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1. INTRODUCTION.

Epstein ([5]) proved that in a Post algebra of order n 2 2prime ideals
lie in disjoint maximal chains each with n - 1 elements. He has also proved
that if L is a finite distributive lattice and prime ideals of L lie in dis-
joint maximal chains each with n-1 elements, then L is a Post algebra of order
n. Epstein and Horn ([6]) have shown that a Post algebra is always a P-
algebra and in a P-algebra prime ideals lie in disjoint maximal chains. It is
the main theme of this paper that a P-algebra L is a Post algebra of order
n 2 2, if the prime ideals of L lie in disjoint maximal chains each with n-1
elements.

The main tool used in this paper is the fact that every bounded distributive
lattice is isomorphic with the lattice of all global sections of a sheaf of
bounded distributive lattices over a Boolean space ([15] and [91). It is
well known that a P-algebre is always a (double) Heyting algebra, a (double)
L-algebra, a pseudocomplemented lattice, a Stone lattice and a normal lattice.
We characterize these properties of P-algebras in detail in terms of the stalks
of the corresponding sheaf. We give another characterization of Post algebras
by regular chain bases.

Throughout this paper, by L we mean a (nontrivial) bounded distributive
lattice (L, V, A, 0, 1) and B = B(L) the Boolean algebra of complemented
elements of L. For any at B, we denote the complement of a by a'. For any
x,y€ L, we denote the largest z& L such that xAz <y (if it exists) by
x -*y and the largest element a& B such that xaa <y (if it exists) by
x= y. If, for every x,y€L, x -+ y (x=3y) exists, then we say that L is a
Heyting algebra (respectively B algebra). Dually, we define x + y
and x &y respectively., 1If in a Heyting algebra (B-algebra), (x +y) V (y + x)

=1 (x=2>y)V(y=>x) = 1) for every x,y€ L, then we say that L is an L-algebra
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(respectively BL-algebra). For any x¢L, if x — 0 exists, then we say
that x has the pseudocomplement and we usually write x* for x — 0. If x*
exists for each x€ L, then we say that L is pseuodcomplemented. The dual of
L is denoted by Ld. If both L and Ld are Heyting algebras (B-algebras,
L-algebras, BL-algebras), then we say that L is a double Heyting algebra
(respectively double B-algebra, double L-algebra, double BL-algebra). L is
said to be a P-algebra if L is a BL-algebra. Epstein and Horn proved that
L i8 a P-algebra if and only if L is a double L-algebra ([6], theorem 3.4).
For the elementary properties of these types of lattices, we refer to ([2])
and ([6]).
By a sheaf of bounded distributive lattices we mean a triple (f,7,X)
satisfying the following:
i) :f and X are topological spaces
1) = : :f + X is a local homeomorphism
iii) Each ﬂ_l(p), p € X is a bounded distributive lattice;
iv) the maps (%x,y) ¥ =xvy and (x,y) ¥ xaAy from :fV:)’= {(x,y) €
:fxy / n(x) = 7(y)} into :fare continuous and
v) the maps 6 :p P 0(p) and 3 : p 2 1(p) from X — Q are continuous,
where 0(p) and 1(p) are the smallest and largest elements of w-l(p)
respectively.
We calltf the sheaf space X the base space and 7 the projection map. We write
ffp for w—l(p), p €X and call :fp the stalk at p. By a (global) section of
the sheaf (:f,w,x) we mean a continuous map ¢ : X — :Psuch that T o 0 = 1dx.
For any sections ¢ and T we write ](o,r)| for the closed set {p€ Xlo(p) + T(p)}
and we call |(0,0)| the support of o and write |g| for [(s,0)|. For the

preliminary results on sheaf theory, we refer to the pioneering work of

Hofmann ([8]).
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By Spec L, we mean the (Stone) space Y of all prime ideals of L with
the hull-kernel topology; i.e., the topology for which {YXIXE L} is a
base, where for any x€ 1, Yx = {P€ Spec L/x ¢P}. Throughout this paper X
denotes Spec B which is a Boolean space, ie., a compact, Hausdorff and totally
disconnected space. Since a P Xa is a Boolean isomorphism of B onto the
Boolean algebra of all clopen subsets of X, we identify a and Xa and write
simply a for Xa. For any p €X, ?p be the quotient lattice L/ep where

