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ABSTRACT. Let a finite projective plane be called rank m plane if it admits a
collineation group G of rank m, let it be called strong rank m plane if moreover
GP = G1 for some point-line pair (P,1). It is well known that every rank 2 plane
is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only
rank 3 plane is the plane of order 2. By (1] and [7] the only strong rank 3

plane is the plane of order 2. In this paper it is proved that no strong rank 4

plane exists.
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1. INTRODUCTION.

In [6] Kallaher gives restrictions for the order n of a finite rank 3 pro-
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jective plane and conjectures that no such plane exists if n # 2. Let a finite
projective plane be called a strong rank m projective plane if it admits a rank

m collineation group G such that Gp = G1 for some point-line pair (P,1). By
Bachmann [1] and Kantor [7] no strong rank 3 projective plane of order n # 2
exists. If the conjecture is true that for projective designs the representations
on the points and on the blocks of an arbitrary transitive collineation group are
similar (see Dembowski [2], p. 78), then every rank m projective plane is a strong
rank m plane.

We shall prove in this article the following

THEOREM: No strong rank 4 projective plane exists.

To prove the Theorem we first divide the strong rank 4 planes into 3 classes
(see Lemma 2 and 3). Then we associate with each such plane (0,1)-matrices A and
C of trace O (see [3]). Finally we show that for each class the trace condition
contradicts the integrality of the multiplicities of the eigenvalues of A or C.

We shall use the following notations, definitions and basic results (see
Dembowski [21):

A collineation group of a projective plane has equally many point orbits and
line orbits. The rank of a transitive permutation group is the number of orbits
of the stabilizer of one of the permuted elements. If G is a (point or line)
transitive collineation group of a projective plane, then the point and line
ranks are equal (Kantor [8]). A rank m projective plane is a projective plane
which admits a transitive collineation group whose (point or line ) rank is m
(m 22). The lines (points) are identified with the set of points (lines) on

them. We write P € 1G if and only if P ¢ 1Y for all vy € G.
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2, PROOF OF THE THEOREM.
Let P = (P,L,€) be a projective plane of finite order n and let G be a ramnk

4 collineation group of P such that G, = 6
o o
It is easily seen that n =3. A bijectivemap o : P—>L is defined by

for some point-line pair (Po,lo).

P° =1 if and only if P = PZ and 1 = 11 for some ye€G. If i€N we

write 1, for P° . Clearly P =1 and
i i o o

-1 -1
%Y =29 | 19 Y =1 forall PeP, 1el, Tec., (1)

For P€P G, has exactly 4 orbits {2}, a(), r(), [(P). We choose

the notation in such a way that

Y

(@) =ach, (@Y = TeEH , (1@ =@ for all PeP,Yec(2)

LEMMA 2.1: If Ay, Ay, A, €{A,T I}, then IA, N A,@) =
|A1<A->n /\Z(B')I if Ae /\3(3) and A'e A (B').

PROOF: If A€ A,(B), A"€ALB'), then for some YeG , Ve Gy

Y
B' =B =80 , A' = AOY , whence by (2)

' . oY Xe
AN Aol =A@ NA @°

AN A,®] .

= degwn A,en© -

LEMMA 2.2: Suppose that P c1 . GThen lo-{Po} and P%- 1.} are GPO-
. P . P
orbits, say A(R) =1,-{p} and 1,70 = P -{l}with B,° =T(R). PeA(R,)

and P3 € ][(Po) can be chosen such that P1€ 10; Po’ PZ’ P3e 12; Pze 11; P1¢13

(Fig. 1).
The case described by Lemma 2 will be called case I.

PROOF: If 1, -{P,}is not a Gp - orbit, then it is the union of 2 orbits,

o G
say 1-{B}= A(B,)U I'(P,). Then P -{1.}is a line orbit 1 '° and T(P,) =

P ks with 1 = Pd. This leads to the contradiction
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G ¢G G
; n=11%| |p ol [ %' | |p fo| =| P~ 1| = o’

*e

Hence we may assume that A(P,) = 1,-{Pj}.

