
Int. J. M. Math.
Vol. 4 No. 2 (19811 305-319

305

ON RANK 4 PROJECTIVE PLANES

O. BACHNLANN

Dpartement de mathmatiques
Ecole polytechnique fdrale

CH-1007 Lausanne, Suisse

(Received October 4, 1979)

ABSTRACT. Let a finite projective plane be called rank m plane if it admits a

collineation group G of rank m, let it be called strong rank m plane if moreover

Gp G
1

for some point-line pair (P,I). It is well known that every rank 2 plane

is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only

rank 3 plane is the plane of order 2. By [i] and [7] the only strong rank 3

plane is the plane of order 2. In this paper it is proved that no strong rank 4

plane exists.
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1 INTRODUCTION

In [6] Kallaher gives restrictions for the order n of a finite rank 3 pro-
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jective plane and conjectures that no such plane exists if n # 2. Let a finite

projective plane be called a strong rank m projective plane if it admits a rank

m collineation group G such that Gp GI for some point-line pair (P,1). By

Bachmann [I] and Kantor [7] no strong rank 3 projective plane of order n # 2

exists. If the conjecture is true that for projective designs the representations

on the points and on the blocks of an arbitrary transitive collineation group are

similar (see Dembowski [2], p. 78), then every rank m projective plane is a strong

rank m plane.

We shall prove in this article the following

THEOREM: No strong rank 4 projective plane exists.

To prove the Theorem we first divide the strong rank 4 planes into 3 classes

(see Lemma 2 and 3). Then we associate with each such plane (O,)-matrices A and

C of trace 0 (see [3]). Finally we show that for each class the trace condition

contradicts the integrality of the multiplicities of the eigenvalues of A or C.

We shall use the following notations, definitions and basic results (see

Dembowski [2] )

A collineation group of a projective plane has equally many point orbits and

line orbits. The rank of a transitive permutation group is the number of orbits

of the stabilizer of one of the permuted elements. If G is a (point or line)

transitive collineation group of a projective plane, then the point and line

ranks are equal (Kantor [8]). A rank m projective plane is a projective plane

which admits a transitive collineation group whose (point or line ) rank is m

(m 2). The lines (points) are identified with the set of points (lines) on

them. We write P E i
G

if and only if P iY for all y G.
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2. PROOF OF THE THEOREM.

Let - (P,L,) be a projective plane of finite order n and let G be a rank

4 collineation group of such that Gp G
I

for some point-line pair (Po’lo)"
O O

It is easily seen that n .3. A bijective map P---- L is defined by

pO i if and only if P PY and I iY for some G. If i we
O O

write i. for P.. Clearly pd i and
1 1 O O

-1 -1pay pyO I Y iY for all P IL [. G (i)

For P P Gp has exactly 4 orbits {P), A(P), r(P), (P). We choose

the notation in such a way that

LEMM 2.1: If 61, /2’ J3 e [L, r ,][} then IAI(A) A2(B)[

I(A’)2(B’)I if A 3(B) and A’6 3(B’).
PROOF: If A A3(B), A’B’), then for some 7aG e__G,

whence by (2)

(A) 2(B)I
L 2.2: Suppose that Po i Then 1 -(Po} and Po-(lo} are GpO O o

orbits, say d(Po) lo-{Po} and iGPo2 Po-{I with PGP2 U(P)"

and P3 (Po) can be chosen such that Pifi Io; Po’ P2’ P3 e 12; P2
(Fig. i).

The case described by Lemma 2 will be called case I.

