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SUBMODULES OF SECONDARY MODULES
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Let R be a commutative ring with nonzero identity. Our objective is to investigate rep-
resentable modules and to examine in particular when submodules of such modules are
representable. Moreover, we establish a connection between the secondary modules and
the pure-injective, the Σ-pure-injective, and the prime modules.
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1. Introduction. In this paper, all rings are commutative rings with identity and

all modules are unital. The notion of associated prime ideals and the related one

of primary decomposition are classical. In a dual way, we define the attached prime

ideals and the secondary representation. This theory is developed in the appendix to

Section 6 in Matsumura [6] and in Macdonald [5]. Now we define the concepts that we

will need.

Let R be a ring and let 0≠M be an R-module. ThenM is called a secondary module

(second module) provided that for every element r of R the homothety M r·
�→ M is

either surjective or nilpotent (either surjective or zero). This implies that nilrad(M)=
P (Ann(M) = P ′) is a prime ideal of R, and M is said to be P -secondary (P ′-second),

so every second module is secondary (the concept of second module is introduced by

Yassemi [14]). A secondary representation for an R-module M is an expression for M
as a finite sum of secondary modules (see [5]). If such a representation exists, we will

say that M is representable.

If R is a ring and N is a submodule of an R-module M , the ideal {r ∈ R : rM ⊆ N}
will be denoted by (N : M). Then (0 : M) is the annihilator of M , Ann(M). A proper

submodule N of a module M over a ring R is said to be prime submodule (primary

submodule) if for each r ∈ R the homothety M/N r·
�→M/N is either injective or zero

(either injective or nilpotent), so (0 :M/N)= P (nilrad(M/N)= P ′) is a prime ideal of

R, and N is said to be P -prime submodule (P ′-primary submodule). So N is prime in

M if and only if whenever rm ∈ N, for some r ∈ R, m ∈M , then m ∈ N or rM ⊆ N.

We say that M is a prime module (primary module) if zero submodule of M is prime

(primary) submodule of M , so N is a prime submodule of M if and only if M/N is a

prime module. Moreover, every prime module is primary.

Let R be a ring, and let N be an R-submodule of M . Then N is pure in M if for any

finite system of equations over N which is solvable in M , the system is also solvable

in N. A module is said to be absolutely pure if every embedding of it into any other

modules is pure embedding. A submodule N of an R-module M is called relatively

divisible (or an RD-submodule) if rN =N∩rM for all r ∈ R. Every RD-submodule of a

P -secondary module over a commutative ring R is P -secondary (see [2, Lemma 2.1]).
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A module M is pure-injective if and only if any system of equations in M which is

finitely solvable in M , has a global solution in M [7, Theorem 2.8]. The module N is

a pure-essential extension of M if M is pure in N and for all nonzero submodules L
of N, if M∩L= 0, then (M⊕L)/L is not pure in N/L. A pure-injective hull H(M) of a

module M is a pure essential extension of M which is pure-injective. Every module M
has a pure-injective hull which is unique to isomorphism over M [12].

Given an R-moduleM and index set I, the direct sum of the family {Mi : i∈ I}where

Mi =M for each i∈ I will be denoted by M(I). Given a module property �, we will say

that a module M is
∑

-� if M(I) satisfies � for every index set I.
Let R be a commutative ring. An element a∈ R is said to be regular if there exists

b ∈ R such that a= a2b, and R is said to be regular if each of its elements is regular.

An important property of regular rings is that every module is absolutely pure (see

[13, Theorem 37.6]).

Let R be a ring and M an R-module. A prime ideal P of R is called an associated

prime ideal of M if P is the annihilator Ann(x) of some x ∈M . The set of associated

primes of M is written Ass(M). For undefined terms, we refer to [6, 7].

2. Secondary submodules. In general, a nonzero submodule of a representable

(even secondary)R-module is not representable (secondary), but we have the following

results.

Lemma 2.1. Let R be a commutative ring and let 0 ≠ N be an RD-submodule of

R-module M . Then M is P -secondary if and only if N and M/N are P -secondary.

Proof. If M is P -secondary, then N and M/N are P -secondary by [2, Lemma 2.1]

and [5, Theorem 2.4], respectively. Conversely, suppose that r ∈ R. If r ∈ P , then

rn(M/N) = 0 and rnN = 0 for some n, hence rnM ⊆ N and 0 = rnN = rnM ∩N =
rnM . If r ∉ P , then rM+N =M , rN =N, and N = rN = rM∩N, so we have rM =M ,

as required.

