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ABSTRACT. In this paper linear differential equations with random
processes as coefficients and as inhomogeneous term are regarded.
Timit theorems are proved for the solutions of these equations if
the random processes are weakly correlated processes.

Limit theorems are proved for the eigenvalues and the eigenfunc-
tions of eigenvalue problems and for the solutions of boundary value
problems and initial value problems.
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1.« INTRODUCTION.

At the research of physical and engineering problems it is of great
importance the approach to the differential equations with stochastic
proceases as coefficients respectively with stochastic boundary or
initial conditions. There is a series of papers which deal with such
a problem, The first moments of the solution are often calculated
from the first moments of the etochasticoprocesaea involving the prob-
lem. For the applications this is an interesting and important problem
(see [4]). The calculation of the distributions of the sclution pro-
cesses from the distributions of the involving proceases is often more
difficult. This problem contains already many difficulties for very
simple problems (e.g. for the initial value problem of a linear ordi-
nary differential equation of the first order with atochastic coeffi-
cients). If one specializes the stochastic processes involving that
problem then one succeeds in a few cases in obtaining statements on
the distribution of the solution. As an example of such a result we
refer to the paper of G.E, Uhlenbeck und L.S. Ornastein [8]. They re-
gard such stochastic inputs which do not possess a "distant effect",
i.e. the valuea of the process do not possess a correlation if the
distance between the observation points is large. As a result they
can show that the solution of a special initial value problem with
such a process without "distant effect"™ as the right side is approx-
imativly a so-called Ornstein-Uhlenbeck-process, i.e. a process for
which the first distribution function is a Gaussian distribution
function.

These processes without "distant effect" were defined exactly by
the authors in the paper [ 6] through the process class of the "weakly
correlated processes” and they were applied in this paper at the con-

sideration of stochastic eigenvalue problems and boundary value prob-
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lems. A 1imit theorem is obtained for the eigenvalues, eigenfunctions
of stochastic eigenvalue problems respectively for the solutions of
stochastic boundary problems with weakly correlated coefficients. This
1imit theorem shows the approximate Gauassian distribution of the first
distribution function of the solutions of eigenvalue problems and
boundary value problems.

In the present paper 1.:he conception of the weakly correlated pro-
cess is defined more generally than in the paper [6] (i.e. the sta-
tionarity of the process falls out the supposition). The correlation
length ¢ denotes the minimum distance Betwen.obaervat:ton points of a
waakly correlated process that the values of the process do not af-
fect in observation points which possess a distance larger than ¢.

In section 2 a few theorems will be proved about functionals of
weakly correlated processes which are important for the applicatione
at eigenvalue problems, boundary value problems and initial value
problems in the following seections.

Section 3 deals with stochastic eigenvalue problems for ordinary
differential equations with deterministie boundary conditions where
the coefficients of the differential operator are independent, weakly
correlated processes of the correlation length £€. We prove that the
eigenvalues and the eigenfunctions as ¢! 0O possess a Gaussian distri-
bution. f‘or instance the eigenfunctions of the stochastic eigenvalue
problem eonverge in the distribution as t¢{ 0 to Gaussian processes.
Methods of the perturbation theory are essentially used. In a general
example it is referred to a few remarkable appearances.

In section 4 we deai with stochastic boundary problems and we ob-
tain similar results as for stochastic eigenvalue problems. The case

of a Sturm-liouville-operator with a stochestic inhomogeneous term
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(weakly corralated) which was dealt with by W.E. Boyce in [1] is in-
cluded in the result of this section. Some limitations relative to the
smallness of the stochastie coefficients of the operator but not of
the inhomogeneous term are assumed as at the eigenvalue problems, too.
We show a calculation of the correlation function by the Ritz-method
to eliminate the Green function of the averaged problem from the cor-
relation function of the limit process of the sclution of the
boumdary value problem.

At last, section 5 deals with stochastic initial value problems of
ordinary differential equationa., The inhomogeneous terms are weakly
correlated processes. The results in this theor& of the weakly cor-
related processes as ¢V O resemble the results of the Ité-theory if
the inhomogeneous terms are replaced by Gaussian white noise accord-
ing to the It6-theory and the formed It8-equation isz solved according
to the It6-theory. The practice by the help of the weakly correlated
processes @iffers principally from the It§-theory. One obtains the
Iimit theorems by use of the weakly correlated processes if at first
a formula for the a.s. continuous differentiable sample functions of
the solutions is derived (:40) and then we go to the Iimit (&40).
With it we get an approximation of the soIution of the initial value
problem with weakly correlated processes (£« 1,6#0). In the It8-
-theory one goes to the limit in the differential equation and this
equation is solved by a well worked out mathematical theory. We get
different results at this different practice in problems of differ-
emtial equations in which the coefficients are weakly correlated pro-
cesses and not the inhomogeneous term. We do not deal with such prob-
lems in this paper.

It is prineipally no distinction in the proof of limit theorems



STOCHASTIC DIFFERENTIAL EQUATION PROBLEMS 117

for the initial value problems and boundary value respectively eigen-
value problems with weakly correlated processes. A widening of the
It8-theory on boundary value respectively eigenvalue problems with
white noises for the coefficients seems to contain a few fundamental
difficulties.

2.WEAKLY CORRELATED PROCESSES

DEFINITION 1. Let (X,X5,...,X ) be a finite set of real numbers
and ¢>0. A subset (xii'xiz’."’xik) € (X1,%5,e.0,x) is called ¢-ad-

Jjoining if

b, -x_ ls&, Ix . -x_l2¢g, eee , Ix. -x_l&
r,"'r, ’ ’1'2 rs ’ » M Tt RE
is fulfilled for the x; , j=1,...,k, which are arranged after the
J

quality (these we have termed as xrl ,xrz,...,xr ). A subset of one
number is always called €-adjoining. A subset ui,""’xi )e
(XqyeeesX,) is called maximum g-adjoining (relative to (xy,...,x,))
if it is g¢~adjoining but the subset (xi,""’xik’xr) is not e-ad-
joining for x_ € (x, ,...,xr)\(in,...,xik).

Every finite set (x, ,...,xn) split unique in disjoint maximum
€¢-adjoining subsets.

DEFINITION 2. A stochastic process f(x,w) with {f(x,w))%
E{f(x,w)}=0 is called weakly correlated of the correlation length ¢
when the relation
{Elxy Voo of(x ND=dL(xyy)0e .f(x1p] W LL(xy ). ..f(x2p2)) * eee ®

{f(xpq ) .f(xkpk))
is satisfied for the nth moments (for a¥1 n21) if the set
(Xyy¢e0,%;) splits in the maximum ¢-adjoining subsets (épim)
{(x“,...,x1p1),(x21,...,x2p2),...,(xk1,...,xkpk)}
If the process f(x,w) is weakly correglated with the correlation

Iength £, then we get for its correlation function
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ey = {R‘(x,y) for y€ Ky (x)
0 for y¢ K (x)
where Kz(x)éfye R tIx-ylael.

The existence of especially stationary weakly correlated processes
hag been proved in the paper [61. In this paper it is also proved
that weakly correlated processes with smooth sample functions exist.

In the following a few theorems will be proved about weakly cor-
related processes. These theorems will be used essentially in the
applications at equations of the mathematical physics.

THEOREM 1. Let f;(x,w) be a sequence of weakly correlated pro-

cesses as £V 0 with the correlation functions

Re(x,y) for y€ K (x)
(fs(x)fa(y»:i e\ %,y O y& RelX

0 for y¢ K, (x)
where is fu:e[filled
lim% § Re (x,x+y)dy * a(x) and a(x) O
tvo © ¢

uniformly in x. Further on let g;(x,y), i=1,2, be in [a-q,bs+n] aif-
ferentiable functions relative to x (n> 0,b; > a) and

_&up {lgi(x,y)l ,!50381(1,y)u £ C.

