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topism group is solvable (Corollary 4.12). This generalizes a result of Hughes
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i. INTRODUCTION.

The central purpose of this article is to investigate the autotopism

groups of one class of Knuth semi-fields. These semi-fields are defined as

follows. Let F be a finite field, let S F x F, let be a non-identity

automorphism of F, let Y -i y+land choose f,g 6 F such that + gy-f # 0

for all y 6 F. (If F is not a prime field, then there always exists ,f,g

such that yO+l+ gY_ f # 0 for all y 6 F. See Knuth [ll,p. 214].) Taking

componentwise addition, the set S is a semi-field under any one of the

following multiplications:
2

K(u): (a,b)(c,d) (ac + bodY f, bc + ad + bdg)

K(): (a,b)(c,d) (ac + bdf, bc + ad + bdg)

K(r): (a,b)(c,d) (ac + bYdY f, bc + ad + bdYg)

K(m): (a,b)(c,d) (ac + bYdf, bc + ad + bdg)

If Nr, Nm’ N are the right, middle, and left nuclei, respectively, of S

then the classes K(), K(r), K(m) are characterized by the following statement:

A semi-field S is of type K(i) over the field F if and only if (a) N. F for

j 6 {r,m,} {i} and (b) S has (vector space) dimension 2 over F. (See Knuth

[ll].) The class K() was discovered by Hughes and Kleinfeld [6] and Hughes

[5] investigated the autotopism groups of such semi-fields with the principal

result being that they are solvable. The semi-fields in K(r) are obtained from

the semi-fields of K() by duality. As of yet the semi-fields in K(m) have not

been investigated. We do so in this article and show that Hughes’s result for

the class K() essentially holds also for the class K(m). (See Corollary 4.1.2)

Our proof of Corollary 4.1.2 is based upon the work of section 3. This

section is based upon unpublished work of M. V. D. Burmeister, and the main

result (Theorem 3.4) is a generalization of his techniques. In section 5, we

extend a result of the article [i0] to semi-fields having dimension 2 over one
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of their nuclei. Specifically, we show that such semi-fields must have at

least 5 isotopic, but pairwise non-isomorphic, images.

We assume the reader is familiar with the theory of projective and affine

planes as exhibited in [7].

2. PRELIMINARIES.

Throughout this section S <S,t,-> wll be a finite semi-field of order

S
p where p is a prime, and Nr, Nm, N are respectively, the right, middle, and

left nucleus of S. Furthermore, G is the group of autotopisms of the semi-

field S; thus G consists of all triples (i,2,3

mappings of S with

of bijective additive

(Xl) (y2) (xy)
3

for all x,y S,

and the operation in G is componentwise composition. We have the following

information.

S
LEMMA 2.1: Let S be a finite semi-field of order p where p is a prime,

t
m

and let N be the middle nucleus of S having order p and let G be the
m

autotopism group of S. The following statements hold:

(i) The semi-field S is both a left and right vector space

-i
over N having dimension d st

m m

(ii) If (i’2’3) G, then the mapping m Nm / Nm given by

nm (anb)3
when a and b are defined by aI b2 i,

is an automorphism of N
m

(iii) If (i,2,3) G then i is a semi-linear transformation

on S as a right vector space over N (with companion automorphism
m

m and 2 is a semi-linear transformation on S as a left vector

space over N (with companion automorphism mm

PROOF: See [7; p. 170 and 179]
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REMARKS

(i) It might be helpful to consider the situation from a geometrical

point of view. If is the affine plane coordinatized by S then an auto-

topism is a collineation of fixing the coordinate axes with i describing

the action on the x-axis, 2 the action on the line at infinity, and 3 the

action on the y-axis. Thus in statement (iii) above we are on the one-hand

when considering i looking at the x-axis of and on the other when consid-

ering 2 looking at the line at infinity of

(2) There are lemmas corresponding to Lemma 2.1 for both the right

nucleus Nr and the left nucleus N of S. However, there are some slight

differences. The semi-field S is a right vector space over N and for
r

(I,2,3) G the components 2 and 3 of are semi-linear transformations

on S over N The companion automorphism in both cases is r:N + N given byr r r

(abn) 3nr Similarly, the semi-field S is a left vector space over NE
and the components i and @3 are semi-linear transformations on S over N% with

companion automorphism E: NE- NE, where nE (nab)@3. (See [7; p.170 and

179].)