PROOF: If lo-{Po}is not a GPo orbit, then it is the union of 2 orbits,

say lo-{Po}ffi (Po)U r(Po). Then Po-iloiS a linQ orbit iGP and ][(Po)

PGP with i pd. This leads to the contradiction
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1Gpo GPo Gpod GPo 2

Hence we may assume that A(Po) lo-{Po}
Dually:

-2 Po-{io] where P Po r (Po) (note

that

For any poin Q

Let P{ A(Po). l P2 e 1{ put P PI. If P2 la then

[((11’ 12)d I o )GPo’P2 this plies P2P’P2 P1 for some point

P1 (Po) and hence P2 e 1I.
It rins to prove that P3 6 (Po) 12 exists such that P1 13" If no

such P3 exists then P16 Qo for all Q 6 12 {Po P2} and hence Gpo p2 GpoP1"
t r6G be such that P Po" en i IO and therefore Po lo’ P0 # P end

O

TT It follows that Ceo (7 7o) -I GPo
Hence

Further

P2 I for some oGpo
Z’ l’for otherwise P2 6 for all Yl,r’6 Gpo which cannot occur.

po i for some Yo 6 Gpo if and only if oGP2.
"To prove (5) notsthat by (4) through any point of IZ-{Po} goes at least

Gp
one and hence exactly one line of ii o. (3) and P2 It then imply (5).

Let’s apply (5) to Gp in place of Gpo: ,_iGp YI GY poG

(4)

(5)
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y Gp
where YEG such that Po PI’ P2 Po; (P) S for some S I o

[Po, Pi}; hence Pof 6 1Zcfor some ’16Gp if and only if T16Gpo"
It follows that R pP1for .ny R6 12-Po ’" Let rforsome

Of the 3 orbits (Poll)G, (Po,12)G, (Po, r)
G

iuced by G on

(Po, IG
only one consists of flabs. Thus (PI’ io) and (Pi, r) and then also

Gp
(Po ll) and (E, II) belon to the se G-orbit. This contricts R Po "
Hence there exists P3 (Po) 12 such that P1 13"

LEMMA 2.3: Suppose that Po io" Then io and dually Po are Gpo-orbits
say A (Po) io" P (Po), P2 F(Po)’ P3 6 ][(Po) can be chosen such that

either Po’ P2’ P3 i; P 12, 13; P2 i;. P3 12
or Po’ P1 "P’3 61;2 PI IO; (Po) 12 P2Y} for someYoGpo P ii; PI’ P2’
P3 iI, 13. In both cases n4.

The 2 cases described by Lena 3

Case I

Figure I

CASE Ill: Clearly P iP and

will be called case III resp. case

II2 (Fig. 2).

PROOF: It is easily seen that

and Po are Gpo- orbits; say

(Po) i. Let P A(Po)" We

have to distinguish 2 cases:

Case IIi: P i_
o

Case I12: Po II"
r(po pPo, (Po) pPo for some

"P2’ P3 6 II [Po, Io 11 If P2 13 then (P2’ 13) 6 (Po’ II)G’ hence

(P3’ 12) (PI’ lo)G’ so P3 6 12"
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Case IIi

Figure 2

Case ZT2

Analogously P2 13 if P3 6 12" Thus

P2 13 if and only if P3 6 12"
Similarly one proves

(6)

PIe 12, 13 (7)

If n > 3 then, by (6), we can choose P2’ P3 such that P2 13 P3 12"
Let’s show that n > 3 (Fig. 3). Suppose that n- 3. Put P4 I i.

Figure 3

Then, since Po 11 and P2 6 1o,

14 POP1" Let P56 I.o-(P1, P}.
Then PoE 15 and then 15 12
(POP5 f 13)P4/ 12 Denote this

point by T. Clearly P2Ps 12
-I

T. Since (P2P5) e 12 15 we

obtain the contradiction
-I

(P2Ps) [ P2P5
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CASE 112: We may assume that Po’ PI’ P3 12 where P2 e ,(Po). Then

U G
We first assume that n>3. IP2 Ii n+l,GPoGp PI ’P 2

hence
o’ 2

Gp ’PI
112/ r(Po) I; let 1

2
( r (Po) { with som, 7o Gp Then P3

o
To is invariant under G ’PI

and since12 Po’ PI’ pO} and hence, since P2
O

on>3, 11/ 12 P2
G

The only G-orbit of x_L consisting of flags is (P 12) Hence (PI’ 12)O’

(P3’ 12)’ (PI’ io) (Po’ 12)G" Po then implies that (P2’ 11)’ (P2’ 13)’

(Po II) (P2 io) (Po 12)G in particular P2 i iI 13O’

If P1 6 1
3

then (PI’ 13) fi (Po’ 12)G and hence (P3’ ii) 6 (P2’ io)G"

Since also (Po’ ii) E (P2’ io)G we have pl
Gllo P3 for some 71 GP1

This implies that GPl is transitive on 1
2 -PI’ P72} which is impossible.

