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ABSTRACT. After a brief review of matrix representations of finite abellan groups,

projection operators are defined and used to compute symmetry coordinates for

systems of coupled harmonic oscillators. The Lagrangian for such systems is

discussed in the event that the displacements along the symmetry coordinates are

complex. Lastly, the natural frequencies of a linear, dlatomic crystal are deter-

mined through application of the Born cyclic condition and the determination of

the symmetry coordinates.
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I. INTRODUCTION.

A classic application of abstract algebra is found in the use of the

representation theory of finite groups in the separation of the equations of

motion for symmetrically coupled harmonic oscillators. Although the literature

on the subject is extensive [3], [4], [5], [6], [9], we shall present a brief

review of certain pertinent facts. We shall define projection operators in the

event that the group under consideration is abelian and use the projection

operators to compute the symmetry coordinates for a physical system. Thereafter

we shall discuss the effect of the transformation to symmetry coordinates upon

a Lagrangian function. Finally, we shall find the natural frequencies of a one

dimensional, diatomic crystal.

2. GROUP REPRESENTATIONS AND PROJECTION OPERATORS.

Let S denote a system of finitely many coupled, harmonic oscillators, and

let G be a finite symmetry group acting on S Then, if M(n) denotes the

multiplicative group of n n matrices over the complex numbers, and if

F: G M(n) is a homomorphism of groups, the image of F given by

F(G) {F(g) gsG} is a matrix representation of dimension n for the symmetry

group, G

If F(G) is unitary and if there exists no similarity transformation to
k

convert F(G) into the block diagonal form F.(G) where F.(G) is a matrix
j=l

representation of G with dimension less than n for each j then F(G) is

said to be a unitary, irreducible matrix representation of G The number of

nonequivalent, unitary, irreducible matrix representations is finite. In fact,

there are precisely as many of these as there are conjugacy classes in G If

there are conjugacy classes in G and if the dimensions of the nonequivalent,

unitary, irreducible matrix representations are n(1) n(2) n() we

know that
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(n(j))
2 IGI

j=l

where GI is the order of the finite group [6].

If G is abelian, then GI and n(j) i implying that all

irreducible representations will be one dimensional. This fact is quite useful.

Indeed, if the full symmetry group of the system, S is nonabelian, it is

often desirable to choose an abelian subgroup of the larger group to act as G

thereby obtaining significant advantages in the computational procedures.

EXANPLE 2.1. Let G {E, R, R2, R3} be the cyclic four-group generated

by R, a 90 rotation about a fixed axis. There are four irreducible, unitary

representat ions

F I(G) F I(E) F I(R) F I(R2) F I(R3) I

F 2(G) F 2(E) F2(R2) I F2(R) F 2(R3) I

F3(G) F3(E) I F3(R) i F3(R2) I

F 3
(R3) i

F4(G) F4(E) i F4(R) i F4 (R2) i

F4 (R3) i

Suppose that there is associated with each oscillator in S a point mass,

m If the displacement of the i-th mass is taken to be v the smallest
i i

vector space containing all linear combinations of these displacement vectors

for all particles is the solution space, of the physical system, S

Now for each element, g of the symmetry group, G there is induced

exactly one linear operator, (g) which acts on the basis vectors of .
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Furthermore, it can then be shown that A( (G))--{ .Gag (g)l a e} is an algebra
ge

g

over

In A((G)) there is a subset of operators upon which we fix attention.

DEFINITION 2.1. Let G be abelian and let Fi(g) belong to Fi(G)
the i-th unitary, irreducible, one dimensional representation of G Then the

linear operator P.eA( (G)) is defined by P I (F (g)) (g) and
i ig G

{Pill 1,2 IGI} is the set of projection operators in the algebra A((G)).

We emphasize that, in this definition, G is abelian. The reader may easily

find the general definition of the projection operators when G is not required

to be abelian [I], [9], [i0].

EXANPLE 2.2. G {E, R, R2, R3} as in Example 2.1. Then the projection

operators are

P1 (E) + (R) + (R2) + (R3)

P2 (E) (R) + (R2) (R3)

P3 (E) + i(R) (R2) i(R3) and

P4 (E) i(R) (R2) + i(R3)

Now suppose that the solution space, has the orthonormal basis

B {i’ u2’’’’’u Then the symmetry coordinates for the physical system can
n

be obtained from B as indicated in the next definition.

DEFINITION 2.2. Suppose that Pi() is not the zero vector. Then the

distinct unit vectors of the form

Pi(u)

are the symmetry coordinates of the physical system.
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There are exactly n dim distinct nonzero vectors which can be obtained

from this definition, and these are mutually orthogonal [i]. This set of vectors

establishes a new basis for matching the symmetry of S and determines the

transformation of coordinates which will separate the equations of motion to the

greatest extent possible through the use of symmetry alone. We denote the new

basis of symmetry coordinates by { el,e2,...,en} and to exhibit their use, we

give a simple example.