G
. . P P
Dually: Po-{lo} is a GPO- orbit, say 1,° = Po-{lo} where P,°= T(®,) (note

that P ¢1,).

& G
Ippo|.|1Po|-|P {lo}\'n implies TI'(B) N 1, = {P}.

For any point Q # P o P2 on 1, holds Q o u TeEe,).
\J
Let PieA(P). If Py € 17 put Py .1fP¢1' then
G 1 1 s G
IP' z| - (1' PO’PZI |(1{n 12) Py, Zl- a-1 = ,(l'f\ 12) E,,P,
G
> a;n 12) ni,) °’P2| ; this implies P1P°’P2 = P, for some point

| 3 A(P,) and hence I’2 € 11.

It remains to prove that P3 e I(®,) N 12 exists such that P1¢ 13. If no

. c
such P3 exists then Pié Q" for all Q € 12 {_Po, Pz} and hence GPoipzé GPo’Pi.

y v Y v
Let YeG be such that P, =P ., Then 1,6 =1, and therefore P, €1 , P # P aond
2 o 2 o o< tor %o o

YT o P | =
P, B, for some YoeGPo. It follows that GPO By rn) GPo’Pz,YYO‘
Hence
G = G 3
Py By R, P, - S
Further
P, ¢ 1Y° £ Y,eG (4)
2 1 or some 1,€G, ,

o
r "

. A £) L .
for otherwise Py’ € 1, for all Y, 1 eGP which cannot occur.
o

P2Y°él1 for some Y, €6

B, if and only if W{,éGP . (€))

2
"To prove (5) note that by (4) through any point of 1, -{B,} goes at least
G

Q
1°

Let's apply (5) to GP in place of GP :
1 ° GPY ‘YG'Y G

AR =1, (B} T(®) =T ) =(T®)) =pfo=p o =g

one and hence exactly one line of 1 (3) and P,e1l, then imply (5).
2 Yy

1
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G.
Y Y
where Y €G such that B, =P, P2 =PF,; I(Pi) =S P for some S €1, -

{B,, 2,}; hence PZ’- €1, for some Y,€G if and only if Y, eGPo.

P 1
% 1 =& for some such R
It follows that R ¢ B ‘Lfor sny Re 1,-{P,,B}. Let r=R forsomes .

Of the 3 orbits (By,1,)% (2,,1,)%, (B, r)® induced by Gon PxL -

By s 1‘,)G only one consists of flags. Thus (Pi’ 1,) and (Pi, r) and then also
G.
(B, 1;) and (R, 1,) belong to the same G-orbit. This contradicts R ¢ P°P1.

Hence there exists P3 € X@, )N 12 such that P.lg( 13.

LEMMA 2.3: Suppose that P, ¢ 1,. Then 1, and dually P, are Gp -orbits,
o

say A(B,) =1,. P1 € 8(R,), P2 e ree), P3 ¢ J(P,) can be chosen such that
either P, Py, P3 c 11; P‘l € 12, 13; P, ¢ 13;_ P3 ¢ 1,

or P P

o’ Pl’ 1 ' "2 1
P3 ¢ 11, 13. In both cases n>4.

Y Yo
Pyel,; i€l ; T()N 1, ={P,} for some Yoecpo P) € 1L,; P, P,

The 2 cases described by Lemma 3

8 ? / ch . will be called case II1 resp. case
/J 112 (Fig. 2).
PROOF: It is easily seen that
13 1, and P, are GPo_ orbits; say

Aa(,) =1,. Let P, ¢ o(B)). We

5
{ A
2

I

2

Case I have to distinguish 2 cases:
Case IIl: Poe 11
Figure 1
Case II2: Po é 11.
' Cp Cp Cp
CASE IIl: Clearly P, =1, ° and T(p,) = P2 °, T(R,) = P3 ° for some

5 G
"PZ’ P3 € 11 -{p,, 1N 11} . If P,¢ 13 then (Pz, 13) € (Po, 11) , hence

G
(P3, 12) e (2, 10) s SO P3 € 12.
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Case IIl
/ Case II2
9
Figure 2
Analogously P2 € 13 if P3 € 12. Thus
P, e 13 if and omly if Py L. (6)
Similarly one proves
P,e 1,, 15. €
If n >3 then, by (6), we can choose P2, P3 such that P2¢ 1, g3¢ 12.
Let's show that n > 3 (Fig. 3). Suppose that n = 3. Put P, =1 ni,.