ep is the congruence on L given by
(x,y) € 9p® xAa = yra for some a € B-p,

and 1et3be the disjoint union of all fp’ p €X. For each x € L, define
X : X -r\jby 1:(1)) = ep(x), the congruence class of ep containing x. Topologize
:57 with the largest topology such that each 12, x € L, is continuous. Define
™ :\§-> X by n(s) = p if g € j’p' The following theorem is the main tool used
in this paper and is due to Subrahmanyam ([15]) (see also [91).
THEOREM 1.1 (bo,ﬂ,x) described above is a sheaf of bounded distributive
lattices in which each stalk has exactly two complemented elements, viz.,
0(p) and 1(p).
1.2 For any a € B, p € X, ;(p) = 1(p) if p € a and a(p) = 0(p)
if p.@ a.
1.3 For any x,y € L and a € B, x/a = §'/a if and only if x A2 = yAa.
1.4 x l"7; is an isomorphism of L onto the lattice [~ (x,f) of all
global sections of the sheaf (:)O,n,x). We identify x with x and write simply
x for ;t
1.5 For any prime ideal P of L, there exists a unique p € X such
that {x(p)/x€ P} is a prime ideal of :fp' On the other hand if Q is a prime

ideal of j"p’ P € X, then {x€L/x(p) €Q} is a prime ideal of L. This
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correspondence exhibits the set of all prime ideals of L as the disjoint union
of the sets of prime ideals of the stalks. Moreover, if P and Q are prime
ideals of distinct stalks jQp and :fq, then P and Q are incomparable, when they
are regarded as prime ideals of L.

Throughout this paper, by a stalk j’p’ p € X, we mean the stalks of the

sheaf (:f,n,x) described above at p.

2. PSEUDOCOMPLEMENTED LATTICES.

It is well known that a bounded distributive lattice is a Heyting algebra
if and only if it is relatively pseudocomplemented; i.e., each interval [x,y],
x < y € L is pseudocomplemented ([1]). Also the class of all distributive
pseudocomplemented lattices and the class of all Heyting algebras are
equationally definable ( see [1] and [11]), when we regard the pseudocomple-
mentation and (x,y) P (x + y) as unary and binary operations respectively in
L. Thanks to the referee for suggesting a simpler proof of the following.

THEOREM 2.1. L is pseudocomplemtnetd if and only if each stalk Dop, pE€EX
is pseudocomplemented and the pseudocomplementation x x* is continuous
and in this case, the pseudocomplement of x(p) in ‘\fp is precisely x*(p) for
all x € L.

PROOF. Suppose L is pseudocomplemented. Then it is easily seen that for
all x and p, (x(p));';,P exists and is equal to x*(p). Then it is easy to
show that the map x P x is continuous. For the converse, if x € L, the
hypothesis implies that the map £ : x +3 defined by f(p) = (x(p))* is a global
section ofy . Therefore, f = ; for some y and it is clear that y = x*.

If L is a Heyting algebra, then each ea, a € B, is compatable with the
binary operation (x,y) P (x > y). For, if a € B and (x,y) and (xl,yl) €8
then (x > xl)A yaa = (x > xl)r\ xAa £ X _ANa= yllka < yl, so that (x ~»> xl) a <

1
(y » yl)/\ a. Similarly, we have (y - yl) Na < (x> xl) N a and hence
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(x »~ x5, ¥ -+ yl) € ea. Hence the following theorem and its proof are analogous
to the above.

THEOREM 2.2. L is a Heyting algebra if and only if each stalk :rp’ peEX
is a Heyting algebra, and the operation (s,t) I» (s - t) oijj into :fis
continuous and in this case x(p)— y(p) in 3’;), p € X, is equal to (x— y)(p)
for all x,y € L.

3. NORMAL LATTICES.

DEFINITION 3.1. (Cornish [4]). L is said to be normal if any two
distinct minimal prime ideals of L are comaximal and L is said to be
relatively normal if each interval [x,y], x € y ¢ L is normal.

For any x,y ¢ L, let (x,y): be the ideal {z€ L/ xAz < y} of L. For any
x €L, we write (x): for (x,O):. Cornish ([4]) proved that L is normal if and
only if (xr\y): = (x): V(y): for all x,y € L, and that L is relatively normal
if and only if (xna y,z): = (x,z): V(y,z): for all x,y,z € L where vV stands
for the join operation in the lattice of all ideals of L.