1,X,¥

When G,= {(x,,X,): Ix,-x,l4¢, az x; £ b} then we get for

bs
1 b
Tse (x,w) '-‘ﬁ- § fg, (y’w)gi(Y)X)dy

the relation min(b, ,b2)

I:;m (rn (x1 )r2£(x2)> = S a(y)g1 (y,x] )gz(y,xz)dy.
tvo a

PROOF. We can set bls b2 and £« b]. We substitute in

. b,b
L1 o2 eyg (2 )ry (x50 = %§1£2<f£ (39)£ (350 8 (31,% )85 (¥5,%5)dy, dy,

—

T -

3 cs;i Rg(ﬁ ,32)81 (31 X4 )gz(yz,x2)dy1 dy2

Z1=¥y, 25=Y>-¥; and obtain (see Fig.1)
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Ilz = lg[gsh(z1 322)621 dz2 - 251 h(zl ’:2)621 6221

with h(z,,2,)=Rg(z;,21+2,)8, (2),%, )85 (2 +55,%,)

2,
(&b, (hreb,) t£0) o (eh)
b Fig.1 7 .
78
{aat) )}
a aia) ‘ (-lp)La': cam IS}
K b % ES

amd Q=[(z1 ’zz), 842, 4by,~£5 8,4 el. By I%m é ég dz,dz,=0 and
evo

1
lh(z1,z2)l & (R&(z1,z,)llt(zﬁxz,z‘-ﬁz?))l/zcz it follows

£
.12
Iim X =hm-§g(z )\ Ro (24 ,31%2,)8,(2,+2,,X,)dz,dz, .
tte 12T G0 ER & 1"1_355 123172518512 755, X5 d25d2,
At 158t we obtain 5
b1 1
lim I, = lim § g,(z,%;) i _S R (2, ,q1+z2){52(z1 ,12)+0(z2)} dz,dz,
o tvo a £ ¢
by 1
= § &1 mE 8y (s xp) Un g} Relayayra)dngtey

if the function 32(z1+z2,x2) is developed relative tc z, at z,=0. The
theorem is proved.

Before we denote the more important theorem 3, we prove a simple
theoren.

THEOREM2,Tt is W, ={(x),...,x ):a4 X, 2b;,i=1,2,...,n] and G =
{(31,...,xn)Ewn:(x1,...,xn) ¢-adjoiningl. Let g(x“...,xn) be a
function which is in {(x1,...,xn) :a—géxiebi-!-q,i:h...,n} limited:
lg(xy,eee,x )| 4 C. Then the integral (S; g(Xy,eee,x )dx, .. 0dx) is
at least of the order ¢™! for £}O. o

PROOF. By b=min(b;,b,,...,b ) it is
b xi+e Xn-1+E 1
\S 8(11 ,Oooyxn)dx‘ o.odxn’ A Cn! de1 k dxzoo. S &n=cn! 8n 1 (b"a)
Gn a | In-1

x1+¢ Xn-1+¢
where the term dx1 k dxz... S dxn denotes the volume of
a X

X n-1
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Hl.oon = {(x1....,xn):a 5:1 ‘B,xl 12‘ x1+5’..o,xn_1 ' xnéxn_1+63

1 1

and we get G£°’°n£xH&"°n. G%""ln marks the set of the ¢-adjoining

points in G with xi1s xizé cee s X o Then the above given inequality
n
results from

i‘oooi

G, = G n

Bwes (., Fel)
and with it the statement of the theorem.

THEOREM 3. Let f; (x,u) be a sequence of weakly correlated pro-
cesses as ¢} 0, The absolute moments (ch(x,w)\j)=cj(x) are to exist
and ¢;(x) < Cj. Let g;(x,y), i=1,2,...,n, be in (a-n,b;+n] differenti-
able functions relativ to x (9>0,b;>a) and

Rt {lgs (2,3 ,|ske; (x|} & c.
Then we have fgr

1
rie (x,u) -ﬁ é

the relation

:

1
fb(799)81(y;x)dy

Iiu(r,t(x1)r2£(x2)...rne(xn)) =

gdo
2 im{r Mimdr; vy Yesolimdry rs
(11,15) 000, (i qriy )“" e Tig o st 149' tho In-1t 1n‘>
= for n even
0 for n odd.

The sum extends for all splittings of (1,...,n) in pairs (i,,i,),
eeey (i q,ip) with i.<i,, for every pair (inyi,.4q)e Splittings are
equal which differ through the sequence of the pairs.

The proof of this theorem submits similar to the proof of theorem
7 in [6] by the help of the above given theorem 1 and it also submits
the proof of the following theorem 4 from the proof of the theorem
8 in [6].

THEOREM 4. Let fy; (X,w),...,f, (x,0) be sequences of independent
weakly correlated processes as ev0. Let gij(x,y), i=1,000,k,J51,c00,n,

be in‘[a—n,bi+ql,i=1,...,k, differentiable functions relativ to x and
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sup {Ig- (x,y), ‘%‘gij(x,y)l}
Then’en’e have for
(J) b;

(x,0) = S £5(y,0)e; 5(y,x)dy

the relation (rg‘])(x U)*rg‘]))

Ilm for n even
Iiun ((r“) ...+r1?))...(r§1_) ...+r]§n))) =§ te

0 for n odd
with
lim A & ) A;, g el
S‘O V4,50 & 8pli nga ese 1 oool
1. of (1,...,1:) fn | 2vy ! i
uvngg (il"°"127 )
LV 5=2
r (11’.."12V )
and n
AP = ) 1;%1(::-.9?) r.(F)> ...lim(r,(f) r_(‘?) >
+P 2D N € et bHA 2 Yot 108 iF g
Teeedoy (3P ,iP) €33 iy B T
p II’ 12 LA 12‘ _l’ 12‘ )XP W
p
The sum in the term for Ali’ extends for all splittings of
1...12v

(i?,...,ig‘ ) in pairs like in thgorem 3.
As an apglication of the theorems 1 to 4 we will prove the
theorem 5.

THEOREM 5. Let f,, (x,w),...,fna(x,o) be sequences of independent,
weakly correlated processes with econtinuous sample functions as the
correlation length ¢V 0. Let g J.(x,y) be differentiable functions in
[a-q,b+ql x[a,b] relative to x with the conditions of the limited
like in theorem 4. Then the stochastic vector process

g (x,0) = (rg (X,w))“.l,_m "
with ry (x0) = & ng §gﬁ(y,x)i’je(y,w)dy (1)

converges in the distribution as €V O to a Gaussian vector process

1) Matrices are denoted by underlining.
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n
§(x,0)=(%; (x,0) )?,. $em Yith §(x,0)= .Z:"gij(x,w) where the Gaussian
J:

processes gj(x,w)=(§ij(x,w))$& {4am J=1se-e,n, are independent and
Jex)y=
we haive <1J(x)>To, nin(x; ,%,)
d
(! (x))¥ (12) > = § aj(y)spj(y,x1 )qu(Yaxg)dy)1 £p,q4m
i.e. all the distribution functions of r.(x,w) converge as €40 to
the adequate distribution functions of the Gaussian vector process

¥(x,w), It is for the weakly correlated processes Tie (x,0), i=1,...,n,
Ria(x,y) for y€ K¢(x)

Lie (X)L (y)) =
(e 1‘y> i, 0 for y{ Kg(x)

and a;(x) £ Hm ¢ : S B (x,x¢y)dy (a;#0).