Hence P1 13"
To } 2If n=3 then 12 p[Po’ PI’ P2 P3 ’o is of order 4,2for if T

O
1 then

To 1’o o Yo(P2’ 12 E (P2 12) which is impossible. Moreover P2 P2 since other-

wisw T
O GPo, P2

I. It follows that [(P2P 4 which contradicts

2G 2 3
7o. o 7 70 o

(P2P2) P2P2 P2 P2 This completes the proof of the Lemma.

Let us now associate with (G,]) 3 (O,)-matrices.

If P (P) is a G-orbit then let P’(P) denote the paired orbit (see Wielandt

[9] ). If Q6@(P) then Q=P for some’EG and QY (p(p))7 # (pT) p (Q).

Hence Q e eP’(Q), i.e.

Q 6P(P) implies that P e’ (Q). (8)
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This implies that in

Case I: Case III: Case 112:

A’(P) F(P)

r’(P) (P)

,(r) (r)

A’ (P) A(P)

r’ (r) IT(P) resp. r(P)

II (e) Y(P) resp. (P)

A,(P) r(P)

(P) (P)

n,(p) (p).

..., v). Let A be the (O ,l) -matrix with rows enumerated by the points Pk and co-

lumns by (Pk) and such that (Pk’ (Pi)) if and only if PkEA(Pi). Let

B, C be the analogous matrices with r(Pk) resp. K(Pk in place of (Pk).

We have in

case I: case III: case 112:

CtAt B, C At A, Bt C Ctif r’ (P)-n(P) A
t B, C

CtAt A, Bt B, C if r’(P)=r(P)

Let k =IA(P)I i rP)l m--IH(P)I

A.(P) A (Q)I if Q r(P)

Ja(P) a(Q)J v I fH(p)
if Q 6 , A(P)

A straightforward calculation shows that

I + A + B + C J the vxv-matrix with l’s in every entry

At A k I + AA +B +C

Ct C m I +p’A +V’B +MC
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AJkJ

BJ-IJ

CJmJ.

Now we determine the eigenvalues of A in case 111 and of C in the cases I

and II 2.

CASE III: k n + I

i n2(n + I) where

m n3(n + I) where

n
2 IP 2

Gp p1o
n
3 IP3

k + i + m + I v n2+ n + I, n2+ n
3

n- I, k I.

It follows that A
2 AtA (n + I) I + A + B + C n I + J hence

(A (n + I) I)(A2- n I) O. This gives the eigenvalues of A:

1 n + 1, A2,3 +f’’"

CASE I: k i n, mffin (n 1), k + I +m + I v n2+ n + I.

We have ’ I]I(Po) q X(P3)

Let’s calculate ’:

v’ II[(Po)

n(n I) Ill(P3)] JII(P3 )6 A(Po)I
Gp

(note that r(P3) P2 3 and hence Po

+ Ill (P3) /. II (P3)).

+Ill (P3) II (Po)[ +I (9)

n IA (Po)# #A (Po) n (P3)I + IA (Po) /’)- I’(P3) + IA (Po) 61 " (P3)I Io)

Clearly

A (P3) q ](Po)l 2.

(II)

(12)
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PROOF of (12): P el(P3) and P3 6 E(Po hence by Lemma
O O

o Gp
IA(p3) r(eo) e2ll for some To6GP Thus IF3 o’P21 n I implies

G o ..oGp ,poGPo,P21 To Po,P21 n -i. Since P1 I o 2 we
that 11 n I. Hence II

Gp
then have P1 ’P2 PI’ i.e. GPo’P2GPo’P1 Since both groups are conjugate

GPo(see the proof of Lemma,, 2) this gives

PI GPo ’P2" T’ " ]/’ o
Moreover P2 lo if d only if o6Gp Thus P2 13’ P2

P2 for some o’ To 6Gp Since by the above, Gp p is transitive on io
o o’2

{ GPo To Gp G

{Po’ PI}’ IP20 ’P21 n- I; hence 113 P2 o{ 113 ( P2Pol 2. This

proves (12).

