 0 (and consequently £"(0) = 0) then
we perform the translation

fz(z) = f(z + €)
where € is a constant chosen so that f2(0) # 0. Now one proceeds to show that f2
has the required form, and hence that f does.

In the sequel, we shall simplify the exposition by supposing, without loss of
generality, that f ¢ S, and that |£(0)| 2 1 and |£"(0)| 2 1, so that f satisfies
4).

Our aim, at this point, is to show that the constant A in (4) must be zero,
8o let us suppose otherwise. For simplicity, we shall suppose A = 1 in (4) since

otherwise we could consider the function
F(z) = £
'which also belongs to S and satisfies the differential equation
F'(z) = C'e®F(2)
where C' 1s a constant.

Let .
n

f(z) = I az
n=0 ©°

be the Taylor series of f. We may estimate the coefficients as follows:

for all r >0 and n 2 O.
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Let us choose r = n and use Stirling's formula to deduce the estimate

1
= 1
la nl cn o)
. L 1
C 2n n 1 n
s (2mo)™ T A+ 7))
<c for alln 20
where we suppose the elementary fact that lim n]'/n = 1, Consequently we find
nreo
1
lim sup |a n! P =p < =,
n>co
which signifies that the series
® ann.
n-O Vn+1

(5)

converges uniformly for |w| 2 p' > p and thus defines a function that is holomor-

phic in a neighborhood of infinity and that vanishes at «.

Now consider, for Re(w) > max {p,t}, the integral

s = [ £ &
0
= fﬁ z a t?) eVt g

0
= I a, j. t? e-'Wt dt
a=0 0

o an!
n

= I —,
n=0 wn+1

The interchange of the integration and the summation is justified by (5) and its

consequences. By the remark of the preceding paragraph, the function ¢ thus

defined is holomorphic in a right half-plane. On the other hand, we have remarked
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that the derivative of an entire function of exponential type is again of expo-

nential type. We may apply this to do the following integration by parts

6 (W) -J’o £(t) e ¥t dat

© —t
.-f;('gl+fof'(t)e dt

w

[} 00 -wt
- £C0) + £1() + £"(t) e de.
w w 0 2

w

Finally, since f" must satisfy the equation (4) with A = 1, the function
satisfies the following relation:

w2¢(w) - wE(0) - £'(0) = Co(w - 1)
where C is the same constant as in (4). Now we have remarked above that since ¢
1s holomorphic in a right half-plane, (and recalling that C ¥ O because we have
ruled out £ = 0), the last inequality allows us to continue ¢ analytically to the
whole complex plane, as follows. We know that ¢ is holomorphic for Re(w) > B >
max {p, 1}, and the preceding equation allows us to continue ¢ analytically to
Re(w) 2 B - 1, then to Re(w) 2 B - 2, and so on, until the whole complex plane is
covered, moving to the left by a band of width 1 each time. But we know also that
¢ is holomorphic in a neighborhood of infinity. Hence the analytic continuation
of ¢ is holomorphic on the whole Riemann sphere, and must therefore be a constant.

This constant is actually zero, since ¢(=) = 0. Now since we have

© ® apn!
£(z) = I a z® and ¢(w) = %
=0 ° n=0 WL

where the coefficients a,n= 0, 1, 2, ..., that appear in the two developments
are the same, and since we have shown that ¢ = O, we have f = 0, which contradicts

our exclusion of O from S. Hence the constant A of equation (4) must be zero.
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All these considerations lead to the following situation: 1if f ¢ S and if
|£(0)| 2 1 and [£7(0)| 2 1 then f must satisfy the differential equation
£"(z) = C £(2)

for a (possibly complex) constant C ¥ 0. Write C = lcleﬂ and consider the new

function
F(z) = f(az)
where
G

G"'/Té-l—e .

This function F also belongs to S and satisfies the differential equation
F"(z) = -F(z).
Now in the elementary theory of differential equations, it is shown that all

solutions of this equation must be of the form

i iz

F(z) = ae" > + be
for two complex numbers a and b. Since F € S, it has at least one zero. This
implies that a ¥ O and b ¥ 0. We may rewrite this equation in the form

F(z) = ¢, cos z + <, sin z

1
where ¢, =2 + b and e, = i(a - b), and we remark that

2 2
c1+c2 4ab ¥ O

c
gince a ¥ 0 and b ¥ O. LetuschooseA-/ci+c§ and C = arc tanc—z to
1

deduce from elementary trigonometry that
F(z) = A sin (z + C)
and hence that
£(z) = A sin (Bz + C)
where A, B and C are three complex constants. This concludes the proof of

theorem A.
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Before ending, we remark that once it 1s established that a function f of
the class S must satisfy a differential equation of the form (4), there are
alternative elementary proofs at hand. The one we have chosen has the advantage
of remai;ing in the field of functions of a complex variable, but one could
alternatively proceed directly from the solution of (4) obtained by the classical
methods of the theory of differential equations and a detailed examination of

the solution to derive the conclusion of theorem A.
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