PROCF, At fix:st we calculate the limit of the k-th moment with
the theorems 3 and 4

(xy (x, (12)...1' (xk)) with ape ,2,00.,mt, xpe[a,b]

and we obtain by riz(x,w) Z:ri (x,w),

Ty 56 (Xy0) ‘gSSiJ(y.x) ¢ (¥yw)dy

then
Tim{r, . (X;)eeer ( ) Iim( (x ))...(Er (x,))
a::‘)‘(aa 1 x’k> (Z a;jg 1 angxk> 2
- all spiitti Ay "'Aliln n °
v,=0 sp ings 1 eeed PP |
15 of (1,...,k?gin ! 2vy ! lzvn
t‘-'o (:[1,...,112v )
v .
?: 53 (18,000,140 )
vy
It is
AP = 1im(r (X;p)T (x ))
P pe "iPTa. i
ﬂ"-'izvp LI T §ve I 11’);’a ?
)%
* ees 11m<r pE, if )ra i ps(xig >
A 2,

and from theorem 1
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min(xl,xa)
Elg(ra pe‘%1)Ts pe(x M= S a (g, p(y,x g, (y,xj)dy.

a
We intreduce the Gausaian process ip(x,w)=(‘!ip(x
moments {$P (x)>=0,

b P T min(x,, 2)

and obtain

A.p ] = (.ia pp(x p) eece .§a ( )>o

p p p
19eecel P
1 2vp i3 1 inp 2v
Further on it follows by f(x, 0)"'2 lJ(x,u) it the processes

’u))Mi&n with the

1 (x,u),...,‘! (x,w) are supposed 1ndependexrt from (2) with $(x,u0)=
s (x’“’))lﬁiam the formula

11m {r, &(x1)...ra &(xk)> (’k (x1)...§ak(xk)> 6]

Then from (3) we obtain

Yim F, (t1 ’oov,ia_) =

(ty500ept.)
‘*O Lx1coox -1 ’—S‘

¢x1...18

with F,
811 vooxa_

$, ...x (45+--,1,) denotes the distribution function of the Gauseian

vector (3(x,),...,8(x ). The theorem 5 is proved.
3+ STOCHASTIC EIGENVALUE PROBLEMS

%.1. We regard the stochastic ei%envalue problem
Lu # (DR @a™]® + § T ™1 x 20
r=o
u® o) = u 1) = 0, x=0,1,...,n-1.
Let ?r(x,w)ifr(x,w)—(fr(x)} for O4& r4& m-1 be independent, weakly

(4)

correlated processes with the correlation length ¢ and a.s. all the
trajectories of ?r(x,u) be continuocus. The deterministie function
f'(x):lro has continuous m~th order derivatives. Further on
[?x(.")(x,w)\éq is assumed to be with a small n for s=0,1,...,r
amd r=0,1,...,m~1. The functions cr(x)é(fr(x)), r=0,1,e..,m~1,
possess such properties that the averaged problem to (4) (see [4])
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Liw)dw £ (- 1)m[f (x)w(m)l(m) + Z:( 1)1'[c (x)w(r)](r) = uw

w® o) = w® (1) = 0, x=0,1,...,m-1
is positive definite. Then L(w) is also a.s. positive definite for
small !o

Let 11(0) be the eigenvalues of Eq.(4). Further on let §, the

eigenvalues and wI(x) the eigenfunctions of the averaged problem,
We assume that the eigenvalues h are simple. Then we have the
development of A, (w)

2.1(0) =W+ A 1p(@ + 2 o1 (W) + ... (convergence a.s.)
with A 11(w)=b;, (W) and of the eigenfunctions of Eq. (4)

up(x,w) = wy(x) + Uy (x,0) + uyy(x,w) + ...
(convergence in L,(0,1) a.s.) with

¥1
(see [4])' It is Pij‘t'i-?j ané b~ (0) (L1 (Q)W- ,W ) where

L, (@u £ Lw)u-¢Lyu = )"_‘( DT[E (x o)u(")] (r),
The following important theorem 6 is proved in the paper [e].
THEOREM 6, We get for the terms Uy (X,0) and A, (w) of the
developments of ul(x,w) and l.l(w)
E 1
ukI(x,u)— §o~-
I‘1 ,0'{ k‘o
@ =g 2 (3.2 (3R (7 s o0 s 32 8Y1 med
llcl r1,..,r = é § r, ‘9 T Y TpweTy Y1002 g/ Op e dyy
(k2 1) where

QP g
pr 1...rk(1;y1 ’ OO'ka) ﬁx(‘fz..rk(x;y] ’ °°°9yk)€ C([O,i]k‘”)

1
(1), (3,) (X551 ) we 3 ¥3.)AYq e d
3 v T et ke Er]...rk RARREDS TN RCLN (N

for Og¢pgm-1 and
}r1...rk(y1s---,yk) € C(lo,qk),
Particulary we obtain

TG, (x,y)
P (y) = wiT) ()2, %r(x;y) . Y& &

e
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if Gy(x,y) is the generalized Green function to the operator Ly-py
and the boundary conditions otk (0}=u(k)(1 J=0 for k=0,1,...,m-1.
For the following we define the notation
(W) for i =0

Ao & !

9, (x;,0) forid o0
if x; € [0,1] for i=1,2,... are given numbers. Then we obtain, as
given above,

Aﬁ (W) = & Aeqs (convergence a.s.)
when we additionally assume the convergence of kiukl(x,m) a.s, for
=0

each x € [0,1], Hence we have

m- 1 _ :
: T1yeeyTy=0 é £y Py “KTTr wery, it 0 Tt X
with

F
1 r‘.' O'rk
G oo
Ty eeomy, i Froee Ty ’il
With these notations we prove the following theorem 7.
THEOREM 7. Be x, € [0,1], A}, (= J_Ayy; (W) and Tet T, (x,0) be

sequences of independent, weakly correlated processes with the

(yl,...,yk) for i=0

1‘00rk(xi;y1""’yk) for i#%0.

correlation length ¢4 0 where
R, (x,5) for y&Xg(x)
(3,02 (7)) =i e
. s N 0 for y& K¢ (x)
and ﬁ: é.gkrth,rl-y)dy = ar(x) uniformly in x. Then the random

wvector

1 T
(A '3 "A s eee 2 -A )
VT 1,17 1,4, ’A'Isp.s 01,1,

converges in the distribution to a Gaussian ram]iom vector
m~

T
LN 3 > ) with = .
R0 X SIS RSP B
T
The random vector xté(!tllif’"’!tlsis) » t=0,1,...,m~1, are

independent and we have

1 1
_ P q
<!t> =0, <1J11:‘>' ( § at@)Gt.ip(y)at»iq(y)dy)“Paqés'
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PROO!' We calculate the k-th moment
( ) (n)
<(A n " . )...(Al > -AI )>

i i
Ta, s, ©la 1 8 2 ’k 8k
with a € {1,...,3} Aln) (u)‘):/\kn (w) and show that this moment
convergea to the adequate k—th moment of {!1 i ,...,}1 &

At nrs‘]t we calculate the order of a term of the form
m-

P = E oo (y nn.? (y )L (y evey Y. )dy ...dy
pe I‘1,.-.,I‘ —Oé CS) 1 r £Yp norp 1» ’ P 1 )

as €40 if L, satisfies the condition |L, (y,,..,yp)l £C.
1‘.

1 oo orp
Because of the independence of the processes f., (x,w), we must deal

with terms of the form

- P 1 b 1 . L]
QE - s...i(f'ot(§1)...?ot(gpo))(f«‘e(y])o..flt(yp )> (5)

)a§, . .d%)

m=1 =1
( 1‘( yl)ooof 1"( yp >L...(§1,ooo,my ypm-1

Pp-1

when we want to calculate the order of Pp « It follows

lQ;\ﬁcg...Sl(foe(yi)...f (y ))‘dgr..dg *eee ®
m=1

. &o-oSKfm_‘a( )ooof 16( ))16- y1oood yp-
since L.. is bounded. By the use of

g...gl&qﬁ, )’"?q&@pqm af, ...agpq =

(see the proof of the adequate theorem in [6] to the theorem 3 of

(p.+1)/2
oeg 9 ) for Pq odd

p./2
io(t Q) for p, even
this paper) we obtain an estimation of the order of Q¢ and hence
we obtain the estimate of Ppe
0(eP/2) for p even
1B let  (oe1)/2 (6)
o(e ) for p odd.