Equations (I0), (II), (12) imply

H(P3) f A(Po)I n 3. (13)

To determine [H(p3) (Po) we use

n l(Po) Ir(Po) A(P3)I + l(Po N ](P3)I + Ir(Po) ]I(P3)[
Gp

By (12) [r(Po) A(P3) 2. Since r(P3) P2 3, r(Po) Y(P3)
Gp Gp Gp Gp

P2 o fl P2 3 ]12 o 12 3 1. It follows that

(14)

I](P3) 1(Po)l n- 3. (15)

Equations (9), (13) and (15) imply that

’ n2- 3n + 5. (16)

Analogously we calculate ’ and ’
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r(Po) (P)I Y the proof of (12) and }r(Po) (Pl)l IP2 o P

Gp PI Hence I I and thus112 o i O. IH(P1 (eo) n

’ (n l)(n 2). (17)

n(n- I) IH(P2) --IH(P2) f A(Po) + I(P2) 1(Po)l + IH(P2) H(Po)I"
In n-- IA(Po) (A(Po)q A(P2) + IA(Po) ctr(P2)[ + A(Po C If(P2)

Gp Gp Gp Gp
IA(Po) A(P2) 0 and IA(Po) 1(e2)I =[el o el 21 III o/q iI 2 1

G Gp Gp
(note that IiI P21 e

I 21 n and hence r(e2) el 2). Hence IH(P2) (I A(eo)

Further [H(P2)f 1"(Po) II(P )I Ir(Po) A(P2)I -II(Po N r(P2)l 1
o

Gp Gp
where Ir(eo) n, Ir(Po) (q A(P2) O and IP(Po) (ql(P2)I e2.o Pl 21

Gp Gp
I12 o O iI 21 O. Hence [H(P2 l(eo)l n I. It follows that

’ (n l)(n 2).

Equations (16), (17) and (18) imply that C2= ctc n(n I) I +

(n l)(n 2)(A + B) + (n2- 3n + 5) C n(n I) I + (n l)(n 2)(J- I) + 3C

and then (C n(n- ) I)(C2- 3C 2(n I) I) O.

The eigenvalues of C are n(n I); 12, 3 (3 +_ Sn +’I’ )/2.

2
CASE 112: k i n + I, m (n- 2)(n + I), k + i + m + I v n + n + I.

By the proof of Lemma 3 n4. Let’s determine I’

(n + l)(n 2) I[(P3) l(P3)q Z(Po) + I(P3)/ r(po)I + l][(P3)/

][(Po) !. In n + 1 IA(Po) [A(Po)(q A(P3) + IA(Po)/q I(P3)I + IA(Po) (

[(P3)I clearly l(Po (P3)[ I. Let’s show that

(Po)f] T’(P3) {(P3)[ l’(Po) 2 (19)

(Pa)/ I (Po) 2. (20)
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PROOF of (19) and (20): By Lemma

For Yo 6 Gp
O

o o Yo o 7’P2 ii ii P2 P2 if and only if Gpo o,PI
for otherwise pO oGeo,eI

GP ’PI, GPo Pl
2

IIOGp P o oo’ which leads to the contradiction n + I iI o ( - 21 +

(IP21- 2) 2(n I).

Further

P2 iI U P2P2 for some o GP (22)
O

Gp GPo would contain at least 3 pointsotherwise,Gp since P2 o 75, every line of ii
Gp o

of P2 o and this would iply that a point of P2 o (llk]P2 P2 exists. By (21)

70 70 7o 7o * "7GP ’PIand (221 P2’ P2 613 P2 P2 for some 70 eGp Since

Gp o

Ie2 o131 l](Po) (P3)l 2. This proves (19).

