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.ABSTRACT. The and B-duals spaces of generalized spaces are characterized,
P

where O < p < . The question of when the and B dual spaces coincide is also

considered.
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I. INTRODUCTION.

X and Y denote complex Banach spaces with zero elements O, and II" II
denotes the norm in either X or Y. The continuous dual of X is written X*.

By s(X) we mean the space of all X-valued sequences x (Xk) where xk e X

for k e N (1,2,3,...}.
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If O < p < , we mean by (X) the space of all X-valued sequences
P

(xk) such that Z IXkl p
< . Sums are over k E N, unless otherwiseX

indicated.

By (X) we denote the space of all x (xk) such that sup lXkll < .
In case X C, the space of complex numbers, we write instead of

P, (c).
P

Let A (Ak) denote a sequence of linear, but not necessarily bounded,

operators on X into Y. If E is any nonempty subset of s(X) then the e-dual

of E is defined to be

E {A Z IAkXklI < , for all x E}.

The B-dual of E is defined to be

E B {A ZAkXk converges, for all x E E}.

Since Y is complete we have E
a

E B The a and B duals of E may be regarded

as generalized Kthe-Toeplitz duals, since in case X Y C, when the A
k
may

be identified with complex numbers ak, the duals reduce to the classical

spaces first considered by Kthe and Toeplitz [I].

Using the notation (l/p) + (l/q) i, where I < p < , with the

convention that q when p I, and q i when p , it is well-known that

,o B , (i.I)
P P q

We shall see that, in general, E(X) B(X), where the inclusion may be
P P

strict. However, when O < p < I the and B duals coincide. Also, when

I < p < , the a and B duals coincide provided that Y is finite dimensional.
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2. CHARACTERIZATION OF THE DUALS.

THEOREM i. Let 0 < p < I. Then A EB(X) if and only if there exists
p

m N such that A
k

is bounded, for all k > m, and

H suPk_>mllAkl < .
PROOF. Sufficiency. Let (2.i) hold and Z IXkl p

inequality, see for example Maddox [2], page 22,

(2.1)

< . By a familiar

P

k=m k=m

_< II kllPllxkll p
k--m

< HP El l kl p"

Hence XAkXk is absolutely convergent, and so convergent.

Necessity. Let A B(X) and suppose, if possible, that no such m exists.
p

Then there are natural numbers k(1) < k(2) < and z. X lzill < i such

that for i N,

lAk(i) -ill > i2/p. (2.2)

Define x
k zi/i

2/p
for k k(i) and x

k 0 otherwise. Then x e gp(X) since

l IXkl p < 2/6, but IAkXkll > I for infinitely many k, contrary to the fact

that lAkXk converges.

Now suppose, if possible, that suPk>m l kll Then there are natural

numbers k(1) < k(2) < with k(1) > m such that for i N,

IAk( )ll > 2i2/p. (2.3)

Choose z.x X with lzi It < i such that 2] IAk(i)zil _> IAk(i)ll so by (2.3)
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we see that (2.2) holds with the new k(i) and z.. We may define x E (X)
I p

as above and obtain a contradiction. Hence (2.1) must hold, and the proof

is complete.

If we examine the proof of Theorem I we see that in the sufficiency we

e(X). Also, in the necessity, thehad l llXkll < , so that A
P

constructions involved x p(X) such that l IAkXkll was divergent. Hence we

have:

THEOREM 2. If 0 < p < i then

=(x) S(x).
P P

Next we consider the case i < p < =.

THEOREM 3. Let I < p < =. Then A e Ea(X) if and only if there exists
p

m e N such that is bounded for all k
_
m, and

M [IAkll q
k=m

(2.4)

PROOF. Sufficiency. Let (2.4) hold and x e (X). By Hlder’s
P

inequality,

[lXkl[ -< MI/q (El IXkl
k=m

1/p

Necessity. Since a(X)p El(X) when p > I, the existence of the m in the

theorem follows from Theorems I and 2.

Now for k > m we may choose z
k

X with lZkl < such that

For all % p we have __(%kZk p(X), so
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k=m

for all By (i.I) it follows that
P

H llAkZkll q < ,
k=m

whence M _< 2qH, so (2.4) holds, and the proof is complete.

THEOREM 4. Let I < p < . Then A 8(X) if and only if there exists
p

m e N such that A
k

is bounded for all k > m, and

sup lfl q
< , (2.5)

k=m

where the supremum is over all f Y* with lfl] -< .
PROOF. With the restriction that all the A

k
are bounded, and with

different notation, this result was proved by Thorp [3]. Only the existence

of m in the necessity needs attention, and this follows from Theorems 1 and 2,

and the fact that 8(X) c 18(X).P

Finally, we examine the case p . The proofs are left to the reader.

We remark that with the restriction that all the A
k

are bounded, the result

concerning 8(X) was given by Maddox [4].