EXAMPLE 2.3. Four identical masses, m are uniformly spaced and inter-

connected by identical springs on a frictionless, circular loop fixed in a plane.

The spring constant for each spring is k All motion of the masses is confined

to the loop. We find the natural frequencies of motion [I], [2].

SOLUTION: The physical system is shown below. The symmetry group is taken to

be the rotation group G {E, R, R
2

R3}

The basis for the solution space is the set of unit tangents {Ul,^ ^u
2,

^u
3, .

The projection operators are given in Example 2.2 and the symmetry coordinates

are
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el PI(I [(E) + (R) + (R2) + (R3)]u
I

i__ ( + u + u3 +-2 i 2 u4)

i 2 + 3e
2

(u
I

u4)

i
e3 (Ul + i2 -3 i4) and

i i
2

+ i4)e4 (Ul 3

that

These equations serve to define the unitary, transformation matrix U such

cl(l 2 3 4 U col(
I u

2
u
3 4

Thus

i I i i

1 1 -i 1 -i
u -I -i -i

If the displacements of the masses along the unit tangents are

xI
x
2

x
3

x
4 and their velocities are 1/21 2 3 4 we can write

the displacements and velocities as the column vectors X col(xI
x
2
x3

x4) and

i cl(l 2 3 4
i mr I

Then the Lagrangian of the system is L kXVX where X and X

are row vectors obtained by taking the transposes of and X
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i 0 0 0 2 -i 0 -i

0 i 0 0 -i 2 -i 0

T and V
0 0 1 0 0 -1 2 -1

0 0 0 1 -1 0 -1 2

We next transform the Lagrangian to obtain a function of the displacements,

n l’ n2’ n3’ 4’ and velocities I’ 2’ 3’4 with respect to the symmetry

ooordinates, el, e2, e3, e
4

Thus

i mU-IuTu-IuL=
1 kU-Iuvu-Iux
2

1
aN* (UTU-1) I k* (UVU-I)-: -: N

where N col(n I n 2 i 3 14) N* are the trans-col( 2 and *
posed, complex conjugates of N respectively. Since

-i -i
UTU T and UVU

0 0 0 0

0 4 0 0

0 0 2 0

0 0 0 2

we have

1 -*- -*- -*- .*-
L m(inI + 22 + 33 + 4n4

I * * *
--2 k(422 + 2n33 + 2n44)

The completely separated equations of motion are given by

d__(’_j)_dt . 0 (Equation 2.1)
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or equivalently by

(Equation 2.2)

for j{l, 2, 3, 4

It follows immediately that the four natural frequencies for this

system are

3. THE LAGRANGIAN WITH COMPLEX COORDINATES.

In the preceding example, the transformation to symmetry coordinates yielded

* Thea real-valued Lagranglan function in the complex variables nj nj
similarity transformations of the T and V matrices leave their eigenvalues

undisturbed. As these elgenvalues, in fact, determine the natural frequencies,

such transformations are quite permissible. However, we also wish to show that

in the equations of motion as given by Equations 2.1 and 2.2, the variables nj

* will never appear together. To that endand their complex conjugates, nj
let us consider the following exercise in partial differentiation.

Let F be a function of the independent complex variables qj xj + lyj
Furthermore, 6uppose that F is differentiable with respect to x. and y

3

If . Yt
0 and if we apply the chain rule for partial derivatives while

Yi x.
3

3F F 3F F 3F F
* x we obtain + and i o,.-i.noting that j j iyj x] j y] .1

Formally, we write

8x 8nj
+ and i-.- i

J Yj 3 n;
Inverting these operational equations, we have
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8 l(____S i __B and
j 2 x.3 YJ

Thus, whenever the Lagrangian of a physical system of harmonic oscillators

i ,To i *VoN each summand of theis written in the matrix notation L m k
expanded Lagrangian will be of the form CISk

or C2Snk where CI and C
2

are constant.

Thus the differential equation

only the complex conjugates *k together with their second derivatives with

respect to time and

0 contains

only the coordinates nk and k That is, in neither equation will

coordinates and their complex conjugates be mixed. The proper frequencies can

be obtained from equations of either form.

4. THE ONE-DIMENSIONAL DIATOMIC CRYSTAL.

We now consider a circular loop of alternating masses of two sorts, m and

M connected by identical springs having force constant B [2]. Let there be

2N masses in all with N of each kind. If N is taken to be very large, we

have essentially applied the Born cyclic condition to a linear, diatomic crystal
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[I], [8] We will now find the symmetry coordinates and natural frequencies of

the system.