Then, since P e ].1 and P1 € lo,

1, =RP,

Then Poe 15 and then 1511 12 =

¢¢3‘£

- Let P € }o-{Pi, R}

AN
< (BP5 N 13)1’4 N 1,. Denote this
g point by T, Clearly P2P5r112 =
P ! -1
5 ! 4 T. Since (P2) € l,N 1 we
o \ \10

obtain the comtradiction
s-1
P, P_.
Figure 3 (PZPS) € “2°5
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CASE II2: We may assume that Po’ P‘l.’ P3 € 12 where P2 € F(Po). Then

Cp Cp

. o
G =G . We first assume that n>3. ]P2 °l = (1, | = n+l, hence

Y, GPo’P‘l
11,n I’(Po)l =1 let L,NATE®) = {P2°} with some.y € GPo . Then P, -

1, - {p P ng d h i ér
2 {o, , 2} and hence, since

o . . . .
2 1s invariant under GP and since

o’P‘l

Yo
1n~12 P2 .

The only G-orbit of #xL consisting of flags is (Po, 12)G. Hence (Pl’ 12),

G . .
(P3, 12), (P‘l’ 10) € (Po, 12) . Po ¢ 11 then implies that (PZ’ 11), (Pz, 13),

n>3, 1

G . .
(Po’ 11), (PZ’ 10) ¢ (Po’ 12) , in particular P2 '3 10, 11, 13.
G G
1f P1 € 13 then (P1, 13) e (Po, 12) and hence (P3, 11) e (PZ’ 10) .

Y1

. G _
Since also (Po, 11) € (PZ’ 10) we have P P. for some T1 €G, =G, .

o 3 11 Pl
Y
This implies that G_ 1is transitive on 1 -{P , P o} which is impossible.
Pl 2 1 2
Hence P.1 ¢ 13.
If n=3 then 1, = {P , 2., B'°, P is of order 4, for if Y2 =1 th
en {o’ 1,2,3}.Yolso order 4, for if Y = en

2 c 5
Yo Yo % P e . . o .
®e,,1,7) e, , 1,) which is impossible. Moreover P, # P, since other-
2> 72 2 2 26 2 2
%) P°'= 4 which contradicts

. T
wisw Yg €G, , =1. It follows that [(PZP2
’

o 2
2 G 2 3
(PPO)P Yo Yo Yo
272

° {PZPZ » P, P, } . This completes the proof of the Lemma.

Let us now associate with (G,P) 3 (0,1)-matrices.
If P (P) is a G-orbit then let P'(P) denote the paired orbit (see Wielandt
Y
[9]). If QeP(P) then “Q=P for someY€G and QYE(P(P))Y =P(p7) =P Q).

Y'.i
Hence Q =P e€p'(Q), i.e.

Q €P(P) implies that Pep'(Q). (8)

311
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This implies that in

Case I: Case IIl: Case I12:

A'(P) = T'(P) A'(®) = A(P) A'(®R) = T(P)
r'e) = A(P) r'(e) = I(P) resp. T(P) ") = A(P)
n'(p) = I(P) n'() = T(P) resp. N(P) n(@®) = Ie).
Now let P = {Pi, Py, ooy B}, L = (L, 1y, weey 1V}, 1 - Pk =1, 2,

eees V). Let A be the (0,1)-matrix with rows enumerated by the points Pk and co-
lumns by A(Pk) and such that (Pk, A(Pi)) =1 if and only if Pke A(Pi)' Let
B, C be the analogous matrices with r(Pk) resp. I(Pk) in place of A(Pk)'

We have in

case I: case IIl: case II2:

=B, ct = At =4, Bt = if Tr(p)=n() A“ =B, ct=cC
A® =4, B =8, ct =c if T(P)=I(P)

Let k ={A(®)| , 1= T} , m= 0PI ,

A A(P)
[A®)N A@] ={wu; if Qe { T(®
v n(p)
AY I(p)
|IT@)N 1@} ={u'} if Qe { a@) .
v! T®)

A straightforward calculation shows that

I+A+B+C=J, the vxv-matrix with 1's in every entry
A"A =Kk I+AA+uB+vC

ct C =m I +WA +V'B +A'C
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AJ=kJ
BJ=11J

CJ=mlJ.

