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SUBMODULES OF SECONDARY MODULES
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Let R be a commutative ring with nonzero identity. Our objective is to investigate rep-
resentable modules and to examine in particular when submodules of such modules are
representable. Moreover, we establish a connection between the secondary modules and
the pure-injective, the X-pure-injective, and the prime modules.
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1. Introduction. In this paper, all rings are commutative rings with identity and
all modules are unital. The notion of associated prime ideals and the related one
of primary decomposition are classical. In a dual way, we define the attached prime
ideals and the secondary representation. This theory is developed in the appendix to
Section 6 in Matsumura [6] and in Macdonald [5]. Now we define the concepts that we
will need.

Let R be aring and let 0 + M be an R-module. Then M is called a secondary module
(second module) provided that for every element 7 of R the homothety M — M is
either surjective or nilpotent (either surjective or zero). This implies that nilrad (M) =
P (Ann(M) = P’) is a prime ideal of R, and M is said to be P-secondary (P’-second),
so every second module is secondary (the concept of second module is introduced by
Yassemi [14]). A secondary representation for an R-module M is an expression for M
as a finite sum of secondary modules (see [5]). If such a representation exists, we will
say that M is representable.

If R is aring and N is a submodule of an R-module M, the ideal {r € R :*M < N}
will be denoted by (N : M). Then (0 : M) is the annihilator of M, Ann(M). A proper
submodule N of a module M over a ring R is said to be prime submodule (primary
submodule) if for each » € R the homothety M/N L. M/N is either injective or zero
(either injective or nilpotent), so (0: M /N) = P (nilrad(M/N) = P’) is a prime ideal of
R, and N is said to be P-prime submodule (P’-primary submodule). So N is prime in
M if and only if whenever ¥m € N, for some » € R, m € M, then m € N or ¥rM < N.
We say that M is a prime module (primary module) if zero submodule of M is prime
(primary) submodule of M, so N is a prime submodule of M if and only if M/N is a
prime module. Moreover, every prime module is primary.

Let R be aring, and let N be an R-submodule of M. Then N is pure in M if for any
finite system of equations over N which is solvable in M, the system is also solvable
in N. A module is said to be absolutely pure if every embedding of it into any other
modules is pure embedding. A submodule N of an R-module M is called relatively
divisible (or an RD-submodule) if ¥ N = Nn»M for all € R. Every RD-submodule of a
P-secondary module over a commutative ring R is P-secondary (see [2, Lemma 2.1]).
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A module M is pure-injective if and only if any system of equations in M which is
finitely solvable in M, has a global solution in M [7, Theorem 2.8]. The module N is
a pure-essential extension of M if M is pure in N and for all nonzero submodules L
of N,if MNnL =0, then (M&L)/L is not pure in N/L. A pure-injective hull H(M) of a
module M is a pure essential extension of M which is pure-injective. Every module M
has a pure-injective hull which is unique to isomorphism over M [12].

Given an R-module M and index set I, the direct sum of the family {M; : i € I} where
M; = M for each i € I will be denoted by M"). Given a module property %, we will say
that a module M is >-® if MD satisfies % for every index set I.

Let R be a commutative ring. An element a € R is said to be regular if there exists
b € R such that a = a®b, and R is said to be regular if each of its elements is regular.
An important property of regular rings is that every module is absolutely pure (see
[13, Theorem 37.6]).

Let R be a ring and M an R-module. A prime ideal P of R is called an associated
prime ideal of M if P is the annihilator Ann(x) of some x € M. The set of associated
primes of M is written Ass(M). For undefined terms, we refer to [6, 7].

2. Secondary submodules. In general, a nonzero submodule of a representable
(even secondary) R-module is not representable (secondary), but we have the following
results.

LEMMA 2.1. Let R be a commutative ring and let 0 + N be an RD-submodule of
R-module M. Then M is P-secondary if and only if N and M /N are P-secondary.