DEFINITION 2.1: Let S be a finite semi-field of order pS with middle
t
mnucleus N of order p and let G be the autotopism group of S The middlem

linear autotopls_m group of S is the subgroup L_mG (S) of G consisting of all

autotopisms (1,2,3) with 1 and 2 linear transformations on S as a

vector space over N The middle homomorphisms of S are the homomorphismsm

mj: LGm(S) / GL(dm,Nm), where dm st-lm and d 1,2 defined by

(l,2,3)Hmj j
sLEMMA 2.2: Let S be a finite semi-field of order p where p is a prime,

t
mlet N be the middle nucleus of S having order p and let G be the auto-m

topism group of S. The following statements hold:
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(i) The middle linear autotopism group LG (S) is the kernel of the
m

homomorphism 7.m: G / Aut(Nm) given by cp7,
m m"

(ii) The integer [G LGm(S)] divides t
m

(iii) The kernel of the homomorphism ml is the group N {0nln E
r

Nr {0}},where On (i,0,0) with 0 S + S given by x0 xn.

The group N * is isomorphic to the multiplicative group N {0}.
r r

(iv) The kernel of the homomorphism m2 is the group N* {
n

n E N {0}} where n (’I’) with S / S given by x nx.

The group N* is isomorphic to the multiplicative group N {0}.

PROOF: Statement (i) is obvious and statement (ii) follows from (i). For

statement (iii) note first that Nr* ker IIrml.. For given n (I,0,0) we have

-i
(O
n

(xn-I)0 (xn-I) n x.a0n i and bon n thus for x Nm we have x )m
Assume now that (1,2,3) 6 ker IIml. Then 1=1; hence for all x,y ( S

we have x(y2) (xY)3. Letting x=l gives 2 3" If n -= i2 then x3
xn

for all x S. Thus x(yn) (xy)n for all x,y S. Hence n E N -{0} and
r

(i,0,0) with 0 x / xn for all x 6 S. This proves (iii). The proof of

statement (iv) is similar.

REMARKS

(i) Analogous to the group LGm(S) we have a right linear autotopism group

LG (S) consisting of all =(I,2,3) with 2 and 3 linear transformations
---r

over Nr and a left linear autotopism group __LGz(S) consisting of all

$ (i,2,3) with i and 2 linear transformations over N In turn these

groups have associated with them mappings LG (S) / GL(d Nr) and
r r r’

is the dimension of S over N wherei LG(S) / GL(d,N) here d
(i’2’3)ri i i 2,3

(i,2,@3)i i i 1,3
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Results similar to the statements of Lemma 2.2 are true. In particular,

* ,
ker rl =N*’ ker H%I=Nr’ and ker r2 =ker 2 =Nm {nln 6Nm-{0}} where

n (i,2,1) is given by

-I
x]/1 xn, x]2

n x

for x S. We can then define

LG(S) ]
o LG(S)

where c runs over {r,m,,}. This is called the linear autotopism group of S.

The mappings i could then be restricted to the group LG(S).

(2) In the remainder of this rticle, whenever we consider the group LGm(S)
we will frequently restrict ourselves to one of the groups Gmi ={II=(I,2,3

LG (S)} for i 1 or 2. These groups are really homomorphic images of LG (S)m m

and the purpose of the above lemma is to make this clear. Similar statements

hold for the groups LGr(S and LGz(S).
rLEMMA 2.3- Let S be a finite semi-field of order p where p is a prime,

and let G be the autotopism group of S. The group G is solvable if and only if

the subgroup LGm(S) is solvable.