With this result we can now show considering theorem 6

—E<(A1n) Ao, s )“'(Aln) Ay i D

8 8 Oy 8

) <<:_'/\p1 iak))

mnr' -
ma
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! ( eee A . + 0(¢) for k even
A FE A'1°1i31 11aklak>

o(fe) for k odd
and hence
Iim ((Aln) - '3 ) ®oes (A{n) -AOI i ))
téo a4 a1 a11a1 ak X ay " ay
. 1
. {tg EEE<A81 a2...R,ak) for k even
(0] for k odd
with K, 2A By A =5 { 2, (8, ., (1)ay and by simil
2 . .= . ar
"M, 1, Yulgo LA A L e

considerations as in the proof of theorem 5 we obtain the theorem

for A{?).

We will show in the following considerations that the theorem T

is also right f°rlt(AI111 A0111 ,...,Als . Ablsis)T instead of
Q,(A.{nii ol1i1""’A1n °lsl )T. For this we denote the conver-
gence °

Lim 1 (AP AL = 0 1)

n-’“
uniformly in €. We will deal with the idea of this proof at the

boundary value problems because we use for the proof fundamental
estimations from the perturbation theory.
Then from this convergence in Lz-mean it follows the convergence
in probability uniformly in ¢
_ (n) _1 _
P-lim g (AP - Agpp) = v My - Agyy)

nsw 't
and then
1im PO WA )2t) = & )< t) (8)
oe rz 11711
uniformly in ¢. We have shown in a flrst part of this proof
lim F(n)(t1,ooo,t ) = ¢8(t1’...,t8) for all n?_] (9)
if we set

B (4, 000t,) = B M, Ao 18,04 broeees @A) A )4t

¢s(t1,~oo,t8) = P(!]-]i‘ 4 t1 ,000,!18184 ts).
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Let F (t,,...,t ) be the distribution function of EO\i

ol
11 1
...,AI i . ). Hence we obtain from relations as in Eq.(8)
‘F (t1,...,t ) - eE‘(t,,...,ts)Rq
for all nxn,(q) uniformly in ¢ and with Eq.(9)
b (ty eyt )0 4 % Fyo(Bpaenesty) 48 (ty,0ne,t )4
for every 1>0. Then it follows
lim Fe (t;,e.0,t) = ¢ g(tyseeesty) (10)

téo
end by it the theorem 7.

Now we consider a few important special cases of theorem 7:
1 _ in the distribution
(8) gy (D)-py)

tho » %o Where !10 is a Gaussian

random variable with the parameters

m-1 1
(!1°> =0, <!§o> = %:o (SJ a, (y) (w(t)(y))4dy.

) in the distribution

(®) gy x,0)-wy () I, n,(x), where §(x) is

t¥o
a Gaussian process with the parameters
M, x)) =0, + +
m-1 1 9°Gy (x,2) J°Gq(y,2)
(HOINCOED ml FNE Oit — —r wi®) (2))%az.

By theorem 7 the distribution function of the random vector
1 T
U=‘=.(u1(x1)-vi(x ),...,ul(xk)-wl(xk)) converges as €4 0 to the

distribution functlon ¢ (‘t:1 yeeeyt, ) of the random vector

Qo.xk

( cee which is a Gausman random vector with
LTITEEN ek i

(‘113!1(2> mi(!tlp‘th §at(y)(]} (y)&t,q(y)dy

- F (t
- EO §at(y)0y—fGI(Xp,y)$£GI(xq,y) (WI )(y)) dy.

Hence the case (b) is proved.
1
(C) 't‘ll]-h ’...’11 "’t‘l ,ul (x)-wl (X),...,ul (x)-wl (x))T
in the d1str1but10nr (gl o1t dy o”ll (x\,...,h (x)T

Evo
where §(x)=(!11°,..., 1 o"ll (:v:),...,‘lI (x)) is a Gausswn
r
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process with {$(x)> = O and

3@ INTY =
(t) (t) 2
o w2 ()2, o E P9 1gpur
2:: Sa (z) tp q R r+léqgék dz
(qu(x’Z))r+1&psk (qu(x,y,z))r+1‘p’q‘k
OtG11?q£r)
. t X,z (t) 2. (t)
with V* (x,z) = - (wy =" (2)) Wy (2)
pq Nt 1, %N
o G1, (x,2) o G1 ¥y2)
t ’ (t) (t)
w> ( ) = (z) (z).
pq(¥s¥52 Qz Oz lp z wlq z

This case (c) also follows from theorem 7.
3.2, The results of this section can also be used of eigenvalue
problems of the form
= Ah(x,w)u, Ui[ul =0, i=1,2,4..,2m, O x &1, (11)

The operator L is a deterministic differential operator of the order

2m Lu i(-nr[fr(x)u(r)](r) (12)
where the coefficiegiofr(x) is continuous differentiable of r-th
order, It is for the stochastic process h(x,w) the equation hi(x,w)=
h, (x)+g(x,w). Let h (x) be positive and let the process g(x,0) be a
weakly correlated process of the correlation length ¢ with
lg(x,w)l £q (n sufficient small). The deterministic boundary
conditions Ui[u]=0,i=1,2,...,2m, are constituted in that manner that
the problem (11) is selfadjoint ané positive definite.

By the made suppositions the averaged problem to (11) Lw=ph w,
Ui[w]=0,i=1,2,...,2m, possesses enumerable many positive eigenvalues
0 Ah & }42 4... Let all eigenvalues l‘l be simple. The eigenfunctions
wy (x) are assumed to be orthonormal in L2(0,1)ho, i.e. we have for

k’1=1 ’2’...

() § w, (w (b (D)dx = d).
We define as in section 3.1.
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;\.lu.,) for 1=0
A ) = {

u, (x;,0) for i%0
with x; € [0,1]. Then a development exists of Ay; (W) (see /5/) Ay, (w)=
;_Akh(w) for which we assume the vonvergence of E (Mkl A> . Tt is
for i=0 b. for i=0

Ao1s= ih and Ayp;= “hm

wy(x;) for i¥0 h 1(x;,¥)g(y,w)w;(y)dy for i%0
where Gy (x,y) denotes the generalized Green function to L-jh, and
the boundary conditions U, i=1,2,...,2m, and

bn(u)- S (w (y)) g(y,u)dy. By

2 .
- (W ( )) fOI‘ i=0

Mis zg(y»\-’)&i(y)dy, Gi(y)-_-i vy .
° 4Cq (x5,¥)w1 (y)  for i%0

we can formulate a to theorem 7 adequate theorem.

ke

THEOREM 8. Let X,,X,,... be from [0,1] and let 8¢ (x,w) be a
sequence of weakly correlated processes with the correlation length

¢ and

Rg(x,y) for y€ Kg(x)
(g‘(x)g‘_(y))={ ¢ ¢

for y¢ K¢ ()’ 800 gSR (xyxty)ay=atx)
t

(a(x)#0) uniformly in x. Then the random vector
1 T
& My horgspreeohy g Ao s )
formed from the stochastic eigenvalue problem (11) with 8y (x,W)
converges in the distribution to a Gaussian random vector
T

g111 ’...,gl 1 with

4!1 ) =0, <~§1 T Y = g a(y)Gp (y)Gq (y)dy.
REMARK, We can also prove such a theorem for the more general
stochastic eigenvalue problem
Lu + Ly (Wu = A(hyu + My W), U;ful = 0, i=1,2,...,2m, Okx 1.
Here the operator L is & deterministic differential operator like
in Eq.(12) and
L, (w)u = mE:;ak(x,u)u(k), M, (w)u =§bk(x,w)\;(k)
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with {L;(w)> = {M; (w)) =0 where the coefficients a,(x,w), by(x,w)
are independent, weakly correlated processes. Perturbation serieses
relativ to L, (w), M;(w) form the tasic. These serieses were deduced
in [5].
3.3, We regard the stochastic eigenvalue problem
-u" + a(x,wu = (1 + b(x,w))u, u(0) = u(1) =0 (13)
where a(x,w), b(x,w) denote independent, weakly correlated processes
of the correlation length €. The averaged problem to (13) is
-w" = uw, w(0) = w(1) = O.
This averaged problem possesses the simple eigenvalues t\1=(11’)2
and the eigenfunctions wl(x)=ﬁsin(1'l‘x). It is for the processes
a(x,w) and b(x,w)
{a(x)a(y)> = R, (x,y), {BxIbly)» = Ry (%, )
(Ry, (x,¥)=Ry (x,y)=0 for y§ Kg(x)) and