THEOREM 3.2. (Speed [13]). A pseudocomplemented distributive lattice is

normal if and only if it is a Stone lattice.

THEOREM 3.3. (Balbes and Horn [1]): A Heyting algebra is relatively
normal if and only if it is an L-algebra.

THEOREM 3.4. L is normal if and only if each stalk jap, p €X, is normal.

PROOF. Suppose L is normal and p €X. Let u,v tfp so that u = x(p)
and v = y(p) for some x,y € L. Clearly (u)} V'(V)S, S (up V)Bo . Let
t(p) e(u/\v)§ » t €L. Since, (xryat)(p) = Et(p)l\ }'(pg/\ t(p) = Or(’p) there
exists a € B-g such that xA\yAtaa = 0, so that tt(x/\y/\a); = (an): v
(y'\a): and hence t = tlv t2 for some tl € (x I\a): and ty € (y/\a): . Now
t(p) = t,(p) Vtz(p), t, () € (u);;P and t,(p) € (v);}‘,p . Hence :fp is normal.

Conversely, suppose each stalk :)’p’ p€X is normal. Let x,y € L and
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* *

z € (x Ay)L . For each p € X, since z(p) € (x(p)aA y(p)),‘f
P

there exists a € B-p, t and s € L, such that a Az = aA(tvs), t Ax Aa =

* *
= =Ny V @),
% Ip

s Ay Aa = 0. By the compactness of X, it follows that there exists al, az,...,

n
‘a € B and ts tysenes tn’ Sysees 8 € L such that 121 a; = 1, aaz=a A
n
(ti v si), tiA X Aay; = 0= 8;AY Aay. Now, Put t = 121 (tiA ai) and
n n n
s= V (s,rna,) then, z= V (zAa,) = V (a, A(t, vs,)) =t vs and
i=1 i i i=1 i 1=1 i i i
n n * * *
tAax =V (tiAaiAx)=0= V (s,Aa,Ay) = s Ay. Hence (xaAy), & (x), V(y)
i=1 i=1 i i L L L

and the otherside inclusion is obvious. Hence L is normal.
The proof of the following theorem is analogus to that of the above.
THEOREM 3.5. L is relatively normal if and only if each stalk :fp’ P € X,

is relatively normal.

DEFINITION 3.6. (Speed [12]). L is said to be a distributive * lattice
*
and denoted by L € A if, for each x € L, there exists y € L such that

*%
(x)L

: = {u€L / u A v =0 for every v € (x);} = (y):

Speed ([12] proved that L € A* if and only if, for each x € L, there
exists y € L, such that x Ay = 0 and x v y is dense; i.e., (x A y): = {0}.

THEOREM 3.7. L € A" if and only if (i) j’p € 2" for each p € X
and (ii) {p€X x(p) is dense in :fp} is open for each x € L.

PROOF. Suppose L € A* and x € L. There exists y € L such that x Ay =0
and x v y is dense in L. Let p € X. Clearly, x(p) A y(p) = 0(p). Also, if
z € L, such that ((x(p) v y(p)) A z(p) = 0(p), then ( x vy) Az Aa=0 for
some a € B-p and hence z A a = 0, so that z(p) = O(p). Hence x(p) V y(p) is

*
dense in :fp. Therefore :g € A . Now, suppose x(p) is dense in :fp. It

follows that y(p) = 0(p) and hence there exists a € B-p such that y A a = 0.
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We claim that x(q) is dense in tfq for all q € a. For, if q € a and z(q) € boq’
z € L, such that x(q) A z(q) = 0(q), then there exists b € B - q such that
XxAzAb = 0; so that (xvy)AzAaAb = 0, and hence zAaAb = 0 and since

aAb € B-q, z(q) = 0(q). Conversely, suppose (i) and (ii) hold and x € L.

For each p € X, by (i) and (ii), there exists y€L and a € B-p such that
xAyAa =0 and (xVy)(q) is dense in \jq for all q € a. By the usual

STLN € B such that

compactness argument, there exists yl,yz,...,thL, ars.
n
\' a; = 1, a; A aj =0 for i * i, x/\yi/\ai =0and (x v yi)(p) is dense
i=1
n
in:f for all p€ a,. Nowput y= V (y, Aa,). Thenx Ay=0and xvy
) i PR T |

is dense in L. For, (x vy) Az =0 for some z € L, then, for all p € ag,

o(p) = ((xvy)Az)) = (x(p) v y(p)) A z(p) and hence z(p) = 0(p) for all

*
p € a; and therefore z = 0. Hence L € A .

