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ABSTRACT. The a and B-duals spaces of generalized lp spaces are characterized,
where O < p < ». The question of when the o and B dual spaces coincide is also
considered.
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1. INTRODUCTION.

X and Y denote complex Banach spaces with zero elements 0, and ||.

denotes the norm in either X or Y. The continuous dual of X is written X%,
By s(X) we mean the space of all X-valued sequences x = (xk), where X € X

for k ¢ N = {1,2,3,...}.
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If 0 < p < =, we mean by zp(x) the space of all X-valued sequences
X = (xk) such that Xllxkllp < o, Sums are over k € N, unless otherwise

indicated.
By £ _(X) we denote the space of all x = (x.) such that sup [[x || < =.

In case X = C, the space of complex numbers, we write lp instead of

QP(C).

Let A = (Ak) denote a sequence of linear, but not necessarily bounded,
operators on X into Y. If E is any nonempty subset of s(X) then the a-dual

of E is defined to be

E® = {A : z[]Akxk[| < », for all x e E}.

The B-dual of E is defined to be

EB = {A : ZAkxk converges, for all x € E}.

B

Since Y is complete, we have E* c E . The a and B duals of E may be regarded
as generalized K&the-Toeplitz duals, since in case X = Y = C, when the Ak may
be identified with complex numbers a, the duals reduce to the classical

spaces first considered by Koéthe and Toeplitz [1].

IA

Using the notation (1/p) + (1/q) = 1, where 1 < p < =, with the

convention that q = ©» when p = 1, and q = 1 when p = =, it is well-known that

o B
L =48 =2 . 1.1
P P q a.n

We shall see that, in general, lg(X) c 2§(X), where the inclusion may be
strict. However, when O < p < 1 the a and B duals coincide. Also, when

1 < p £ =, the a and B duals coincide provided that Y is finite dimensional.
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2. CHARACTERIZATION OF THE DUALS.

THEOREM 1. Let O < p < 1. Then A ¢ zS(x) if and only if there exists

m € N such that Ak is bounded, for all k 2 m, and

2.1
H = sukamllAkll < o, (2.1)

PROOF. Sufficiency. Let (2.1) hold and ):I]kap < ©, By a familiar

inequality, see for example Maddox [2], page 22,

IA

™ P © P
Cz|laxlDb t|laxll
k=m k=m

IA

E a1 % 1P
k=m

P P
< B zlfx|]".
Hence ).‘,Akxk is absolutely convergent, and so convergent.

Necessity. Let A e zs(X) and suppose, if possible, that no such m exists.
Then there are natural numbers k(1) < k(2) < ... and z; € X, [|zi|| < 1, such

that for i € N,

g gyzil| > 1277 (2.2)

Define X = zi/iz/p for k = k(i) and x =0 otherwise. Then x € 2p(x) since
lexkllp < n2/6, but ||Akxk|[ > 1 for infinitely many k, contrary to the fact

that ZAkxk converges.

Now suppose, if possible, that sukamllAkll = o, Then there are natural

numbers k(1) < k(2) < ... with k(1) > m such that for i € N,
.2/
[ g1 > 2 L (2.3)

Choose z; € X with ||zi|| < 1 such that zllAk(i)ziII > IIAk(i)II’ so by (2.3)
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we see that (2.2) holds with the new k(i) and z;. We may define x € 2P(X)

as above and obtain a contradiction. Hence (2.1) must hold, and the proof

is complete.

If we examine the proof of Theorem 1 we see that in the sufficiency we
a . .
had ZIIAkxkll < =, so that A € lp(x). Also, in the necessity, the
constructions involved x € lp(X) such that ZIIAkkuI was divergent. Hence we

have:

THEOREM 2. If O < p <1 then

a B
zp &) zp x).

Next we consider the case 1 < p < =,

THEOREM 3. Let 1 < p < «». Then A ¢ kg(X) if and only if there exists

m € N such that Ak is bounded for all k > m, and

M= A ]]Y < - (2.4)
k=m

PROOF. Sufficiency. Let (2.4) hold and x ¢ zP(X). By H8lder's

inequality,

m /p
E 1Az Il < ¥/9 @l P <.
k=m

Necessity. Since lg(X) c z?(x) when p > 1, the existence of the m in the

theorem follows from Theorems 1 and 2.

< 1 such that

e X with [Izkll <

Now for k > m we may choose z

2 |az 1 = [lall.

k

For all A € lp we have (Akzk) € lp(X), so
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E gl 1Az ]l <=
k=m
for all A € lp. By (1.1) it follows that

e % llag]]Y <o
k=m

whence M < ZqH, so (2.4) holds, and the proof is complete.

THEOREM 4. Let 1 < p < », Then A € £S(X) if and only if there exists

m € N such that Ak is bounded for all k = m, and

sup § |[ape] | < o, 2.5)
k=m

where the supremum is over all f e Y* with ||f]|] < 1. -

PROOF. With the restriction that all the Ak are bounded, and with
different notation, this result was proved by Thorp [3]. Only the existence
of m in the necessity needs attention, and this follows from Theorems 1 and 2,

and the fact that zS(x) c 2$(X).

Finally, we examine the case p = . The proofs are left to the reader.
We remark that with the restriction that all the Ak are bounded, the result

concerning QE(X) was given by Maddox [4].