1

.1 .
1lim - (x,x+y)dy = a(x), lim R, .(x,x+y)dy = B(x).
im Pt y)ay ’ tho &_S" be' % y/)ay B

R

cio Bt 2

By the supposition that la(x,w)] and |b(x,w)! are small we obtain
the development (with the notation as above given)

A (W) = t/\kn(w) where

11 X=o »
for i= (wy (y)) for i=0
Aoli= ih . is and with &i(y) = i 1 .
Wy (%) f?r i$0 -Gl(xi,y)wl(y) for i$0

1
the formula Alli= S(a(y)—hb(y))Gi(y)dy is right. It is
3

H&%Sin(hx)-xcos(lﬂ)} sin(lvy)+(1-y)cos(1lTy) sin(l‘l’x)l
Gl(x,y)= for O & x<
yél

l—‘{{-é%‘—,sin(lrx)*-(1-x)cos(1‘l’x)} sin(lTy)-ycos(lTy)sin(l‘l‘x)‘l
for O4y4x41.
1 T
By theorem 7 the random vector _=( B A YA R T
WA1111 01111’ ,Alsls 01313
converges in the distribution to the Gaussian random vector
(€1 = ,000,8 : )T with
§11 11 ’ ’!1813
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1
&, . H=0, {8 - 8 )= Sy Beyntr (18 (y)ay.
lplp Iplp 1q1q 3 t‘lpt‘lq i ig
Particulary we obtain:
(a) For FE2¥(t,s)3PC (A ~p) < t, A -} )< 8) and $¥(t,s)=
e (4 i s L Gy o '
P(§1o4 11§ 4 s) (Gaussian distribution) we have
lin Fl¥(t,s) = ¢1k(tis) .
tvo
. - - 2.2
with {8, =0, (¥.%0>)p qetn, ki (é("“t‘pt‘q[z)wpwqdy)p,qe 1,5
Particulary for wide-sense stationary, weakly correlated processes

it is

g(dﬂ«i[i) dﬂ‘pt‘qp‘
°l+(‘pt‘qp g(ew(agﬁ)

The variation of the limit distribution dependson the number of the

“gpoiqo”p,qe{l,k} =

eigenvalues »
2
<‘§10> = g(“' M t‘l{%)’
if b30 and a(x,w), b(x,w) are wide-sense stationary, weakly cor-

related processes. This is reflected in a melt of the eigenvalues

with inereasing number (see Fig.2).

5) t
dusiy b e o e - - m—.—..—.L___._T.:."_..
.SIQO ! /)
3L - - -A—— /
4 /
! /
] - 7L -~ ==/ //
/i , / ; Fig.2
O / /
/ / /
L Vi A / -
T vt Sv* avd t

By bz0 the variation of the limit distribution does not dependson
the number of the eigenvalues. In this case the correlation
qlo‘ko»:d' for k1 is independent of k and 1. This effect is expli-
cable from the fact that the operator L(w) determines the eigen-
values respectively the eigenvalues ll(w) for a W, determines about

the random operator L(w) the other eigenvalues lk(w) for this w,.
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(b) The random vector é(ul(x)-wl(x),uk(x)-wk(x))T converges in the

distribution as £40 to the Gaussian vector process ('ll(x),'lk(x))T

~

with ('lp(x)} =
UNEL NeHIE é(d(z)*‘(‘pt‘qﬁ(Z))Gp(x,z)Gq(y,z)wp(z)wq(z)dz

for p,q € {k,1}.

We can also calculate the correlation values of this Gaussian
vector process from

Q (x)'[q(x)) = 11m e(ulp(x)u (y)),

if uip(x,w) denotes the f1rst term in the development of n (x,w)-
v (x) relativ to a(x W) and b(x,w). One obtains

(x W = - — gaw sm(pr(t-x))dt + -—-(xw (x)- -w (x)) Sadet
2t o P (1

- y—wp(x) S(l -t)aw wl')dt
after a few calculations with a(x w)=a(x,w)- r b(x,w) and then from

(14) the correlatlon ﬁmctlon of the 1imit process of fg(ul-wl)
{0, (30> = h{h(z W ~3g)wy (20w (7)+3x(1=y)wd (x)m3 (3)
[xwl(x)w1 (3)=(1=y)wy (x)wy (y)HS-? (w%(y)i-wl(x) )]
+§w1 (x)wy (3} [—5+w§(y)+wg (x)u (fuzaug%B)
and the variation

&
(1%(::)) {th(i-x)+&1(g+21(x-1))w (x)+(x-2)(3-w (x))wy (x)wy (x)
(wz(x)-g)w (x)}

by L2g 0> RO
040t =2
a0
Fig.3
007 (9%
(HENE
008 209
| (g (1-x))
003+
oM

xV

04 02 6,3 04 6.5
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The figure 3 shows this variation for the parameters 1=1,2,3,4, We
ean make very good statements about the behaviour of the limit
process of the eigenfunctions because of the limit process 'll(x) is
a Gaussian process.
4, STOCHASTIC BOUNDARY VALUE PROBLEM,

4.1. We consider the stochastic boundary value problem in this

section
L(Q)u

"

(- 1)m[f (x)u(m)l(m) + Z:( l)r[f (x w)u(r)](r) = g(x,9)

(15)
U fu] = 0, i=1,2,...,2m, O4kx4&1.

The boundary condrtions are congtituted so, that

(Lu,w) =5 $n) e (0ulD]®yax =3 gf (0)u™v(Plax  (16)
is right for Sg ;ermss;ble functions u,v 2(1) g. functions, which
possess 2m continuous derivatives and fulfil the boundary condi-
tions), i.e. the boundary terms of the integration by parts must
be zero. Then the stochastic operator L(w) is symmetric relativ to
all permissible functiona.

?r(x,u) i r.(x,0) - (fr(x,w», Z2(x,0) £ g(x,0) - &lx,0)d
(O4r4m-1) are assumed to be stochastic independent and weakly
correlated with the correlation length ¢ and fm(x)#o must be a
deterministic continuous function. Further on l?l(.S) (x,0)l 4 is
assumed to be with a small 4, &=0,1,...,m-1, and the processes
appearing must be almost everywhere differentiable. The boundary
value problem (15) can be written in the following form:

L(o)n—(L(w))u*% (W)u={g (x,w)>+g(x,w), U; fu]=0, i=1,2,...,2m
with L; (W)u = Z___'_( 1)r[f‘ (x u)u(r)](r)

L) = (- 1)"[f (™)@, >::< BPL MRS TIE) (S0
We assume that {L(w))w=0, U, s [wl=0 possess only the trivial solution

wz0.
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We make for the solution u(x,w) of (15) the statement
u(x,w) = i u (x,0),
k=0

when u, (x,0) denotes the homogeneous part of k-th order of u(x,w)
in the coefficients §r and g. Substituting this statement in (15)
leads to the boundary value problem for u, (x,w)

(L)uo = {gd; Ui[uo] =0

{Ldu; = g - Ly (Wu; Ui[u1] =0 (i=1,2,4¢..,2m) (7)

{Lduy Ly (@lyy 5 U&[uk] =0 for k=2,%,...
Let G(x,9) be the Green function corresponding to {L) and to the

boundary conditions Ui[.1=0 then we obtain
uo(x) = ) G(x,yXa(y,w)>dy,
o
i.e. uo(x) is a determlnlstic function. With (16) for uI(x w)

s G(x,3){&(y,0)-L (Wu_(y}dy o)
1

m~1
{ ax,n)z(y,way-y_ (2. (y,o)u(r)(y)ﬁre(i,x) ay
r*o o Vy

u, (x,w)

"
— O

o

is obtained.
We get the following theorem that is right analog to the theorem
6 for eigenvalue problems:
THEOREM 8. It holds
u, (x) = 1& G(x,y){e(y,0))dy
and for k=1 2,?..