Now we determine the eigenvalues of A in case II1 and of C in the cases I

and II2.
CASE IIl: k=n+1 c,
P
o1
l=n,(+ 1) where n, = |P2 |
GPo’Pl
m = n,(n+1) where n, = |P3 |

k+1l+m+1=vs= n2+ n+1, ny+ g =n - 1, A =u=v =1,

3
It follows that A2 = AfA = (n+1) I+A+B+C=n1l+J; hence
A-(@+1) I)(AZ- n I) = 0. This gives the eigenvalues of A:

A, =n+1, 2 = +\n".

1 2,3
CASE I: k=1l=n,m=n(n-1), k+1 +m+1=v= n2+ n+1.
We have A= |me ) n I(P3)|
w'= IR N TE)|
v' = II(PO) N I(PZ)I-

Let's calculate A ':

R = 1) = (TEI= 1@ N AER)| + TR N Tl +IEIATE)I+1 ()

G.
(note that F(P3) = P2P3 and hence P° € n(P3)).
n=[a@) =1a@)nAE®Y[ +|a®) RTE) +(aC®)A n(RY]. 0)
Clearly
lA(PO)nA(P3)| =1 (11)

(A @) NTED| = [a@)NATE| = 2. a2)



314 0. BACHMANN

PROOF of (12): Po eI{(PB) and P3 e r[(Po), hence, by Lemma 1, |A(P°)nF(P3X

Yo P ,P | _ s
= \A(P3) (\r(Po)I . 1’2¢/11 for some YoeGP . Thus IP3 0°°2) =n -1 implies

Y, G, o G
°R,P 1>o’P2| =n - 1. Since P ¢ P‘Yo Poo?
1 1 1
GP P
then have P, 0o’ 2 =P,, i.e. G £6. .
1 1 P ,P
2 o’'1
(see the proof of Lemma 2) this gives GP p = GP P . " ' "
* o’ 0’ 2° T 9 Y

1
Y . . o o o
Moreover P, € l.o if and only if YoeGP . Thus Pze 1, P2 613 , P2

2 1 1

A "
P, for some 70, 'Yo €G, . Since , by the above, G
‘Y“ o "
G
o P ,P
{Po, R}, |B, o

proves (12).

that l 1 2| »n - 1. Hence | IIO 2 we

P P Since both groups are conjugate
o’

° ¢

is transitive on 10 -

Po’PZ

Yo GP GP
2| =n - 1; hence |13 ne, o|l = |13(\ P, ol = 2. This

Equations (10), (11), (12) imply
|n(P3) N A(Po)l =n - 3. 13)
To determine III(P3) N I'(Po)l we use

n=|T®)| = |T®)N a®y| + |T@H N TEP| + [TEIN @, (14)

G
By (12 = i =pFr -
. y (12) [T(P) N A(Pa)] 2. since T(P,) =P, 3, |[T(® )N T(R,)| =

G
P P P P
|2, on P, 3] =|1,;0n1,3] =1. It follows that
| ;) N TE)| = n - 3. as)
Equations (9), (13) and (15) imply that
Vo2
A' = n°- 3n 4+ 5. (16)

Analogously we calculate u' and v':

a(a - 1) = |[IE)| = |I@)HN ACRY)| + [T(R) NTE)| + [1() N IE)|
with [T(P ) N AR =n -1.