4, STONE LATTICES.
For any p € X, since the stalk tfp has exactly two complemented elements,
Es p is a Stone lattice if and only if :gp is dense (i.e., if x(p) * o(p), then
(x(p))g; = {0(p)}). Hence, by theorem 2.1, 3.2, and 3.4, we have the
following.
THEOREM 4.1. Suppose L is pseudocomplemented. Then the following are
equivalent.
(1) L is a Stone lattice
(ii) L is normal
(iii) Each stalk Ej;, p € X, is a normal
(iv) Each stalk tfp’ p € X, is a Stone lattice
(v) Each stalk tfP’ p € X, is dense.

The following theorem is a consequence of theorem 2.2, 3.3 and 3.5.
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THEOREM 4.2. Let L be a Heyting algebra. Then the following are
equivalent.
(i) L is an L-algebra
(ii) L is relatively normal
(iii) Each stalk tfp, p € X, is relatively normal
(iv) Each stalk Efp’ p € X, is an L-algebra.

Since L is an L-algebra if and only if it is relatively Stone lattice
(Theorem 4.11 of [ 1]) (i.e., each interval is a Stone lattice) in view of
theorem 4.1, one may suspect that if L is an L-algebra, then each stalk is
relatively dense and hence a chain. This is not true (see 4.4 below),
though the converse is proved in the following.

THEOREM 4.3. If L is a Heyting algebra and each stalk is a chain, then
L is an L-algebra.

PROOF. 1If each stalk is a chain, then by theorem 1.5, the prime ideals
of L lie in disjoint maximal chains and hence L is relatively normal lattice
and hence the theorem follows from theorem 2.3.

EXAMPLE 4.4. Let BA be the 4-element Boolean algebra and A be the
distributive lattice obtained by adjoining an external element to B4 as the

smallest element. Then A is an L-algebra which is not a chain (Thanks to

the referee).

Epstein and Horn ([ 6]) proved that L is a Stone lattice if and only if Ld

is pseudosupplemented and 0<=x Ay = (0 & x) A (0&y) for all x, y € L.
Now, these two necessary and sufficient conditions for L to be a Stone lattice
can be viewed in terms of the stalks as follows.

THEOREM 4.5. Ld is pseudosupplemented if and only if |x| is open for
each x € L and in this case |x| = 0 & x for all x € L.

PROOF. Follows from Lemma 5.2.
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For any p € X, let (p) be the smallest ideal of L containing p. The
proof of the following theorem is simple.

THEOREM 4.6. For any p € X, the stalk tfp is dense if and only if (p) is
a prime ideal of L.

It can be easily seen that each stalk :f;, p € X, is dense if and only if
|x A y| = |x|] N|y| for all x,y € L. Hence from theorem 4.5 and 4.6 and
lemma 2.9 of ([7] ), we have the following.

THEOREM 4.7. L is a Stone lattice if and only if |x| is open for all
x € L and each stalk :fp, p € X is dense.

REMARK 4.8. Swamy and Rama Rao ( [ 10] proved that a lattice L is a Stone
lattice if and only if L is isomorphic to the lattice of all global sections
of a sheaf of dense bounded distributive lattices over a Boolean space in
which each section has open support (see also[ 9] ). It can be verified,
that when L is a Stone lattice, then our sheaf (:f,n,x) coincides with the
sheaf constructed in ( [10] ).

5. P-ALGEBRAS.

The following results interpret B-algebras in sheaf theoretic terminology.

LEMMA 5.1. Let x,y € L. Then x = y exists in B if ané only if
{p€ X/ x(p) < y()} is closed and in this case x =y = {p € X / x(p) < y(p)}.

PROOF. For any p € X, x(p) < y(p) if and only if there exists a € B-p
such that x A a < y. If x=) y exists in B, then, for any p € X, x(p) s y(p)
if and only if p € x = y. Conversely, if {p € X / x(p) < y(p)} is closed,
then there exists a € B such that p € a if and only if x(p) < y(p) for all
P € X. Hence a = x =) vy.

