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The method of exhaustion is generalized to a simple integration formula that is valid for
the Riemann integrable functions. Both a geometric approach (following the usual proce-
dure for the method of exhaustion) and an independent algebraic generalization approach
are provided. Applications provided as examples include use of the formula to generate
new series for common functions as well as computing the group velocity distribution
resulting from waves diffracted from an aperture.
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1. Introduction. The method of exhaustion was used by the ancient Greeks to in-

tegrate a limited number of functions before the development of calculus [6]. It will

be shown here that this ancient method can be generalized to a simple formula to

integrate all functions that are Riemann integrable over the interval in question. The

formula is

∫ b
a
f (x)dx = (b−a)

∞∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
a+m(b−a)

2n

)
. (1.1)

The generalization is simple and geometric in nature, directly following the proce-

dure originally used for the method of exhaustion. An independent algebraic gener-

alization approach is also provided for the special case for which a= 0.

2. Geometric approach. The generalization approach uses the successive approxi-

mation method historically used to obtain the exact area under the simple curves pre-

viously integrated by the method of exhaustion. Consider an arbitrary function f(x)
that is piecewise continuous on [a,b]. The procedure to find the area under f(x) on

[a,b] involves successive approximations with triangles that first intersect f(x) at

the midpoint, x = a+ (b−a)/2, and then at the new midpoints, x = a+ (b−a)/4,

x = a+3(b−a)/4, and so on. The first such approximation is shown in Figure 2.1. Its

area is

A1 = 1
2
(b−a)f

(
a+ b−a

2

)
. (2.1)

The second such approximation adds two new triangles (Figure 2.2), each sharing

two vertices with the original triangle, and each bisecting one of the remaining arcs

of f(x) at its third vertex. The two triangles have the area

A2 = 1
4
(b−a)

{
f
(
a+ b−a

4

)
−f

(
a+ b−a

2

)
+f

(
a+ 3(b−a)

4

)}
. (2.2)
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f(x)

x = a x = b

Figure 2.1. First approximation to the area under f(x).

f(x)

x = a x = b

Figure 2.2. Second approximation to the area under f(x).

A third such approximation (Figure 2.3) adds the area

A3 = 1
8
(b−a)

{
f
(
a+ b−a

8

)
−f

(
a+ b−a

4

)
+f

(
a+ 3(b−a)

8

)
−f

(
a+ b−a

2

)

+f
(
a+ 5(b−a)

8

)
−f

(
a+ 3(b−a)

4

)
+f

(
a+ 7(b−a)

8

)}
.

(2.3)

Each new iteration n leads to (2n−1) new triangles adding area An to further refine

the area estimate. This procedure is continued indefinitely to exhaust the remaining

area, leading to the formula

∫ b
a
f (x)dx =

∞∑
n=1

An = (b−a)
∞∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
a+m(b−a)

2n

)
. (2.4)
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f(x)

x = a x = b

Figure 2.3. Third approximation to the area under f(x).

The special case for (2.4) when a= 0 is as follows:

∫ b
0
f(x)dx = b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
mb
2n

)
. (2.5)

The method of exhaustion will converge to the value of the integral at least as fast

as a geometric series, because when each new triangle is small enough so that the

local curvature between intersection points on f(x) is slowly varying, it will exhaust

more than 1/2 of the remaining area left from the previous approximation.

There are an infinite number of possible variations on this procedure. For example,

each new iteration may involve a different number of triangles to exhaust the remain-

ing area, or each new triangle could intersect the function at a location other than the

midpoint.

3. Algebraic approach. An independent approach leading to (2.5) can be obtained

starting with the identity [5]

sina
a

= cos2
(
a
2

)
+

∞∑
n=1

sin2
(
a

2n+1

) n∏
m=1

cos
(
a

2m

)
. (3.1)

This expression can be rewritten as follows:

sina
a

=
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n cos
(
ma
2n

)
; (3.2)

or

sinba
a

= b
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n cos
(
mba

2n

)
. (3.3)
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Since
sinba
a

= 1
2

∫ b
−b
e−iax dx, (3.4)

it follows that

∞∑
k=0

ikγk
dk

dak

[
sin(ba)
a

]
= 1

2

∫ b
−b

∞∑
k=0

γkxke−iax dx. (3.5)

Defining

G(x)=
∞∑
k=0

γkxk, (3.6)

and noting that

∞∑
k=0

ikγk
dk

dak

[
sin(ba)
a

]
= b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
∞∑
k=0

γ2k

(
mb
2n

)2k
cos

(
mba

2n

)

−ib
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
∞∑
k=0

γ2k+1

(
mb
2n

)2k+1

sin
(
mba

2n

)
,

(3.7)

it follows that

∫ b
−b
G(x)e−iax dx = b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
[
G
(
mb
2n

)
+G

(
−mb

2n

)]
cos

(
mba

2n

)

−ib
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
[
G
(
mb
2n

)
−G

(
−mb

2n

)]
sin
(
mba

2n

)
.