Corollary 2.2. Let R be a commutative regular ring, and let 0≠N be a submodule

of R-module M . Then M is P -secondary if and only if N and M/N are P -secondary.

Proof. This follows from Lemma 2.1.

Theorem 2.3. Let R be a commutative regular ring. Then every nonzero submodule

of a representable R-module is representable.

Proof. Let M be a representable R-module and let M =∑n
i=1Mi be a minimal sec-

ondary representation with nilrad(Mi) = Pi. There is an element r1 ∈ P1 such that

r1 ∉ ∪ni=2Pi. Otherwise P1 ⊆ ∪ni=2Pi, so by [10, Theorem 3.61], P1 ⊆ Pj for some j,
and hence P1 = Pj , a contradiction. Thus there exists a positive integer m1 such

that rm1
1 ∈ Ann(M1) and the module rm1

1 M =∑n
i=2 r

m1
1 Mi is representable. By using

this process for the ideals P2, . . . ,Pn−1, there are integers m2, . . . ,mn−1 and elements

r2 ∈ P2, . . . , rn−1 ∈ Pn−1 such that snM = Mn, where 0 ≠ sn = rm1
1 rm2

2 ···rmn−1
n−1 , sn ∈

∩n−1
i=1 Pi and sn ∉ Pn. Therefore by a similar argument, there are elements s1, . . . ,sn−1
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such that M = ∑n
i=1 siM , where for each i, where i = 1, . . . ,n, si ∉ Pi, siM = Mi, and

si ∈∩ni=1i≠j
Ann(Mj).

Let N be a nonzero submodule of M and 0 ≠ a ∈ N. Then a = s1b1+···+ snbn
for some bi ∈M , i = 1, . . . ,n. By assumption, there exists t1, . . . , tn ∈ R such that for

each i, si = s2
i ti. As 0≠ a, sibi ≠ 0 for some i and sitia= s2

i tibi = sibi, so siN ≠ 0. We

can assume that si1N ≠ 0, . . . ,sikN ≠ 0, where {i1, . . . , ik} ⊆ {1, . . . ,n}. By a similar argu-

ment as above, if a ∈ N, then a =∑k
j=1 sij tija ∈

∑k
j=1 sijN, and hence N =∑k

j=1 sijN.

Since for each j, where j = 1, . . . ,k, sijN is pure in the Pij -secondary module Mij , it is

Pij -secondary by [2, Lemma 2.1], as required.

Theorem 2.4. Let R be a commutative ring and let N be a prime submodule of

secondary R-module of M . Then N is (N :M)-secondary.

Proof. Suppose that M is a P -secondary module over R. Let r ∈ R. If r ∈ P , then

rnN ⊆ rnM = 0 for some n. If r ∉ P , then rM =M . Suppose that n∈N, so there is an

elementm∈M such that n= rm. As N is a prime submodule ofM and N ≠ rM =M ,

m∈N, so rN =N, hence N is P -secondary.

By [4, Lemma 1], the ideal P ′ = (N :M)= {r ∈ R : rM ⊆N} is prime. Clearly, P ′ ⊆ P .

Let s ∈ P . Then snN = snM = 0 for some n. There is an element m ∈ M such that

m ∉N and snm= 0∈N, so sn ∈ P ′, hence s ∈ P ′. Thus P = P ′, as required.

Proposition 2.5. Let R be a commutative ring and let N be a prime submodule of

P -second R-module of M . Then N is an RD-submodule of M .

Proof. Let r ∈ R. If r ∈ P , then rN ⊆ rM = 0, so rN =N∩rM = 0. If r ∉ P , then

rM =M , so the homothety M/N r·→M/N is not zero since N is prime. It follows that

the above homothety is injective. If a∈N∩rM , then there is b ∈M such that a= rb.

Since r(b+N)= 0, so b ∈N, hence rN =N∩rM , as required.

Theorem 2.6. Let M be a P -second module over a commutative ring R, and let N
be a prime submodule of M . Then every submodule of M properly containing N is an

RD-submodule. In particular, it is P -second.

Proof. Let K be a submodule of M properly containing N. Then K/N is a prime

submodule of prime and P -second moduleM/N, so by Proposition 2.5, K/N is an RD-

submodule of M/N. Now the assertion follows from [3, Consequences 18-2.2(c)] and

Proposition 2.5.

Lemma 2.7. Let M be a nonzero module over a commutative domain R. Then M is

(0)-second if and only if M is (0)-secondary.

Proof. The proof is completely straightforward.

By [3, Proposition 11-3.11] and [11, Proposition 12, page 506] (see also [14]), and

the definitions of secondary and primary modules, we obtain the following corollary.