The proof of the following is easy.

LEMMA 5.2. For any x,y € L, |(x,y)| is open if and only if there exists

a largest element a of B such that x A a =y A a.
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The following theorem is a consequence of the above lemmas.
THEOREM 5.3. The following are equivalent.

1) L is a dual B-algebra

2) For any x,y € L, {a € B/ xVva=yVv a} is a principal filter of B.

3) For any x,y € L, {a€ B/ x A a=1y A a} is a principal ideal of B.
4) L is a B-algebra
5) {p€ X/ x(p) < y(p)} is closed for every x,y € L.
6) |(x,y)| is open for every x,y € L.
THEOREM 5.4. Suppose L is a B-algebra. Then the following are equivalent.
1) L is a P-algebra; i.e. L is a BL-algebra

2) Each stalk is a chain

A

3) For every x,y. € L, there exists a € B such that x A a <y and y A a' < x.
4) TFor every x,y € L, there exists a € B such that xVa 2y and y va' 2 x.
PROOF. 24{=y3 is proved in ([ 15] ) and 3&) 4 1s clear. 1452 follows
from lemma 5.1.
6. POST ALGEBRAS.
The following definition is slightly different from that of Chang and
Horn ( [3] ).
DEFINITION 6.1. By a generalized Post algebra, we mean the lattice C (Z,C)
of all continuous maps of a Boolean space Z into a discrete bounded chain C
where, the operations are pointwise.
THEOREM 6.2. The following are equivalent
1) L is a generalized Post algebra.
2) There exists a chain C in L such that the natural map ¢ & c(p) : C - :fp
is an isomorphism for all p € X.
3) There exists a chain C and, for each p € X, an order isomorphism ap: C » tfp

such that for any c € C and x € L, {p€ X/ ap(c) = x(p)} is open in X.
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PROOF. 1 =2:

Let L = C (Z,D) where Z is a Boolean space and D is a discrete bounded
chain. It is well known that a F Xy is a Boolean isomorphism of the algebra
of all clopen subsets of Z onto B, the centre of L, where X, is the character-
istic function on a. We identify Xy with a. Also the Stone space X is
homeomorphic with Z.

Let C be the set of all constant maps of Z into D. For any d € D, let E
denote the constant map which maps every element of Z onto d. Then C is a

chain in L. Let p € X. C(Clearly, the natural map ﬂp: Cc > :fp = L/ep is a

homomorphism.
If dl, dz‘G D such that dl(p) = dz(p) then dl Aa= d2 A a for some a € B-p
and hence d, = d Now, let x € L. Then if p € x—l(d) for some d € D,

1 2°

since x : Z + D is continuous, x-l(d) € B-p and since x A x-l(d) =d A x_l(d),
it follows that (x,z) € ep. Hence ep is an isomorphism.

22=»3: 1f C is a chain in L and the natural map ¢p: C > :fp is an
isomorphism for every p € X, then, for any ¢ € C and x € L. {p€X / ap(c) =
x(p)} = {p€X / c(p) = x(p)} which is open.

3 ==)1: We’first observe that since tfp is bounded and o is an isomorphism
of C onto tfp, C is also bounded. Let X = Spec B. Define 6 : L » C (X,C)

by (6(x))(p) = a;l (x(p)) for each x € L and p € X. Let ¢ € C. Then

0 x) el

{p€x / a?(x(p)) = ¢}

{pex / ap(c) = x(p)} is open by (3) and

hence 6(x) is continuous. Clearly 9 is a homorphism and one-one since a—l

is so. Now, we will show that 6 is onto. Let f € C (X,C). Define o: X +-:f
by o(p) = ap(f(p)) for every p € X. We will show that ¢ is a section. Let

x € L and a € B, then
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-1
o “(x(a)) = {p€a / o (£(p)) = x(p)}
=afl U{peXx / () =c} i {p€Xx / a_(c) = x(p)}.
c€C P
Since f is continusous, it follows that o-l(x(a)) is open. Since {x(a) / a€B
and x € L} is a base for the topology on~j , it follows that o is continuous

and clearly w o 0 = id Therefore, 0 = x for some x € L and also 6(x) = f.

X
Hence 6 is an isomorphism and therefore L is a generalized Post algebra.