PROOF" This follows from the fact the G/LGm(S) is a subgroup of Aut(Nm).
REMARK- In Lemma 2.3, the group LG (S) can be replaced with any of the

m

groups LGr(S), and LGi(S). The last group is permissible because its definition

implies that the factor group G/LG(S) is a subgroup of the direct product

G/LG(S), where =r,m,. (See [8; 1.9.6].).
SDEFINITION 2.2" Let S be a finite semi-field of order p where p is a

prime. For i= 1,2 we define D to be the group of all = (i,@2,3) in LG (S)
--inl m

with det i i, and we define --mD =__mD (S)_ to be the group Dml Dm2. The group

D is the middle determinant group of Sm

SLEMMA 2.4: Let S be a finite semi-field of order p with p a prime and let

G be the autotopism group of S. The following statements hold:



KNUTH SEMI- FIELDS 35

(i) The subgroups Dml, Dm2, and Dm are normal in LGm(S).
(ii) The group G is solvable if and only if one (and hence all)

of the groups Dml, Dm2, and Dm is solvable.
tm

(iii) The integers ILGm(S) IIDmll -I
and ILGm(S) IIDm2 I-I divide p L.

PROOF: Statements (i) and (ii) follow from the fact that D is the
ml

kernel of the homomorphism LG (S) / N {0} given by (l,2,3)Hmiml m m

det i" The proof of statement (iii) is similar to the proof of Lemma 2.3.

REMARK: We can also define subgroups Dr2, Dr3, Dr of LGr(S) and

DI, D3, of LG(S). Lemma similar to Lemma 2.4 can then be proven. Thus

for each such group Dj, we have

c j Dj

with uc t and (ptCvcj -1). Also, the group 13 is solvable if and only if

one (and hence all) of the D is solvable.

DEFINITION 2.3: Let S be a finite sem.i-field of order p with autotopism

group G The determinant group of S is the subgroup D D(S) D D DZ of G.
r m

We close this section with a lemma that plays a role similar to the role

of Lemma 2.3.

S
LEMMA 2.5: Let S be a finite semi-field of order p with p a prime and

t
let its middle nucleus N have order p m. For i 1 or 2 the homomorphism

m ,
induces by restriction a homomorphism D SL(dm,Nm) where

mi mi mi

d st
-1

and ker * Dm.1. N* and ker * *
m m ml r m2 Dm2 N

3. THE DIMENSION 2 CASE.

In this section we restrict ourselves to semi-fields S which have dimen-

sion 2 over one of their nuclei. Without loss of generality, we shall assume

the nucleus is N (By this we mean that similar arguments apply for either
m

of the other two nuclei. Thus, in the notation of the previous section, we

have



36 D.R. HUGHES AND M.J. KALLAHER

-I
d dim.. S st 2
m m

m

s =2t
m

Consider first the group LGm(S). The following result is important in the

analysis of the structure of LG (S) and the subgroups D
m mJ

THEOREM 3.1: Let S be a finite semi-field of order pS where p is a prime

and assume that S has dimension 2 over its middle nucleus Nm. If p > 2 then

the group LGm(S) contains no elements of order p.

PROOF: Assume (i’2’3) is an element of order p in LGm(S). Consider

the projective plane (S) coordinatized by S. Then induces a collineation

on (S) fixing the points (0,0), (0), and (). (See Remark (i) after

Lemma 2.1.) Because has order p, it fixes other points in each of the three

lines determined by these points, hence it fixes a subplane P0 pointwise.

Consider the action of on the line (0,0)(0); this is given by

(x,0) (x1,0).
Since cannot be an elation, we must have 1 # 1. Thus, 1 is a linear trans-

formation of order p; that is, i GL(2,Nm)" An element of order p in

tm
GL(m,Nm) fixes exactly INm p points. It follows that fixes pointwise

tm and thus is a Baer collineation. By Foulsera subplane 0 of order p

[i; Theorem 4.3], this gives a collineation. Hence the theorem holds.

For later reference, we state a result, due to Ganley [2], for the case

p 2.