Corollary 2.8. Let R be a commutative ring.

(i) Every Artinian primary module over R is secondary.

(ii) Every Noetherian secondary module over R is primary.

(iii) Every finitely generated secondary module is primary.
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Lemma 2.9. LetR be a commutative ring. LetK andN be submodules of anR-module

M such that N is prime and K is P -secondary. Then N∩K is P -secondary.

Proof. Let r ∈ R. If r ∈ P , then rn(N∩K) ⊆ rnK = 0 for some n. Suppose r ∉ P
and t ∈ N∩K. Then t = rs for some s ∈ K since K P -secondary. As N is prime, we

have s ∈N, and hence t ∈ r(N∩K). This gives, N∩K = r(N∩K).
Theorem 2.10. Let M be a representable module over a commutative ring R, and

let N be a prime submodule of M with (N :M)= P . Then the following hold:

(i) N is representable;

(ii) M/N is P -secondary.

Proof. (i) Let M be a representable R-module and let M = ∑m
i=1Mi be a minimal

secondary representation with nilrad(Mi) = Pi. For each i, i = 1,2, . . . ,m, let mi ∈Mi

and ri ∈ Pi. Then rnii mi = 0 for some ni, and we have (rnii +P)(mi+Mi) = 0 and

hence either Pi ⊆ P or Mi ⊆ N (i = 1,2, . . . ,m). It follows that Mi � N for some i
(otherwise M = N). If Mi � N and Mj � N for i ≠ j, then P = Pi = Pj , a contradiction

(for if t ∈ P −Pi then Mi = tMi ⊆ tM ⊆ N). Therefore, without loss of generality, we

can assume that M1 � N and Mi ⊆ N, so P1 = P and Pi � P (i = 2,3, . . . ,m). Then

M2+M3+···+Mm ⊆N and

N =N∩M =N∩(M1+···+Mm
)=M2+···+Mm+

(
N∩M1

)
. (2.1)

Now the assertion follows from Lemma 2.9.

(ii) Since M =M1+N, we have M/N = (M1+N)/N �M1/(M1∩N), as required.

Proposition 2.11. Let R be a Dedekind domain, and let M be a 0 ≠ P -secondary

R-module. Then M is a P -primary module.

Proof. Let r ∈ R. If r ∈ P , then the homothety M r·
�→ M is nilpotent since M is

secondary. Suppose that r ∉ P . If ra = 0 for some 0 ≠ a ∈ M , then by [6, Theorem

6.1], there exists 0 ≠ b ∈ M and Q ∈ Ass(M) such that r ∈ Q and Q = (0 :R b). As

(0 : M) ⊆ (0 : b) = Q, we have P = Q, a contradiction. So the homothety M r·
�→ M is

injective, as required.

Remarks. (i) Let R be a domain which is not a field. Then R is a prime R-module

(since R is torsion-free) but it is not secondary (even it is not pure-injective).

(ii) Let R be a local Dedekind domain with maximal ideal P = Rp. We show that the

module E(R/P) is not prime (but it is (0)-secondary). Set E = E(R/P) and An = (0 :E
Pn) (n ≥ 1). Then by [2, Lemma 2.6], PAn+1 = An, An ⊆ E is a cyclic R-module with

An = Ran such that pan+1 = an, every nonzero proper submodule L of E is of the

form L=Am for somem and E is Artinian module with a strictly increasing sequence

of submodules

A1 ⊂A2 ⊂ ··· ⊂An ⊂An+1 ⊂ ··· . (2.2)

We claim that (An :R E) = 0 for every n. Suppose that r ∈ (An :R E) with r ≠ 0. Then

rE ⊆ An and for all a ∈ M , we have a = rb for some b ∈ M since E is injective (=
divisible). Thus a = rb ∈ An, so E = An, a contradiction. Therefore (An :R E) = 0 for
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every integer n≥ 1. However no An is a prime submodule of E, for ifm is any positive

integer, then pm ∉ (An :R E)= 0 and an+m ∉An, but pmam+n = an ∈An.

Theorem 2.12. Let R be a Dedekind domain, and let M be an R-module. Then M is

0≠ P -second if and only if M is P -prime.

Proof. By Proposition 2.11, it is enough to show that if M is P -prime, then M is

P -second. Since (0 :M) = P is a maximal ideal in R, so M is a vector space over R/P ,

hence M is P -second.

Proposition 2.13. Let R be a Dedekind domain. Then any 0 ≠ P -prime R-module

is a direct sum of copies of RP/PRP � R/P .