THEOREM 6.3. Let n 2 2 and L a P-algebra. Then the following are
equivalent.
1) L is a Post algebra of order n.
2) Spec L is the disjoint union of maximal chains each with n-1 elements.
3) Each stalk is a chain with n elements.

PROOF. 1 =>2 is proved in ( [5] ).
Since L is a P-algebra, by theorem 4.4, each stalk ,j;, p € X, a chain. Also,
by theorem 0.(5), Spec L is the disjoint union of the chains Spec j;, p € X.

If Spec L is the disjoint union of all maximal chains Ca’ o € A each with
n-1 elements, then, for any p € X, Spec tfp = Ca for some o € A. Hence Spec :fp
has n-1 elements and therefore tfp has n elements and hence (2) =)(3).

Now, suppose each stalk is a chain with n elements and Cn is the n-
element chain 1 < 2 < ... < n. For any p € X, let :fp = {0(p) = xlp(P) <

v = . €L.
xzp(p) <, ..< xnp(p) 1(p)} where xlp’x2p’ ’xnp L. Define for any p € X,

P
isomorphism. Let i € Cn’ x € L and p € X such that ap(i) = x(p). 1ie.,

: ‘ = € .
o Cn-—):fp by ap(i) xip(p) for each i Cn Clearly, ap is an order

xip(p) = x(p) so that there exists a € B-p such that xip(q) = x(q) for all
q € a. Since L is a B-algebra and xjp(p) <xkp(p) for all j < k, by theorem
5.3, there exists b € B-p such that xjp(q) < xkp(q) for all j <kand q € b

and hence xip(q) = xiq(q) for all i € Cn and q € b. Then p € a A b€ B and
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for any q € a A b, aq(i) = xiq(q) = xip(q) = x(q). Hence {p€X / ap(i) =

x(p)} is open for each i € Cn and x € L.
DEFINITION 6.4. By a chain base C for L we mean a chain C with O in L
such that L is generated by the centre B and C; i.e., every x € L can be
n
written in the form V (a, A c,) for some a, € B and c, € C.
i=1 i i i i
DEFINITION 6.5. A chain base C in L is said to be regular, if, for
cy # ¢ € C and a € B, <y <ec, and a A ¢y S ¢
It is proved in ([ 15] ) that a bounded distributive lattice L is a

imply a = 0.

generalized Post algebra if and only if there exists a regular chain base
for L. Now, we characterize chain bases and regular chain bases in terms of
the stalks. It is also proved in ([ 15] ) that if C is a chain base for L,
the natural map ¢p: Cc > :fp’ defined by'ﬂp(c) = c(p) is an epimorphism for
all p € X. We prove the converse in thé following.

THEOREM 6.6. Let C be a chain in L and 0 € C. Then § : C— :fp is
an epimorphism for each p € X, if and only if C is a chain base for L.

PROOF. Suppose ﬂp is an epimorphism for each p € X and let x € L.
For each p € X, there exists cp € C such that ﬁp(cp) = x(p) ie., cp(p) = x(p),

so that there exists a € B-p such that cp A a =x A a. Therefore, there

iti .. eee € =
exists a partition aj53,,- ,an of B and €15Cys ,cn C such that ey A a;
n n n
X Aa,sothat x=xAl=xA VvV a,= V (xAa)= V (c, Aa,).
i =1 T =1 S

Hence C is a chain base for L.

The following theorem is a straight forward verification.

THEOREM 6.7. Let C be a chain in L. Then the following are equivalent.
1) The natural map ﬁp: Cc > tfp is one for all p € X.

(S < = 0.
2) For any cl # c2 C and a € B, c1 < c2 and a A <, cl imply a 0
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3) For any ¢y # ¢y €Cand 0 #a €B, a A 1 #aA cye
By summarizing the above results, we have the following |
THEOREM 6.8. Suppose L is a bounded distributive lattice. Then the
following are equivalent.
1) L is a generalized Post algebra
2) There exists a chain C in L such that the natural map QP:C > :fp is an
isomorphism for all P c X.
3) There exists a chain C and for each p € X, an order isomorphism
ap: C > Efp such that for any ¢ € C and x € L, {peX / ap(c) = x(p)} is
open in X.
4) L has a regular chain base.

REMARK. The equivalence of (1) and (4) is established in ( [15]) by

using the Boolean extension techniques.
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