m-1 1
uk(x,u)- g'”gfr (y1)“. (yk)l]-Ir -y (x;y1,..,yk)dy1”.dyk
rl,.., T =00 1 1

1
+ E gno{ r1 (y1)ouf k l(yk_<l )g(yk) *

Fy e T, =00 ©
. %r].’rk(x;y1,u.,yk)dylu.dyk
for the terms u, (x,w) of the development of the solution u(x,w) of
the boundary value problem (15) with

1
H (x;y) = -uér) (y),%.G(x,y), Iglr(x;y) = G(x,y) and
y
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. Dr )
B o (i) = ,)————I\k(G(x,yk)) Hr

(yk;yr, o.c,yk_l )
k
Yk

LN 2 k 1

: Cx; N i S

31.1..rk XiYyseeor Ty 3 Ty 2 V-1
Vicm

Hr1orrk 21’.‘ (yk"l ’yT’°'°’yk-2’yk ¢

Tt 18 B (xj...) 4 %:—rﬁmu;...) snd B (x;...) € ¢ (o,1).
PROOF. The statement follows for k=1 from (18). After we have
obtaihed the fofmula for k-1 then it follows for k from (17)
Uy (x,0) = - § G(x,y)Ly(W)uy_, (y,w)dy

o

-1 1
3 S T =(7,w) (r)(y),")_r’_g_(z_._x)_ dy

: § {é (y)..f (yk_1)°_fG_(!J)..
L

3
r'o Ty 5 eeyTp_1=0 Vy

1(r) .
. Hr1 .“rk.1 (y’y‘ goee ,yk-1 )dy1 ooodyk_1 dy

EI"I

-E

Tiyeey Ty 5700 1
r
.9 ng,x)ﬁx(.r) .
er 1o Ty (y»y1 10y Yy )671 . -dyk_1 dy
The theorem 8 is proved.

2 )...frk-z(yk_z)?r(y)é(ykq ) -

Now we deal with questions of the convergence of the development.
8
Since Qg:x.rG_(:"L for r,s=0,1,...,2m with O£ r+s &« 2m is continuous

in O¢ xl.ys‘l respectively in O4y4x%1, it follows for

8
G(x,y)
%—S‘Ll 4C, further on
we have )

\uc()r)(x)l £ C, for O4r&«2m and x € [0,1]

(x,y) € [0,11x{0,1] and the stated r,s

l?—‘(ﬂ'l 4 a for x € [0,1] and (19)
m

‘f;()r)(x,u)‘ €7 almost surely for O4pém-1,04rep,x€[0,1].

C,C, and a are constants. By properties of the Green* function
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1 m

(p) (x ‘0) = § xgix%‘ﬁ L]'uk_1 (y)dy, p-‘O,l ,...,Zm—l
and therefore
l (p)(x,u)‘ 4 (C+a) max ““1“1(-1 (x)I  for p=0,1,...,2m.

x€{0,1]
Hence we obtain nth

ILyu (0] & E‘Z S ENEN Sl PY T = :(") = 2Myc,

for almost all ur:ge: o e v
‘u,‘p) (x,w)\ & 2m(c+a)'¢c° for almost all w

and through induction for almost all w ‘
lul((p)(x,u)‘ £ (2"’(C:i-a)'r¢)kco

for O4«#p42m and x € [0,1].

Hence Elu(p)(x,u)l converges almost surely and uniformly in
Otxal when nl & (2%(c+a))”! for almost a1l w is right. Then
i(l (p)(x,wﬂ) also converges uniformly in O£ x4 1 with this
condltlon. Let u, (x,w) be calculated by (17) then u(x,w)=
f'_'uk(x,w) is the solution of the stochastic boundary value problem
I(c1=g). Now we formulate the theorem 9.

THEOREM 9. If -fr(x,w), g(x,0) are sequences of independent,
weakly correlated processes with the correlation length ¢4 0 and
for yé& K¢ (x)
for y¢ Ke (x),
for y€ K¢(x)
for y¢ K, (x),

= - -
1im -.SR (x,x+y)dy = ar(y), ﬁ: €3 Rg‘_(x,r&y)dy = ag(x),

eho
then the random vector

- R _(x,y)
& MEIEMED) ={ r;.

- R__(x,y)
GE@ED -{ s

B (B0 (x), e ulxg w)-u, (x ) (x; € [0,11),
which has been constituted by the solution u(x,w) of (15) and the
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solution of the aversged problem to (15), converges in the distri-
bution to a Gaussian random vector
A0y 30), ., )T
with %(x,w)= '1 (x w)+Zq (x,w). Further on the random vectors
qg-(qgu,,u),...,qg(xs,u)) I WENRD I I E IR DL
r=0,1,¢..,m-1, are independent Gaussian random vectors with

<|lg)=0, ('lg'lg) (S a (z)G(x.,z)G(xJ,z)d{z)“‘1 jus

. DG(x z) JG(x.,z)
(=0, <'1,1r>=<§ a,(z) Drl’ Dazr']’ (T (2))%82) 145 5,0

REMARK 1. This theorem 9 proves the convergence in the distri-

bution of the processes ﬁ](u(x,w)-uo(x)) which has been constituted
by the solution u(x,w) of (15) and the solution of the averaged
problem to (15) u (x) to the Gaussien process n(x,w) with
(\l(x,u))=0 and :

('[(x)q(y» S 2% (z)G(x,2)G(y,z)dz

m-1 1
. ;o = (2)39‘:53‘-2) DDGI(,N‘Z)(u(r)(z)) az.

PROOF. We put E(x,w)izuk(x,w). Then we see with similar eon-
k=0

siderations as in the proof of theorem 7 and with theorem 2

n
ﬁxg -q:_—ﬁ((u(x )-u (x, )...(u(xap)—uo(xap)))
i lim Lp-(u‘ (xq )...u, (xg ) for p even
= ®p

tvo \e
0 0 for p odd

where aq €f{l,...,a8l. If we set u, (x,w)=c(x u)+:b (x,0) (see (18))
1
with  e(x,w) = § 6(x,y)E(y,wdy

-]
br(st) = - §§r(y,u)ugr) (y)i,‘)q;—f.‘l)-dy

it follows as in the proof of the theorem 7

1im —<u1 (x )...u1 (x )) {H‘g A¢ for p even
gvo rp 0 for p odd
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where

-1
lim Ay = A8 a° ee AT

11 -
o a;;: spil:;;l'ngs 1?...1%v 11 ..18v iy .1.1;’?'

N
n

L]
1]

ofo of (1,...,n) in
: (i%,...,lgv )
Yp-170 (19,...,i3 &)
v+ _ .= 1,..0’ 2v
(1],...,127 1)
and
A8 =) . J‘ !Jé(c(xa delx, ) SIT
if...18, (€ ,:8),.., 8 y 1§ i&
I P P P b 8 ! 2
g
* limk c(x, . Je(x )
tho® ¢ a8 8;& %
sz -1 sz

and appropriate for Af with b, instead of c. Then the tomulas

lim + Le(x)e(y)d = ( a (z)G(x,z)G(y,z)dz
tho o

Lim ¢ Lo (00b, (30> = § a (,,D%&.z_ inh—l(u“‘) (2))%dz
'

imply the statement of the theorem for W(B(XI }=u o (% ) JN
u(x )=u (x, nT.
The complete proof of this theorem follows as in theorem 7 from the
uniform convergence relativ to ¢
lim 5 ((u(x,w) - ulx,w)?) = o. (20)
We conmder ﬁ;(u (x)u (x)} with P,a2N_ to prove formula (20).

Then we obtain with theorem 8 and the following estimations

‘,'(up(x)u (x))\ T 2 CZCmq 5..§KF?? (yi)>! ﬁdy.

r],-o,r

+ é 1;(’_—1;_%@*‘1 i...é\(g(ﬁ )g(yz))(ﬁf E) 'ﬁdyi.