Proof. By the proof of Proposition 2.11, every element of R−P acts invertibly on

M , so the R-module structure of M extends naturally to a structure of M as a module

over the localisation RP of R at P . Therefore, we can assume that R is a commutative

local Dedekind domain with maximal ideal P = Rp. LetMj denote the indecomposable

summand ofM , soMj is P -prime. Letmj be a nonzero element ofMj , hence (0 :mj)=
(0 :M) = P . Then Rmj � R/P is pure in Mj since mj is not divisible by p in Mj , but

by [1, Proposition 1.3], the module R/P is itself pure-injective, so Rmj is a direct

summand of Mj , and hence Mj � Rmj , as required.

3. Pure-injective modules

Proposition 3.1. LetM be a P -secondary module over a commutative ring R. Then

H =H(M), the pure-injective hull, is P -secondary.

Proof. Let r ∈ R. If r ∉ P , then rM =M , soM satisfies the sentence for all x there

exists y (x = ry), and hence so does H (because any module and its pure-injective

hull satisfy the same sentences [7, Chapter 4]). If r ∈ R, then rnM = 0, so M satisfies

the sentence for all x (rnx = 0), hence so does in H, as required.

Theorem 3.2. The following conditions are equivalent for a Prufer domain R:

(i) the ring R is a Dedekind domain;

(ii) every secondary R-module is pure-injective.

Proof. Let R be a Dedekind domain and M a secondary R-module. If Ann(M)= 0,

then M is divisible, hence injective. If Ann(M) ≠ 0, then M is a torsion R-module of

bounded order, so that M is Σ-pure-injective (see [15]). In both cases, M is Σ-pure-

injective (so pure-injective).

Conversely, let R be a Prufer domain with the property that every secondary module

is pure-injective. In order to prove that R is Dedekind domain, it suffices to show

that every divisible R-module is injective. Let M be a divisible R-module. Then M is

secondary, Hence pure-injective. Since R is Prufer, pure-injective modules are RD-

injective (see [7]). The embedding of M in its injective envelope E(M) is an RD-pure

monomorphism, because for every nonzero r ∈ R we have that M = rM , so that

rE(M)∩M ⊆M ⊆ rM . Since M is the RD-injective, M is a direct summand of E(M).
Thus M is injective. This shows that R is a Dedekind domain.



326 SHAHABADDIN EBRAHIMI ATANI

Remarks. (i) There is a module over a commutative regular ring which is injective

but not secondary (see [9, Theorem 2.3]). The commutative regular ring R = F × F ,

F a field, is an Artinian Gorenstein, that is, R is injective (so pure-injective) as an R-

module. But R is not secondary, because multiplication by (1,0) is neither nilpotent

nor surjective.

(ii) The above consideration thus leads us to the following question: are secondary

modules pure-injective? The answer is yes because of the following reason. Every

non-Noetherian Prufer domain has secondary modules that are not pure-injective. For

instance, every non-Noetherian valuation domain has secondary modules that are not

pure-injective.

Proposition 3.3. Let M be an R-module.

(i) M is
∑

-secondary if and only if M is secondary.

(ii) Let M be a direct sum of modules Mi (i ∈ I) where for each i, Mi is secondary

and Ann(Mi)=Ann(Mj) for all i,j ∈ I. Then M is secondary.

Proof. (i) The necessity is immediate by the definition. Conversely, suppose that

M is P -secondary. Given an index set J, and let r ∈ R. If r ∈ P , then rnM = 0 for some

n, so rnM(J) = 0. If r ∉ P then rM =M , so rM(J) =M(J), as required.

(ii) Since the annihilators of all direct summands coincide, we can assume that Mi

is P -secondary (say) for all i∈ I. Now the proof of (ii) is similar to that (i) and we omit it.

Corollary 3.4. Let M be an indecomposable Σ-pure-injective module over a com-

mutative Prufer ring R. Then M is secondary.

Proof. Set P = {r ∈ R : AnnMr ≠ 0} and P ′ = ∩nPn. Then P and P ′ are prime

ideals in R by [8, Fact 3.1 and Lemma 2.1]. By [8, Fact 3.2], M is either P -secondary or

P ′-secondary, as required.

Corollary 3.5. Every Σ-pure-injective module over a Prufer ring is representable.

Proof. SupposeM is a Σ-pure-injective module over a commutative Prufer ring R.

By [8, page 967], we can write M =M1⊕···⊕Mm where Mi is secondary for all i by

Proposition 3.3 and Corollary 3.4, as required.
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