THEOREM 3.2: GANLEY: Let S be a finite semi-field of order 2 s. If S has

dimension 2 over one of its nuclei then its autotopism group is solvable.

Consider now the subgroup Dml of LGm(S). Since Dml is the kernel of the

homomorphism Hal LGm(S / GL((2,Nm)/SL(2,Nm) the homomorphism Hal maps Dml
onto a subgroup *Dml of SL(2 N with kernel Dml Nr* (See Lemma 2.4.)

m
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We will use this fact repeatedly.
sTHEOREM 3.3: Let S be a semi-field of order p where p is a prime, and

having dimension 2 over its middle nucleus N let G be its autotopism group,
tm m t

let Dml* Dml/(Dml Nr*) let INml p and let INrl p r. One and only

one of the following statements holds: ,
(i) The autotopism group G is non-solvable with Dnl SL(2,5) and

t tr tIN divides t (p m l)(p -i) 120 60s(p1/2S-l)(p r_l).
m

Furthermore, p >_ 7 and pS-i 0 (rood 5).

(ii) The autotopism group G is solvable with Dml a solvable subgroup of

* I) i and Gl dividesSL(2,Nm) such that (p, IDml
(ptm t 1/2s t

t -l)(p r_l)k 1/2sip -l)(p r_l) where either
m

k 12(p1/2s_+l), k= 24, or k=48.

PROOF: By the Remark after Lemma 2.3, the integer IGI IDml I-I divides

tm * Dml/(Dml N*) is atm(p -1). Consider the group din.1. The group Dml r
t

subgroup of SL(2,Nm) --SL(2,p m) containing no p-elements (Theorem 3.1). If

G is non-solvable, then Dml is non-solvable and so is Dml. It follows that

Dtl--SL(2,5). (See I-Iuppert [8; I-Iauptsatz II.8.27].)

* tm)If G is solvable, then Dmj must be a solvable subgroup of SL(2,p having

, tmno p-element-s; then Dm_l. must: either have order dividing 2(p _.* 1) or its

t
image in PSL(2,p m) is either A4 or S4. (Again, see ttauptsatz II.8.27 of [8].

REMARK" Note that Theorem 3 3 has analogies with N and D replaced by

N and D., where c {r,m,} and j {1,2,3}.

We investigate further statement (i) above by means of a sequence of lermas.

s
LENNA 3.1: Let S be a semi-field of order p where p is an odd prime and

having dimension 2 over its middle nucleus N let G be its autotopism group,
m

and let D Dml/(Dm N*r) If G is non-solvable, then the following state-

ments hold

(i) Dml SL(2,5)
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(ii) [Dml Fl N*=m 2 IDml N*
PROOF: Statement (i) follows from statement (i) of Theorem 3.3. For

,
statement (ii) note that E =Dml N N*m and F= Dml fl N are normal cyclic sub-

groups of Dm_l.. Since N*m l N*=r N*m f’l N* 1, it follows that E and F yield

cyclic normal subgroups E* and F* * with E* F* *of Dml E and F. Now Dml has

exactly two such subgroups; namely, 1 and its center Z of order 2. Since the

autotopisms O (,g,l) and o% (,i,), where x / (-l)x x(-l) -x,
m

are in E and F, respectively, we have E* Z F*

Under the hypothesis of Lemma 3.1 consider the group D** Dm2/(Dm2 N N)m2

By arguments similar to those given in the first paragraph of the proof of

Theorem 3.3 and in the proof of Lemma 3.1, we have the following Lemma.