In a=|T@)| = [TECINAE®)| +|TCINTE)| + [TE) NTE)]
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G GP

!I'(Po)(\ A(P1)| =1 by the proof of (12) and ]I’(Po) n T(P1)| = |P2 °oNZ?, 1' =

G G
P P
1, 0n1 1

0. Hence ]H(Pl) N T(PO)I =n -1 and thus

pu'=(@ -1 - 2). @a7)

am - 1) = 1R ] = |1 N aRY)| + [1(R) NTEY| + [1®) N TE)| -

In n= [A@)| = [8@)IN 8| + [8R) ATE)[ + [8E) 0 1Ry

Cp Cp Cp P
|A(Po) n A(PZ)]G= 0 andGIA(Po) n]"(Pz)l = |P1 oN Py (2;] = |11 only 2] =1
(note that |1, "2| = |2,"2| = n and hence T(P)) = p,"2). Hence |1(2,) N 8(R)]|

=n-1.

Further |I(P,)N T(P))| =[T®)| - |T®) N 8| - [T(®)NTE)| -1
G

where [T(2_)| = n, [T(2) N A(R)| =0 and [T®) NT®)| = le,fon e, 2| =
G G

11,% n 1,72

0. Hence |H(P2) I I'(P°)| =n - 1. It follows that
vi=(-1)( - 2). (18)

Equations (16), (17) and (18) imply that C2= C°C = n(n - 1) I +
(-1)(n-2)(A+B) + =30 +5 C=n(@-1) I+ (=-1(=-2)(-1I +3C
and then (C - n(n - 1) I) (Cz- 3 = 2(n-1) I) = 0.

The eigenvalues of C are A = n(n - 1); A, 3 @+ +T)/2.

CASE II2: k=1=n+1, m= (n-2)(n+1),k+1+m+1=v=n2+n+1.
By the proof of Lemma 3 n»4. Let's determine A', u', v':

(+1D@=-2) =[1@)| =1TEHN ACY)| +IT@HNA TE)[ +[TE@)H N
TR -1 Ina+1=]A@)| = [AC)IN A +[AC)N T®| +[AC) N

]I'(P3)( clearly IA(PO) n A(P3)| = 1. Let's show that
[ac)nTEY| =[A@HN TE)| = 2 19)

laepnre)| =2 (20)
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PROOF of (19) and (20): By Lemma 1 [a(P)) N T(Ry)| = [a(By)N T(R)].

1]
For Yo GGPO ' '
Yo Yo Y Y . '
P, €L, # P2 P, if and c:nly if Y°eGPo’P1’ (21)
Y Y G 'YOG YG
for otherwise P2 el Po 1, 1 ¢1 P P 1, |11° Po’Pll =n -2, Pze
' -1
Y% Yo Gp
11 0’1 , which leads to the contradiction n + 1 = ll o‘ >~(|P2 ,- 2) +
()PZ]- 2) = 2(n - 1).
Further
1o -
¢ 1 v P P for some 'YoeGPO: (22)
G G

otherwise, since )Pzpol 25, every line of 11Po would contain at least 3 points

G G

Y. .
of PZPo and this would imply that a point of P2Po - (11U P2°P2) exists. By (21)

- * -
Yo Yo Yo Yo o
ang (22) P2 , P2 613 , P2 # P2 .

[,7on1,| =|T@ )N A(R)| = 2. This proves (19).
G

YOGP ,P

*
for some ‘Yo €G, - Since ll 1| = n - 2,

Y
Each of the n - 2 lines of 1 Po -{P OPZ} through P’z’o contains exactly one
GP Yo Yo GP
point of P, o -{P ]. Together with P_ , P, this gives n points of P, o. It
2 2 G 2 2 2
P Yo .
20-{P2}11eson1

By means of (19) we obtain ['][(P3)n A(Po)' =n - 2.

follows that exactly one point of P This proves (20).

1

In. n+1= [T@)| =|TC) N CE| +|TC@INTEY| +|TC) N IE,|
GP GP‘ GP GP
IT®) N a@Y] =2 by (19) and |T(2)) NTE®)| =|p,0on P, 3| =|1l,0n 1,3

= 1. Hence |II(P3) n I'(Po)l =n - 2. It follows that A' = nz- 3n + 1.