.., p+q
Let h(y,w) be a weakly correlated process with the correlation

length &, |h(y,w)l4n almost everywhere and 1:2. Then we estimate
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an integral of the form

S...S \(h(y1)...h(y1))l dy,e..dy;.
For 12 !1/(2&) we have

g‘(h(y,)...h(yl))l dy ...dy, & Q s 201%¢7
and for 1 < 1/(2¢)
2 l(h(y1)...h(y1)>!dyl...dyl & 1(1 -Vy).
v dengnes the volume of the points (y1,...,y1) of [0, 1] for which
the ¢-maximum adjoining splitting is i(y1) (32),...,(y1)} Since

v = { dy, S dys eee S dy; 2 I_]U-th) % 1-2¢12
o (¥-Tolst \:h-ylhs t=1

yy-1* le>£
and we obtain for all 122

i...&\(h(y, Yeooh(y Bl dy ooy & 26121, (22)
Under the condition N_2 §+3 a factor of the form as in (22) with
h(x,w)eifo(x,w),..., =1 (x,w)} is included in every item of (21)
because the processes ?r(x,w), g(x,w) are independent. Hence it
follows form (21) :

\%(np(x)uq(x»\ £ ?(mrzC)wq'ZCZ(p+q)2[m2C§q2+:§é K& (3,18 (5,5 dy,dy, .
The uniform convergence from (20) we obtain through the convergence
of the series }:—:, (p+q) (mrlC)F"'q for ImnCl <1, The theorem 9 is
proved. P!

REMARK 2. Let f_(x,w)=0 for r=0,1,...,m-1, i.e. let L a deter-
ministic operator, then the statement of theorem 9 is right without
someone ristriction of the weakly correlated process g(x,w) relat-
ed to the smallness. This follows from the proof of theorem 9 or
through a direct use of the theorems ! and % on the solution of

this boundary value problem

u(x,w) = uo(x) + i G(x,y)g(y,w)dy with uo(x) = §G(x,y)(g(y)>dy.
) )
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Hence we obtain in this case that Té(u(x,u)-uo(x)) converges in the
distribution to a Gaussian process y(x,w) with

{x)> = 0, (q(x)q(y)S = § ag(z)G(x,z)G(y,z)dz.
W.E. Boyce deals with this case of a stochastic boundary value
problem in [1] and he showed that T%(u(x,u)—uo(X)) is in the Iimit
a Gaussian random variable n(x) for any x €10,11.

REMARK 7. LetIWi(X) be the eigenfunctions of the averaged
operator {L> with § wi(x)wj(x)dx=égj and W, the eigenvalues of {(L).

Then we can calculate the correlation function of the 1limit process

n(x,w) of Ta(u(x w)-u (x)) through : (xYw ()
m- w_(x)w

b q
Oy = :{bpq 'y e} h

bpq 2 é ag(z)wp(z)wq(z)dz and

c;q £ é a (z)(u(r)(z)) (r)(z)w(r)(z)dz.
Specially we have for a w1de-sense stationary, weakly correlated
process r

(xX)n(y)d = w_(x)w (y) + Z (x)w (y)

NES! gz‘f —2 x"'o D,a l“p("q
(r) 2 (r) (r)

with cpq 2 § (u0 (z)) wp (z)wq (z)dz. o v (W ()

These statements can be proved easly with G(x,y)=§:; L __ P~
= '
(see also [7]).
Now we regard the boundary value problem (15) with the conditions

given above. It denotes {%i} a system of functions of the

1¢i¢a
energetic space H(L>' This system be complete in H(L)’ The solution
u(x,w) of the equation L(w)u=g(w) is the minimum of the energetic
functional (Lu,u)-2(g,u) in the energetic space. The Ritz-method

with the co-ordinate functions {€i§ conducts to the following system
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(n)

}:(L(u)qk,%)x = (8,8, 31,2000, (23)

It is un(x,w)=Z xl({n) (w)ﬁek(x) the n~th Ritz-approximation of the
k=1
solution u(x,w) of L(w)u=g(w). We can write the formula (23) in the
following form:
(4, + B)x™ = p + g_(u)

The matrix A  is regular through the conditions for {¢.}:

(n) =(x () (n),T
(le)1€1 Jjén* Let x '(xo? see1¥on )

for the n-th 1h‘cz-apprommaaltlon un(x,w)
u (x,0) = }:xéﬁ)tek(x) + z:u (-Bx{Me)) 0 (x)

+ terms of hlgher order than first in b,

be then we obtain

ijr 5
respectively with uj (x) Zxéﬁ)‘ek(x)
=)

w, (x,0) - u (x) = (g(2), E otkjte.(z)‘ek(x))z

-Eu (2) :umfgr)(zwkm):x‘“) (D2,

+ terms of higher order than first in b.J, cJ

((n, (z, x) h2(z x)) 2 Sh1(z x)hz(z x)dz). From theorem 5 follows
)
that ﬁ(un(x’“’)'uon(x)) converges in the distribution as ¢4 0 to

the Gaussian process  (x,0) with (qn(x» = 0 and
n
M (x)qn(y)} = kE e oy 3040 (X8, (7) (28558, (24)

,

n
£(n) (n) (r).,(r) ,(r),(r)

+rz=:';l£ yJ1Pyq=11, 1-1“1(3 pa*ol *oi ‘ek(X)‘ep(y) (ar‘ea € G € .
Part1cular1y we obtain for @ (x)=w; (x) (see remark 3) and wide-sense

stationary, weakly correlated processes
n
MM = 83wy (I (3) +
Si=T I

m-1a 2.1 (r))2 (r)y, (r)

’ YW, (X)w. ()
rZE; k1-1l‘kl‘1 " e
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an approximation of the correlation function how it has been rep-
resented in the remark 3. The formula is used by an approximation
of the correlation function {q(x)q(y)> and (24) is suitable for a
explicit calculation of (q(x)q_(y)) if the Green function is
ealeulable difficult.
4.2, EXAMPLE. Let g(x,0) be a wide-sense stationary, weakly

correlated process then the simple boundary value problem

-u" + bu = g(x,0), u(0) =u(1) =0
with b=eonst. possesses the averaged problem

-w" + bw = 0, w(0) = w(1) =
This problem has only the trivial solution when b*--(k‘l‘)2 is and the

Green function G (x,y) is
sh(Px)sh(BU1-¥)) por gaxsvel
=1 sn( = :
Gb(x’y) - Sh( ?Sh((;) (1 _x) ) (Géfs) .

<
Sh for Ocysxsl

Hence we obtain the correlation function for the limit process

T (X,w) from theorem 9
(Ylb(x)qb(y)) = g S G, (x,2)G, (y,3)dz
and the variance
(’lg(x» = a é Gg(x,z)dz = mﬁ‘g(x) + fp(1-x))
with fp(x) = shz(pu-x))(l—f;sh(Z[&x) - %x). a is the parameter which
belongs to the wide-sense stationary, weakly correlated process

g(x,0). It is P=iY-b for b< 0 and
022 = 2 m—(Fn(x) + Fn(1-x)) (3 (=5
_ L fiein“(f}) B 5 ?
with fp(xh-sin(-{i(!-x))(i—sin(Zﬁx)-I?x). Expecially we have

Hn (Qb(x» (1 -x)° and Im ('lb(x)> =0,

In the following Fig.4 the variance of the 1limit process Izb(x,u)) is
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plotted for some values of the parameter b, Since <'1123(X) =('[§(1-x)),
we have plotted this function for Oéxé% only. The following
values submit for b=12-% by contrast to it:

3 o107 5,2 T 0,5 1 0,5 | 0,5
s | o [o,7650 | 2,7663 | 5,2382 |7,2570 | 8,000

} Lanpood

1 o WP
T g 40 b
Fig. 4

04 02 03 0k 08 x

5. STOCHASTIC INITIAL VALUE PROBLEMS

We consider a system of ordinary differential equations of the
firat order
dx
.o A(t)x + £(t,0) (26)
with the initial condition x(t )=x . A(t) is a nxn deterministic
> - L3 - T
matrix, é(t)'(aij(t))iii,j&n’ x is the vector 5(t)—(xi(t))1ﬁm,