LEMMA 3.2" Under the hypothesis of Lemma 3.1 the following statements

* Dm2/(Dm2 N N):hold for the group Dm2
(i) D**

m2 SL(2,5)

(ii) IDm2 N N*Im IDm2 N N*Ir 2

Consider now the group D Dml Dm2. Under the hypothesis of Lemma
m

3.1, the group D is non-solvable (Lemma 2.4). Hence D yields a non-solvable
m m

normal subgroup D*m of Dml* SL(2,5). It follows that D*=m D*ml. Since

]Dml N N*Ir 2, we have Dm Dml. Similarly, D
m =Dm2. Thus Dm =Dml= Dm2 and

in the last two lemmas Dm can replace Dml and Dm2.
Leto= (Ol,O2,3)bean involution in Dm. If is a Baer involution (that is,

if each . fixes pointwise a subspace S
i

of S having dimension 1/2s over GF(p))
1

then its image o* in D* *
m Dml must be a non-trivial involution in D*m SL(2,5)

fixing a non-trivial subspace pointwise. But D* SL(2,5) has a unique
m

involution and, since m (e,e,l) is Dm*, the unique involution of D*m is

which has no fixed points. Thus we have a contradiction and hence
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D has no Baer involution.
m

If -i’2’3)- is an involution in Dm, then each oI is either the

identity 1 or the mapping g. Since at most one o. can be i, the group D
i m

has exactly three involutions -namely,

(l,g,g), (g,g,l), and (g,l,E). (3.1)
r m

Note that D N < > for r,m,. Furthermore, direct calculation shows
m

that for all T D we have o T= To for r,m,. Hence Z= {i,o ,Om,O} is
m r

D*a subgroup of Z(D ). Since D /<O > has a center of order 2, it follows
m m m r

that Z(D Z.
m

We have proven the following lemma.

LEMMA 3.3" Under the hypothesis of Lemma 3.1, the following statements

hold"

(i) D Dmlm Dm2
(ii) IDml 240

(iii) D contains exactly three involutions; namely
m

(l,,g), O (g,,l), and =(,i,) where S S is
r m

given by e x (-l)x x(-l) -x.

(iv) Z(Dm {l,r,m,%}
(v) D N* < > for all o {r,m,}

m

We turn to investigating the Sylow 2-subgroups of D Assume T D is
m m

T
4 4

an element df order 8. Then is an involution in D and hence T for
m

some {r,m,}. If r then T induces an element T* of order 8 in

D D /< > SL(2 5) If = r then T induces an element of order 8 in
m m

D** D /<o > SL(2 5) Since SL(2 5) has no element of order 8 in both
m m

cases we have a contradiction. Thus, D has no elements of order 8.
m

Let T be a Sylow 2-subgroup of D The group T contains the center
m

Z Z(Dm) of Dm. Furthermore the image T* of T in the factor group
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D* SL(2,5) is a quaternion group of order 8. The normalizer of T* in D*
m

contains an element T* of order 3 that does not centralize T*. (This follows

from Hauptsatz 11.8.27 of [8] as applied to PSL(2,5).) If T D is a pre-
m

image in D of T* with II 3, then normalizes T but does not centralize T.
m

Hence the group T has a non-trivial automorphism of order 3.

Thus, T is a group of order 16 having exactly 3 involutions, no elements

of order 8, and an automorphism of order 3. Consulting the list in [3]of the 14

groups of order 16, we see that there is exactly one such group-namely,

Q @ z
2 -having

these three properties.

Consider the group D D Since G is non-solvable and G/(D
m

D
r

is
m r

isorphic to a subgroup of G/Dm (R) G/Dr, by Lera 2.4 and the Remark following,

we have D D is non-solvable Hence its image (D D )* D*in is a non-
m r m r m

solvable normal subgroup of D*--" SL(2 5). It follows that (D fl D
r
)*= D*

m m m

Since D*=D /< > and < > _< D D we have that D D =D or D D A
m m r r m r m r m m r

similar proof shows that D - D. Thus, D(S)=D (See Definition 2.3.)

Now the group T--Q (R) Z
2

has the property that for one of its involutions

in this case -the factor group T/<o > is elementary abelian. Since
m m

Dm/<m> is a homomorphic pre-image of Dm/Z(Dm) PSL(2,5) it follows that

Dm/<m> PSL(2,5) Z2.

We have proven the following lemma.