"= lne)n n(e))| = [H(P1)| - |nEp N ae)| - [n(Pl)nI‘(Po)l where
[T = @+ 1@ -2), 1IN ACR)| =n -2 and I N TE| = |TE)| -
IT®)nak)| = |TC®)HNATE®)]. [TC)IN ACR)D] =2 by (20) and IT®) N T @)=

6,

|P2Po ne, 1| = |12 oni, ll = 1. Hence III(Pl)n I‘(Po)l =n-2 and p' =
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(@m=-2)(-1).
v' o= 'H(Po) n 1'[(l’z)l = IH(PZ)I - IH(PZ) n A(Ifo)l - “[(Pz)n I’(Po)[ where

|T@)| = @+ 1@ -2),

M@, n 8| = IT(R) N A(P)| by Lemma 1

(8| - |ae) N a@)| - |a@) N TE@)|

(m+1)-1-2=n-2 by (20),

(T,) N T (2| l%%)ﬂf@ﬂ)lﬁmel

G Y
|P3Pon Popl | = Hl';o: 70€§P , P 613°}l =Gn ~ 2 since
o

1
through any point on 1o goes exactly one line of 11 o and one of lzpo. Hence
vi=(mn-2)(n-1).

It follows that C> =CC= (@ +1)(a-2) I+ (m-1)(n - 2)(A + B) +
(@-3m+1) C=@+1)(a=-2) I+ @-3n+2)(A+B+C) -Cand C+C-
2@-2)I=(@-1)(-2) J whence (C - (n+1)(a-2) I)(C2+C- 2@ -2) D)

= 0. The eigenvalues of C are )‘1 = (n+1)@-2)), AZ 3= (-1 + V8n - 157)/2.
’

REMARK: Let ¢: G——GLv(t) be the matrix representation of G obtained by
associating with each Y€G the corresponding permutation matrix ¢(7) (the ordering
of P is the same as used in constructing the matrices A, B, C). By (2) &(7)
commutes with A, B, C for all YeG. Hence, by (9] Theorem 28.4, {I, A, B, C} is
the basis of the commuting algebra V(G) of ¢. By [9] Theorem 29.5 V(G) is commu-
tative and hence, by [9) Theorem 29.4, the representation ¢ has 4 irreducible

constituents D, =1, D,, D

1 30 DA’ each with multiplicity 1. If fi is the degree

of D, then f, =1 and .éf.-v.
i Ci=1"1

1
Let us finally show how the fact that A and C have trace O contradicts the

integrality of the multiplicities of )\1, AZ’ Age
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In the 3 cases Xl appears with multiplicity 1. Let f denote the multiplicity
of lz; then v — £ = 1 is the multiplicity of A3. This leads to

O=n(n-1)+£f@+Bn+T)/2+ (@@+1) -£)@3~-V8n + T )/2 in case I,

O0=(@m+1) +ffa+ -\@)@@ +1) - £) in case II1,

O0=(@m+1)m-2)+£f(-1+Bn-15)/2+ (a(ma +1) - £)(-1 - \Bn - 15 )/2
in case II2.

In any case this contradicts the fact that n=>2 and f>1 are integers:

In case IIl this is clear.

In case I suppose that a prime p divides Vgﬁ_:—f . Then p }n, hence pl 5n + 1
and then p |3n, i.e. p = 3. This implies that 8n + 1 = 32i for some i>2 and
that n(n + 1)/WBa+ T = 3% 1)(5-3%2870 17823871 ¢IN.

In case II2 suppose that a prime p divides {8n - 15 . Then pe{17, 23} and

p’fn+ 1, p°fn - 4. Hence B8n - 15 e(17%, 237, 17%.23%, i.e. ne{3s, 68,
Y
19112}. Suppose that n = 38. Since G is transitive on 1,-{P , P, P o} 4]
Po’PZ 2 Yo’ "1’ "2

is even. This contradicts the fact that if n=2 mod 4, then the full collinea-
tion group is of odd order (Hughes [5]).

Suppose that 11€{§8, 19112}. Then n is not a square and n2+ n + 1 not a prime.
Hence, since G is flag-transitive, n is a prime power (Higman and Mc Laughlin [4])

which is absurd.
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