THEOREM 5. A (X) if and only. if there exists m e N such that A
k

is bounded for all k > m, and

k=m

THEOREM 6. A e 8(X) if and only if there exists m N such that A
k

is bounded for all k -> m, and

(2.6)
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m+n

supl Z AkXk[ < o,
k=m

(2.7)

m+n
sup ll I AkXkl / O (m + ),

k--m
(2.8)

where the suprema are over all n > O and all x
k

X with lXkl _< 1.

3. COINCIDENCE OF DUALS.

It was shown in Theorem 2 that, when O < p i, a(X) 8(X) for any
P P

Banach spaces X and Y.

We next shown that, when I < p < , the inclusion a(X) c B(X) may be
P P

strict.

THEOREM 7. If 1 < p < then there are Banach space.s X and Y such that

(X) B(X) with strict inclusion.
P P

PROOF. Take X Y and write
P

e
k (O,O,...,i,O,O,...)

where I is in the k-place and there are zeros elsewhere. Define bounded linear

operators A
k

on into itself by
P

AkX xkek

for each x (xk) P
by Theorem 3.

Then I[Akll 1 for all k N so A is not in aCX)
p

Let us now show that (2.5) holds. Take any f E* with lfll < I. Then
P

for x we have
P

f(x) 7.f.x.
1 1



GENERALIZED KOTHE-TOEPLITZ DUALS

for some (fi) such that llfi lq < i. Hence, by definition of A,

(Af) (x) f(AkX) fkXk

and so llAfll--Ifkl. Hence

ZllAfl q Zlfk lq < I,

so by Theorem 4 we have A e 8(X).-
P

Still with the case 1 < p < we have:

429

THEOREM 8. If 1 < p < and Y is finite dimensional then for any X

we have

a(x) t8(x).
P P

PROOF. We have to show that A (X) implies A e a(X). Now if
P P

A e 8(X) then by Theorem 4 there exists m N such that b is bounded for
P K

all k e m. Suppose Y has finite dimension n and that (bl,b 2 ,bn) is a

Hamel base for Y. Then y e Y implies

n
y Z Xi(Y)bi

i=l

where each %. e Y*. Take z e X and k > M. Then

n

Akz-- r. i(AkZ)bi
i=l

and hi A
k

X*. Since Z AkXk converges for all x (X) we have
k=m P

Ak)Xk
k---m

convergent for all x (X) and each i.
P

(2.9)
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Choose z
k

e X, lZkl -< I such that 21(Ii Ak)Zkl > II
If t then _(tkZk) gp(X) so that

P

V. tk(xi Ak)Zk
k--

converges for all t g whence for each i,
P

ll i  kll q
<’-

k--m
(2.10)

By (2.9) and HDlder’s inequality,

n n q/p.

i=l i=l

(2.11)

Denoting the final term in (2.11) by H,

n

llll q _< v. [li ll q

k=m i=l k=m
(2.12)

It follows from (2.10) and (2.12) that (2.4) holds, so by Theorem 3 we have

a(x).A
P

For certain values of p, and any X, the next result is the converse of

Theorem 8.

THEOREM 9. If 2 < p < and a(X) B(X) then Y must be finitep P
dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Since

q < 2, if c
k
-k

-2/q
then Ec

k
< =. By the Dvoretzky-Rogers theorem [5],

there exists an unconditionally convergent series Ey
k

in Y such that

lykll 2
ck for k N. Hence

r[l Ykll q diverges.

Take f X* with fll x and define rank one operators A
k Yk ) f"

Then lAkll lykl so by (2.13) and Theorem 3 A is not in a(X).
p

(2.13)
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Now if x (X) then
P

ZAkXk If(xk)Yk.

But (f(xk)) and lyk
is unconditionally convergent, so that Zf(xk)Yk

B(X), which gives a contradiction.converges, whence A p

We remark that it would appear that the argument of Theorem 9 cannot be

used in the case p 2, since in a general Hilbert space Y the unconditional

convergence of Zyk implies that l lykl 2

However, we can deal with the case p 2 of Theorem 9 when Y is a Hilbert

space:

THEOREM IO. Let Y be a Hilbert space and suppose 42(X) (x).

Then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Choose an

orthonormal sequence (ek) in Y and denote the inner product in Y by (yl,Y2).
Take g X*,llgll I ad define rank one operators A

k
e
k @ g, so that

IAkll I. Now let f Y* with lfll _< I. Then there exists y Y such that

f(z) (z,y)

for all z Y, with IlYll llfll < I. Then for x X,

(Af) (x) (g(x)ek,Y) g(x) (ek,Y).

Hence I[Afl[ -< l(ek,Y) I, so by Bessel’s inequality,

.][fll 2_< ]lyll2_< .
B (X) sinceThus (2.5) holds with q 2, and so A (X). But A 2

[IAkl] I for all k. This contradiction implies our result.
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The case p is due essentially to Thorp [3], who shows that

(X) (X) if and only if Y is finite dimensional.
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