LEMMA 3.4: Under the hypothesis of Lemma 3.1, the following statements hold:

(i) The Sylow 2-subgroups of D are isomorphic to Q Z
2m

(ii) D(S) =D
m

(iii) Dm/<m> PSL(2 ,5) e Z
2

It follows from the various Remarks made in Section 2 that the proof of

Lemmas 3.1- 3.4 can be applied when Nm is replaced by N, and thus Dm by D,
for {r,m,}. Thus Lemmas 3.1 and 3.4 can be combined to give the
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following theorem.

sTHEOREM 3.4: Let S be a finite semi-field of order p where p is an odd

prime, and dimension 2 over one of its nuclei N ( {r,m,}). Let G be the

autotopism group of S, let D D (S) be the determinant group of S associated

with N, and let D(S) D 0 D 0 D. If G is nonsolvable then the following
r m

statements hold:

(i) IDol 240

(ii) D has exactly three involutions; namely, (Jr’lm, and c.
(See (3.1))

(iii) Z(De) {l,Cr,Cm,
(iv) D N8. <8> for all

(v) D(S)-- D

(vi) D/ <8> SL(2,5) for 8

(vii) D / <> PSL(2 5) Z2

We close this section with an interesting relationship among the nuclei

when the group SL(2,5) occurs.

COROLLARY 3.4.1: Under the hypothesis of Theorem 3.4, if 8,

{r,m,}- {e} then N
8 Ny _c Ne.

PROOF: We prove this theorem for e =m. Let n N -{0} and consider the
r

associated autotopism On (1,0,0), where 0: x + xn Consider Dm/ <1 > and

G/N*. Such <> D fl *
m N we have Dm/ <O > SL(2,5) normal in G/N*

which in turn is a subgroup of GL(2 ,N)m_ If = __(i,2,3) is in D then its
m

image in Din <U > is just 2" Furthermore, the image of On in G/N* is just 0.

Since T^ is a linear transformation over N (Remark (2) after Lemma 2.1 and the
r

Remark after Lemma 2.4), we must have 0o2 020. Thus 0 is in the centralizer

of SL(2,5) in GL(2,Nm). Since the centralizer of SL(2,5) in GL(2,Nm) is the

center of GL(2,Nm) See Huppert [8; See. 11.7 and 11.8] the mapping 0 is
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in the center of GL(2,Nm). Thus, O x nx with n N Since i0 =n we have
m

Therefore, N c N Note also that this implies for all n N we have
r m r

nx =xn for all x S. Thus, if n N and x,y S, then
r

n(xy) (xy)n x(yn)=x(ny)= (xn)y (nx)y

This says that n N%. Hence N c N also.
r

To show that N c N c N consider the mapping %n’ where n N
r m

(Lemma 2.2(iv)), and the groups Dm/ <r > and G/N*r Proceeding as in the

preceding paragraph, we obtain the desired result.

REMARK: Note that we have actually shown in the proof of Corollary 3.4.1

that N
O NB is the center of S.

4. THE KNUTH SEMI-FIELDS

In this section we consider the last three classes of Knuth’s semi-

fields defined in Section i. These semi-fields are characterized by the

following two properties: (a) Two of the nuclei are equal, and (b) the semi-

field has dimension 2 over the nuclei of (a). The following result is then

applicable.

S
THEOREM 4.1: Let S be a finite semi-field of order p where p is a prime,

with the following properties:

(i) Two of the nuclei of S are equal

(ii) S has dimension 2 over the nuclei of (a).

The autotopism group G of S is solvable.

PROOF: If p= 2 the theorem follows from Theorem 3.2. Assume p > 2 and

that G is non-solvable. Without loss of generality, assume that the nuclei in

(i) are N and N By Theorem 3.4, we have D(S)= D D Applying Theorem
m r m r

3.4 with m and B r gives D(S)/< > PSL(2 5) Z
2

SL(2 5) a
m

contradiction. Thus, for p > 2 the group G is solvable.
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COROLLARY 4.1.1: If S is a finite semi-field of dimension 2 over two of

its nuclei then the autotopism group G of S is solvable.