)
x ;(x'ﬁti‘n and _t_’(t,w)=(fi(t,w))$éi‘n is a stochastic vector pro-

R 1
cess. let fi(t,u) be processes of which a.s. the trajectories are
continuous and Q(t,to) be the principal matrix associated with A(t)
(i.e. Q(t ,t )=I (I is the identity matrix) and $Q(t,t )=
A(t)Q(t,t)), then the unique solution a.s. of the initial value

problem (26) may be written in the form
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x(t,w) = Qt,t ) (x + S Q (s t )f(s,w)ds).
The integral is defined by the integral of sample functiones. In
generally we cannot ecalculate the distribution of the solution
x(t,w} if we know the distribution of f(t,w). Let £(t,u) be a
Gaussian vector process then is Q’l (s,t )f(s,w)ds also a Gaussian
vector process and in the same wagr the solution x(t,w) of this
system of linear differential equations (see /2/). The first
moments of the solution are

<x(t)> = Qt,t ) (x, + 3 Q'I(s,to){t_'(s))ds) and

o
R(ty,tp) 2C[x(ty)=dx(ty 3] [xlt,)-¢x(,0] T
%
ok BRI "(811t4)K(8;,8,)Q (5, t )as, ds,@% (L, t,)
with °
K(tq,t,) é([g(t1)—<g(t,)>][g(t2)-<§(t2)>1T>,
pronded that

S (llf(s)lbds-uu , Sé (ﬂf(s,)f (s,)i}ds ds, < @

O o
for all ty,t, =t (.0 denotes the Euklidian norm of RT"),

In the following we consider the solution (26) if f£(t,w)=
q%-g&(t,w) denotes a vector process with independent, weakly correl-
ated processes gi;(t,u) as components. This leads to the following
theorem.,

THEOREM 10, Let 5£(t,w) a sequence of weakly correlated vector
processes for € ¢ O with independent components 8¢ (t,w) and
¢ (t,8) for s€ K¢(t) f—

R.
(t)g, . (8)> =4{ 1 , lim &
e ey (05 =18 in

(t, t+s)ds=a (t),
for s Kg(t) tio 5-5 i
then the solution

t
2o (t,0) = y(t) + '%Q(t,to) éog“u,to)ga(s,u)ds

with
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(t) = A, ) (x, + 503'1(s,t0)g(s)ds)
of the initial value problem
F T AE ¢ B + =g (4,0),  x(t0) = x, (27)
converges in the distribution to a Gaussian vector process
n(t,w) = y(t) + $(t,w)

with {$(t)> = O and

Ty - ¢ . .
<§(t1)}(t2) > = E e (ak(S)qik(t1 ’to’S)qjk(tZ’to’s))léi,jtnds'
(o] o
. . s -1
It is (qij(t’tO’S))L‘-’i,j‘n- Q(t,to)_Q_ (S,to)o
PROOF. The proof is following from theorem 5 then we obtain
with the definition of the Q3 j

n t
x(t,0) = (1) + V]?k‘; JERURDEN LY
o

and from this for the limit process ¥(t,w)=(§; (t,w)); ; ~ with
the notations of theorem 5
n
g (45060 = 2 {8, (8 gy (820
n minétq yt2)

In generally $(t,w) does not denote a wide-sense stationary vector

a8, (8)ay, (¢, ,to;s)qjk(tz,to;s)ds.

process while (S(t,)}T(t2)> is not a function which only depends
on t2-t1. We assume that the processes gie(t,w) are wide-gsense sta-
tionary ané weakly correlated and A(t)=A is a constant matrix, the
eigenvalues 11 of which have negative real parts. Then we obtain

A(t-ty)

for t2T >t  the formula Qt,t )z = x, = 0 and in the same

t Alt-9) 1
way the solutions § e= (h(s)Hpmg ,(8))ds and

% to
§ A(t-s) (h(s)*qu‘ (8))ds of the system of differential equations
- - t=t

differ by a solution of the homogeneous system of (27) which is near

by zero for t2T >t_. Hence the solution of (27) is described by

o
t t
X (tyw) = -§° eﬁi-(t'S)g(s)ds + -{1?_5» e«é(t'S)gz(s,w)ds.
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§ Alt-8)

Then the term i‘-e- g¢(8,w)ds is wide-sense stationary as we
-®

obtain from

t
(S eé(t'S)gt(s,o)ds> =

and <S A(t1-s)g£(s o)ds(S A“2"8)&8(3,..,.)ds)T>

tto actq- o aTct o
= {19 AH17010g o))y (5Tl (427520 00,00,
e 00 T
- As ] T als

The theorem 11 can be proved like the theorem 10.
THEOREM 11. et ge(t,o) be a sequence of wide-sense stationary,
weakly correlated vector processes for €¥ O with independent

components and

6,.8.. (t-8) for Ilt-slce 3
2i-ig = .1
.. (t)g. . (8)) = 11m-SS. (s)ds = a, &0
<g1£ Eig > i 0 for lt-s|>E tvo £¢ it 1

(a;#0), then the solution .
X (t,w) = § eé(t's)g(s)ds + -}?S eé(t'S)ga(s,w)ds

-y =00
of the system of differential equations

dx 1
at = Ax + h(t) + wge(t,w)
converges in the distribution to a Gaussian vector process
1(t,w) =_§° 2 (t=8)p(g)as + S(t,W).
J(t,w) is a wide-sense stationary, weakly correlated vector process
with {3(t)» = 0 and
(33T = (g . 2‘“1“"‘;' 2) A(t1-—s))ik(sé(t2-s))jkds)“i’j

- £&n.
Indeed $(t,w) is a wide-sense stationary vector process because

we c()ztaln)for t etz
min t
31, Z(eé(t1-3)) ( (tZ‘S)) kds S( ( (tz—t]"'S)) dS.

-0
In the following we describe the connectmn with the ItG

differential equations. The It§ differential equation



148 J.V. SCHEIDT AND W. PURKERT

dX, = (A(t)X, + n(t))at + G(t)aw,, gto(w)qo (28)
corresponds to the initial value problem (27) as t§ O where
g(t)=(5;jVai(t)),£i’jsn and W =(W )léién is the Wiener process with
independent components. This statement is following from the
correspondence of the integral equation

1
=+§A +h d+§ s,w)ds
x(t) = x 2, (A(8)x(s) + h(s))ds ' 2, E,(s,w
with (27) and of the It§ integral equation

t
X(w) = x  + é (A(8)X (W) + h(s))ds + g G(s)dW (29)

- - Oo . . o
with (28) if we take into consideration the convergence in the

distribution from theorem 5

t t
.1
lim = § (s,w)ds = § G(s)aw..

cho Tt 3 e’ to ~ %
We note the relation

min t tz)
(S G(s)aw, (S a(s)aw )T = § G(s)a(s)Tas
% )
for the Ité 1ntegral § G(s)dWg. It is following from the theory of

the It8 differential equatlons that the solution of (28) (the solu-
tion of the integral equat1on (28)) is a Gaussian vector process
with (X} = Q(t,t )(x_ + S Q (s »t,)h(s)ds)

and (X ~{%y >)<.<t2-<xt>) >=

n(t )
= Qb)) g’ “a7 syt )0 (8)a() QT (s, ¢ ) aeQ” (to,t,).

A comparison of the limit solution f(t,w) from theorem 10 with this
solution from (28) shows the correspondence of the solution pro-
cesses: X, (w)=N(t,w). Hence the same solutions of the initial value
problem (27) is obtained if one takes up the limit value £¥ O in the
equation and the It differential equation solves which one obtains
and if one solves (27) in the sample functions and tekes up the

1limit value ¢¥ 0 in the solution.
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We can make many applications (e.g. the number of threshold crossings
and other) because the limit process 1(t,w) or (t,w), respectively,
is a Gaussian process. Hence we obtain approximately a good general
view of the behaviour of the solution x,(t,w) or x,(t,0), respective-

ly, if weakly correlated processes come in the differential equation.
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