(3.8)

Setting

G(x)=H(x)eiax (3.9)

leads to

∫ b
−b
H(x)dx = b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
[
H
(
mb
2n

)
+H

(
−mb

2n

)]
. (3.10)

Note that H(x) can be in the form of a Fourier series which sums to the following:

H(x)=



0, −b ≤ x < 0;

f(x), 0≤ x < b. (3.11)

Here f(x) is piecewise continuous on [0,b]. This leads to

∫ b
0
f(x)dx = b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
mb
2n

)
. (3.12)
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4. Equivalence to Riemann sums. It can be shown that (1.1) is valid for the Rie-

mann integrable functions [4]. Consider the partial sums

A1 = 1
2
(b−a)f

(
a+ b−a

2

)
;

A1+A2 = 1
4
(b−a)

{
f
(
a+ b−a

4

)
+f

(
a+ b−a

2

)
+f

(
a+ 3(b−a)

4

)}
;

A1+A2+A3 = 1
8
(b−a)

{
f
(
a+ b−a

8

)
+f

(
a+ b−a

4

)
+f

(
a+ 3(b−a)

8

)

+f
(
a+ b−a

2

)
+f

(
a+ 5(b−a)

8

)
+f

(
a+ 3(b−a)

4

)

+f
(
a+ 7(b−a)

8

)}
.

(4.1)

This can be generalized as follows:

N∑
n=1

An = (b−a)
2N

2N−1∑
m=1

f
(
a+m(b−a)

2N

)
. (4.2)

This is precisely the Riemann sum of order 2N for f(x), except for the two missing

terms f(a) and f(b), which can be neglected in the limit N →∞.

5. Applications. The most immediate applications are series expressions for com-

mon functions that might otherwise be very difficult to derive. Some examples are

presented as follows:

sinx = x
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n cos
(
mx
2n

)
;

cosx = 1−x
∞∑
n=1

2n−1∑
m=1

(−1)m+12−n sin
(
mx
2n

)
;

∫ b
0

sinax
x

dx =
∞∑
n=1

2n−1∑
m=1

(−1)m+1

m
sin
(
mba

2n

)
;

ex = 1+x
∞∑
n=1

2n−1∑
m=1

(−1)m+12−nemx/2
n
;

∫ b
0
e−ax

2
dx = b

∞∑
n=1

2n−1∑
m=1

(−1)m+12−ne−a(mb)
2/4n ;

lnx =
∞∑
n=1

2n−1∑
m=1

(−1)m+1(x−1)
2n+m(x−1)

(0<x <∞);

p!=
∫ 1

0

[
ln
(

1
x

)]p
dx =

∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
[

ln
(

2n

m

)]p
(0≤ p <∞).

(5.1)

In addition to the above expressions, this method can lead to new insights into

certain physical problems. One example involves the diffraction of waves though a
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two-dimensional aperture in an infinite screen. This problem has been solved exactly

in integral form [1, 2, 3] so that the field at every point depends on the Fourier trans-

form F(kx,ky) of the aperture at z = 0

φ(x,y,z,t)= e
−iω0t

2π

∫∞
−∞

∫∞
−∞
F
(
kx,ky

)
e−ikxxe−ikyyeiz

√
k2−k2

x−k2
y dkx dky. (5.2)

Note that (5.2) satisfies the Helmholtz equation,

∇2φ+k2φ= 0 (5.3)

everywhere (k=ω0/c) as well as the boundary conditions on the screen.

Under suitable conditions, the extension of (2.4) to convergent improper integrals

can be made as follows, that is,

∫∞
0
f(x)dx = b

∞∑
n=1

2n−1∑
m=1

∞∑
p=0

(−1)m+12−nf
(
pb+mb

2n

)
. (5.4)

Equation (5.4) is a result of expressing the integral as a series of definite integrals

on [pb,(p+1)b]. The result is valid when each integral

∫ (p+1)b

pb
f (x)dx (5.5)

exists and when ∫ B
0
f(x)dx (5.6)

tends to a finite limit L as B→∞.

With regard to (5.2), however, it can be noted that propagating waves only occur

when the transverse wavenumber (k2
x+k2

y)1/2 is lower than the cutoff wavenumber,

so in the far field the integral can be evaluated to ±k with good accuracy as follows

(assuming that F(kx,ky) is an even function with respect to both kx and ky ):

φ(x,y,z,t)� 2k2

π
e−iω0t

∞∑
n=1

2n−1∑
m=1

∞∑
p=1

2p−1∑
q=1

(−1)m+q2−n−pF
(
mk
2n

,
qk
2p

)

×cos
(
mxk

2n

)
cos

(
qyk
2p

)
eizk

√
1−m2/4n−q2/4p .

(5.7)

It can be clearly seen from (5.7) that the resulting field is due to a summation of

an infinite number of plane waves, each propagating at a unique phase velocity (and

hence a unique group velocity) based on its value of kx and ky . Thus, the process of

diffraction leads to a continuous distribution of group velocities, having an amplitude

distribution governed by the Fourier transform of the aperture. This insight becomes

particularly clear upon application of (2.4) to expand (5.2). Such a result has an ef-

fect on Doppler shifts both in acoustics and in electromagnetic wave propagation,

effects that are not otherwise apparent without the use of the generalized method of

exhaustion.
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