2
The system is +/-nvariant with respect to rotations by - and, in the

neighborhood of the 2n-th and (2n+l)-th particles, the circular arrangement

appears as shown.

In the calculations to follow, two facts concerning the complex roots of

unity are required.

2i
First, let exp be the primitive complex K-th root of unity. Then let

nI and n2 {0,1,2,...,K I} By application of the Parallelogram Law of

Addition for Complex Numbers
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2i3 2i nl-n2 2 nl+n2 2i
exp nI .----. + exp n2(---) 2 cos(- -2 -- exp(-------) ---- (Equation 4.1)

In the event that we need to consider exp 2i + exp n-l where 0 inK 1

we write

(-) exp .----_exp Oi + exp n -- 2 cos

Secondly we recall that the sum of the K complex K-th roots of unity is

the complex number zero. That is

K-I
2i. exp n --- 0 + 0i K > I

n=0
(Equation 4.2)

The symmetry group of the circular arrangement is taken to be C
N

the group

of rotations {R(2-)I i, 2, 3 N} The N one dimensional represent-

ations of the symmetry group are given by

(2r) .2kr,r
k
(G) F

k (R.---if-.) exp t--’--) i

for i, 2, 3 N [i].

Thus the projection operators are of the form

N

.2kr,,,Pk . (exp(---)i)(R( )) for k i, 2, 3, N
=i

The symmetry coordinates are found by letting Pk *act first upon the unit

tangent 2N-I and then upon U2N

N
I .2k.

e2k-i ---/- Pk U2N_l --/- =i (exp(----)i)u2 i

and
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and
N

2k_I
ek i . (exp(__)i)u2e2k / U2N / =i

for k=l, 2, 3,...,N

The transformation matrix U is

i

f 2i 4i 6iexp -- 0 exp -- 0 exp --- 0

2i 4i 6i0 exp -- 0 exp -- 0 exp ---4i 8i 12iexp ---- 0 exp -- 0 exp
N

0

4i 8i 12i0 exp --- 0 exp -- 0 exp

0 1

1 0

0 1

i 0 i 0 i 0 i 0

0 i 0 i 0 i 0 1

In terms of the displacements and velocities along the unit tangents, the

Lagrangian of the system is

L BX where X col(xI x2 X2N)

col(XlX2 2N



REPRESENTATION OF FINITE ABELIAN GROUPS 571

0 0 0 0

M
0 0 0 0

0 0 i 0 0 0

M
0 0m

0 0 0 0 i 0

0 0 0 0 0
M

and

V

-i 2 -i

0 0 0 -i

0 -i 2 -i

0 0 -I 2

0 0 0

0 0

0 0

-i 0 0 0 -I 2

0 0 0 0 2 -i
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The transformed Lagrangian is

i * (UTU-I) 21--B* (UVU-I) NL --m

where N col(nl2...2N with respect to the symmetry coordinates. It is

easily shown that UTU-I T

-i
The computation of UVU is straightforward but tedious. However, by the

use of the identities given in Equations 4.1 and 4.2, the matrix product becomes

i 0 0 0 02 -2 cos exp --2 cos exp(--) 2 0 0 0 0

0 0 2 27 2 i3-2 cos -- exp(--- 0 0

2 2i)0 0 -2 cos -- exp (- --- 2 0 0

0

0 0 0 0 2 -2

0 0 0 -2 2

-I
The k-th 2 x 2 block along the principal diagonal of the matrix UVU is

k ki2 -2 cos - exp(---)
k ki I-2 cos - exp(-

N 2

/
Thus, for 2k-i and 2k we have
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1 B (k-lk) 2

k ki)-2 cos - exp(- ---.

i2 -k-i2k-I + M-k2k)

-2 cos - exp(
2k-

2 2k

#

,In* k ki ,
2k_in2k_l cos -- exp(-

N "n2kn2k-1

k .ki. + qkcos - expt---)k-ln2k k#

The equations of motion are

k .ki.1 + 8cos expt----) 0
2
m 2k-i 82k-I - N 2k

kz kni)IM nk +Bn 8 cos exp(- 0
2 2k - ---" n2k-i

The frequencies satisfy the secular determinant

det

k ki2 + 42f2 2__ cos exp
m m -2 22 8 k ki 2_ + 4 f- cos - exp(-

N S

Thus f ( + ) + + )
4 2k

sin
Mm N

Recognizing that, in solid state physics, the wave number for the vibration

is K where a is the separation of neighboring particles, the result
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may be rewritten as

/,1 i 4
/ + ) Mm

The value K a defines the boundary of the first Brillouln zone in reciprocal

lattice space. The familiar forbidden frequency gap appears since, for

K-- =-- f will have the separated values
za

or
27 2n

[7]
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