PROOF: If G is non-solvable then Corollary 3.4.1 implies that the three

nuclei of S are equal. Theorem 4.1 now implies G is solvable. This contra-

diction implies that G is solvable.

COROLLARY 4.1.2" If S is a finite Knuth semi-field of type K(Z), K(r),

s 2t
or K(m) having order p =p then the autotopism group G of S is solvable and

G has the following normal series

G> L> D> D> 1 (4.1)

t
with IG/LI dividing t, both IL/D and ID/I dividing p -i, and the group

a solvable subgroup of SL(2,pt) having no p-elements. Thus IGI divides

t(pt-l)2k where either k= 24 or 48 or k divides 2(pt_+ i).

PROOF: The fact that G is solvable follows from Theorem 4.1. The exist-

ence of the normal series (4.1) follows from the appropriate version of Theorem

3.3. (See the Remark after Theorem 3.3.) If p= 2 then a derivation similar

to that in the proof of Theorem 3.3 gives the normal series (4.1).

5. THE INVARIANT u

In [i0] the following problem was investigated: Given a finite semi-

field plane coordinatized by the semi-field S with autotopism group G, let

u=u() be the number of orbits of G not on one of the three axes of /

What is the lower bound for u? In [9] it was proven that u 1 if and only if

is desarguesian (i.e., S is a field). In [i0] the authors proved that for non-

desarguesian semi-field planes u >_ 5 when G is solvable and the order of S is

not 26. This latter condition holds if S has non-square order (i.e., if s # 2)

or if S has odd dimension over one of its nuclei. (See Theorem 8.18 in [7] and

Ganley [2].) We show now that u >_ 5 if S has dimension 2 over one of its nuclei.

In [i0] it was shown that u _< 4 implies that the integer IGI is divisible
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s
by either pS i or 1/4(pS_ i) where p is the order of S. We show first that

this implies G is solvable when S has dimension 2 over one of its nuclei.

s
THEOREM 5.1: Let S be a finite semi-field of order p and having dimension

2 over one of its nuclei, and let G be the autotopism group. If GI is

divisible by either pS_ i or 1/4(pS_ i), then G is solvable.

PROOF: Without loss of generality, we may assume S has dimension 2 over

its middle nucleus N GF(ptm). Assume G is non-solvable. Then s 4. (See
m

[ii; p. 208] and [7; Theorem 8.18].) By Theorem 3.3(i) the integer IGI divides

60s(ptm -l)(ptr -I), where N =GF(ptr), and p 7. Since s 4 the integer
r

s
p -i has a prime division v that does not divide pa_ i for any positive integer

a less than s. (See [4; Theorems 3.3, 3.5, and 3.9].) By hypothesis v IGI;

thus v160. (The prime v does not divide s; because if vls and v (pS_ i) then
s

b
v p2v lp-l) since b (nod v) for all integers b >_ i.) Since s >_ 4 and -i

nod 3) for all p > 3, we must have v 5. Hence the prime division v is unique;

salso, if 5i is the highest power of 5 dividing p -i then we must have i= i.

4
Since p i (nod 5) for all primes, it follows that s 4. Theorem 3.5 and

3.9 in [4] imply that p =3, contradicting the fact that p>_ 7. Hence G is

solvable.

COROLLARY 5.1.1: Let be a finite semi-field plane coordinatized by a

semi-field S of order pS with pS 2 6. If S has dimension 2 over one of its

nuclei, then ( >- 5.

PROOF: Assume u(_<4. It follows from [i0] that either (pS._ i) or

1/4(pS_ I) divides [G[, where G is the autotopism group of S. Theorem 5.1

implies G is solvable. Theorem 6.3 of [i0] implies u 5, a contradiction.

Hence u >_ 5.

REMARK: The invariant u also has the interpretation that it is the number

of pairwise non-isomorphic semi-fields isotopic to the semi-field S. The
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semi-field of order 16 and dimension 2 over its kernel has exactly five non-

isomorphic isotopic images.
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