Gp o o
contains exactly oneEach of the n- 2 lines of 13 o -{P2 P2} through P2

Ipoint of P2 o Together with P P2 this gives n points of P2 o. It

follows that exactly one point of P2 o { o] lies on iI. This proves (20).

By means of (19) we obtain ill(P3)( (Po) n 2.

In n + 1 [r(Po)] [](Po A(P3)] + lr(Po) F(P3)[ + lr(Po) (P3)[
Gp Gp Gp Gp

lr(Po) (3 a(P3)l 2 by (19) and Ir(Po) iq T(P3)] [P2 o n P2 31
I. Hence [H(P3) r(Po) n- 2. It follows that l’ n2- 3n + I.

u’ III(Po) q II(PI) [H(PI)I III(P1) (3 A(Po) [II(P1) (Po)[ where

Ill(P1) (n + l)(n- 2), [II(PI) f% A(Po) -n- 2 and ill(PI) (] [[’(Po)[ lr(Po)
[I’(PolO(Pa)l -Ir(Po) I’(P)I. Ir(Po) C (Pa)l by (20)

IP2 o (I P2 11 112 o F 1 1. Hence In(P_)cl r(Po) -2 and
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(n- )(n- I).

{H(P2) r(Po) Ill(P_)f r(Pt) by Lemma I

P3Po (
’o ’o

GpO Gp
through y nt on 1 goes aculy one 1ne of l o and one o 2 o. Hence

o

’ (n 2)(n ).

I follows that C
2 CtC (n + 1)(n 2) I + (n l)(n 2)(A + B) +

(n2- 3n + ) C (n + 1)(n 2) I + (n2- 3n + 2)(A + B + C) C and C2+ C

2(n- 2) I (n 1)(n 2) J whence (C (n + 1)(n 2) I)(C2+ C 2(n 2) I)

O. The eigenvalues of C are )’i (n + l)(n 2), A2 (-I + /8n q_5)/2

REMARK: Let : G--GL () be the matrix representation of G obtained by
v

associating with each T6G the corresponding permutation matrix (7) (the ordering

of P is the same as used in constructing the matrices A, B, C). By (2) ()

commutes with A, B, C for all YG. Hence, by [9] Theorem 28.4, {I, A, B, C} is

the basis of the commuting algebra If(G) of @. By [9] Theorem 29.5 W(G) is connu-

tative and hence, by [9] Theorem 29.4, the representation has 4 irreducible

constituents D
1 I, D2, D3, D4, each with multiplicity I. If f.l is the degree

of D.x then f I and. ilffi fi v

Let us finally show how the fact that A and C have trace 0 contradicts the

integrality of the mmltiplicities of , 12’ 13"



318 O. BACHMANN

In the 3 cases AI appears with multiplicity I. Let f denote the multiplicity

of A2; then v f I is the multiplicity of 3" This leads to

O n(n- i) + f(3 + Sn + 1 )/2 + (n(n + I) f)(3 )/2 in case I,

O (n + I) + f+ (-)(n(n + I) f) in case

O (n + l)(n 2) + f(-I + 8n 15)/2 + (n(n + I) f)(-I 8n 15’ )/2

in case 112.

In any case this contradicts the fact that n>2 and f I are integers:

In case III this is clear.

In case I suppose that a prime p divides 8n / Then pn, hence P 5n +

2i
and then p 3n, i.e. p-- 3. This implies that 8n + I 3 for some i72 and

that n(Sn + l)/Sn + I’ (3 2i- I)(5-32i-I+ I)/82-3i-I -In case 112 suppose that a prime p divides Sn 15’. Then p &(17, 23 and

2 p2 15 172 2
P Xn + I, n 4. Hence 8n { 232 2

17-23 }, i.e. n e38, 68,

19112]. Suppose that n 38. Since geo,P2 is transitive on 12-{Po, PI’ P2} IG
is even. This contradicts the fact that if n=-2 rood 4, then the full collinea-

tion group is of odd order (Hughes [5]).
2

Suppose that n668, 19112}. Then n is not a square and n + n + I not a prime.

Hence, since G is flag-transitive, n is a prime power (Higman and Mc Laughlin [4])

which is absurd.
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