THEOREM 5. A ¢ 1g(x) if and only if there exists m ¢ N such that Ak

is bounded for all k > m, and

Ellall <= (2.6)
k=m

THEOREM 6. A ¢ QE(X) if and only if there exists m ¢ N such that Ak

is bounded for all k =2 m, and
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m+n

sup|| I Akxkll < w, 2.7)
k=m
m+n

sup|| 2 Ax |l >0 @), (2.8)
k=m

where the suprema are over all n 2 O and all x € X with |kall < 1.

3. COINCIDENCE OF DUALS.

It was shown in Theorem 2 that, when O < p < 1, zg(x) = Es(x) for any
Banach spaces X and Y.
We next shown that, when 1 < p < », the inclusion lg(X) c zg(X) may be

strict.

THEOREM 7. If 1 < p < = then there are Banach spaces X and Y such that

z;(X) c zg(x) with strict inclusion.
PROOF. Take X =Y = zp and write

e, = (0,0,...,1,0,0,...)

where 1 is in the k-place and there are zeros elsewhere. Define bounded linear

operators Ak on kp into itself by

AX = ey
for each x = (x) € lp. Then ||Ak|| =1 for all k € N, so A is not in Eg(x)
by Theorem 3.

Let us now show that (2.5) holds. Take any f € 2; with ||£]|| < 1. Then

for x € lp we have

f(x) = Xfixi
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for some (fi) such that Z|filq < 1. Hence, by definition of A{,
(Aﬁf)(x) = f(Ax) = fx
and so ||A§f|| = Ifkl. Hence
| lage] 9 = x| Y < 1,
so by Theorem 4 we have A ¢ ls(x).
Still with the case 1 < p < «» we have:

THEOREM 8. If 1 < p < » and Y is finite dimensional then for any X

we have
a B
LX) = X).
p( ) zp()

PROOF. We have to show that A ¢ zs(x) implies A zg(x). Now if
A e ZS(X) then by Theorem 4 there exists m € N such that Ak is bounded for
all k 2 m. Suppose Y has finite dimension n and that (bl’bz”"’bn) is a

Hamel base for Y. Then y € Y implies

«
[}
[ e~

Ai (y)bi

i=1

where each Ai € Y*, Take z € X and k 2 M. Then

[ -

Akz = L )\i(A.kz)bi (2.9)

and A e Ak € X*. Since k%:mAkxk converges for all x € lp(X) we have

©

LGy e A%

k=m

convergent for all x € lp(X) and each 1i.
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Choose z, € X, ||zk|[ < 1 such that ZI()‘i ° Ak)zkl 2 ||Ai o Ak||.

If t € lp then (tkzk) € lp(x) so that

T tk(}\i . A.k)zk
k=m

converges for all t € zp, whence for each i,

E oy e all? <. (2.10)
k=m

By (2.9) and HSlder's inequality,

n n q/p. (2.11)
Ha 1% sz 11y« a 1% cz vl
i=1 i=1
Denoting the final term in (2.11) by H,
Al sz T ay e At (2.12)
k=m i=l k=m

It follows from (2.10) and (2.12) that (2.4) holds, so by Theorem 3 we have

a
Ae 2 (X).
€ p( )

For certain values of p, and any X, the next result is the converse of

Theorem 8.

THEOREM 9. 1If 2 < p < = and 23 = zs(X) then Y must be finite

dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Since

_z/q

q <2, if C = k then Ic, < ». By the Dvoretzky-Rogers theorem [5],

k
there exists an unconditionally convergent series Zyk in Y such that

llyk||2 = ¢, for k € N. Hence
lekaq diverges. (2.13)

Take f € X* with Ilfll = 1 and define rank one operators Ak = Vi ® f.

Then llAkll = Ilykll, so by (2.13) and Theorem 3, A is not in l:(X).
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Now if x € RP(X) then

Ao = BEOR)Ye

But (f(xk)) € £ and Zyk is unconditionally convergent, so that Zf(xk)yk

converges, whence A € zs(x), which gives a contradiction.

We remark that it would appear that the argument of Theorem 9 cannot be
used in the case p = 2, since in a general Hilbert space Y the unconditional

convergence of Ly, implies that leykilz

However, we can deal with the case p = 2 of Theorem 9 when Y is a Hilbert

space:

THEOREM 10. Let Y be a Hilbert space and suppose z;(X) = ES(X).

Then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Choose an
orthonormal sequence (ek) in Y and denote the inner product in Y by (yl,yz).
Take g € X*,||g|| = 1 and define rank one operators Ak = e (:) g, so that

[IAkll = 1. Now let f ¢ Y* with |[f|]| < 1. Then there exists y € Y such that
f(z) = (Z,Y)
for all z € Y, with ||y|| = ||£|] < 1. Then for x € X,
A (x) = (8(0ey,y) = 8(x) (e,¥)-
Hence ||A§f|| < [(ek,y)l, so by Bessel's inequality,
el 12 2
| [aggl® < [ly]]” = 1.

Thus (2.5) holds with q = 2, and so A ¢ 1g(x). But A * lg(X) since

|{Ak[l =1 for all k. This contradiction implies our result.
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The case p = @ is due essentially to Thorp [3], who shows that

z:(x) = ££(X) if and only if Y is finite dimensional.
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