PROOF. If M is P-secondary, then N and M /N are P-secondary by [2, Lemma 2.1]
and [5, Theorem 2.4], respectively. Conversely, suppose that v € R. If ¥ € P, then
r"(M/N) =0 and ¥"N = 0 for some n, hence ¥"M < N and 0 = "N ="M NN =
r"M.Ifr ¢ P,thenrM+N=M,rN=N,and N=vN =rMnN, so we have vrM =M,
as required. |

COROLLARY 2.2. LetR be a commutative regular ring, and let 0 = N be a submodule
of R-module M. Then M is P-secondary if and only if N and M /N are P-secondary.

PrROOF. This follows from Lemma 2.1. |

THEOREM 2.3. Let R be a commutative regular rving. Then every nonzero submodule
of a representable R-module is representable.

PROOE. Let M be arepresentable R-module and let M = 31 ; M; be a minimal sec-
ondary representation with nilrad (M;) = P;. There is an element ¥; € P; such that
11 ¢ Ul',P;. Otherwise P; = U, P;, so by [10, Theorem 3.61], P, = P; for some j,
and hence P; = Pj, a contradiction. Thus there exists a positive integer m; such
that 7{"! € Ann(M;) and the module +{"'M = 3! , /"' M; is representable. By using
this process for the ideals P»,...,P,_1, there are integers moy,...,m,_; and elements
72 € Pa,..., ¥n_1 € Py such that s,M = M,,, where 0 # s, = {7, 2 - - -7,/ 7}, s €
m{‘:’llPi and s, ¢ P,. Therefore by a similar argument, there are elements s1,...,5,-1
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such that M = 3| s;M, where for each i, where i = 1,...,n, s; ¢ P;, s;M = M;, and
s; € m{lzli:jAnn(M,').

Let N be a nonzero submodule of M and 0 # a € N. Then a = s1b; + - - - + S,by
for some b; € M, i = 1,...,n. By assumption, there exists tq,...,t, € R such that for
each i, s; = s?t;. As 0 # a, s;b; # 0 for some i and s;t;a = s?t;b; = s;ib;, so s;N # 0. We
can assume that s;; N #0,...,s;, N # 0, where {iy,...,ix} € {1,...,n}. By a similar argu-
ment as above, if a € N, then a = Z?leij tiae Z’;:lsi_iN, and hence N = XIjZISijN.
Since for each j, where j =1,...,k, si;N is pure in the Pij-secondary module M;,, itis
Pij-secondary by [2, Lemma 2.1], as required. |

THEOREM 2.4. Let R be a commutative ring and let N be a prime submodule of
secondary R-module of M. Then N is (N : M)-secondary.

PROOF. Suppose that M is a P-secondary module over R. Let ¥ € R. If » € P, then
"N cv"M =0 for some n.If v ¢ P, then M = M. Suppose that n € N, so there is an
element m € M such that n = ¥m. As N is a prime submodule of M and N = vM = M,
m € N, so N = N, hence N is P-secondary.

By [4, Lemma 1], the ideal P’ = (N: M) = {r € R:vM < N} is prime. Clearly, P’ < P.
Let s € P. Then s"N = s"M = 0 for some n. There is an element m € M such that
m¢ N and s"m =0 € N, so s™ € P’, hence s € P’'. Thus P = P’, as required. |

PROPOSITION 2.5. Let R be a commutative ring and let N be a prime submodule of
P-second R-module of M. Then N is an RD-submodule of M.

PROOF. Letr e R.Ifr e P,then*NcvM =0,s0*¥N=NnrM =0.If v ¢ P, then
M = M, so the homothety M/N L. M/N is not zero since N is prime. It follows that
the above homothety is injective. If a € Nnv M, then there is b € M such that a = vb.
Since ¥(b+N) =0, so b € N, hence rN = NNnrM, as required. O

THEOREM 2.6. Let M be a P-second module over a commutative ring R, and let N
be a prime submodule of M. Then every submodule of M properly containing N is an
RD-submodule. In particular, it is P-second.

PROOF. Let K be a submodule of M properly containing N. Then K/N is a prime
submodule of prime and P-second module M /N, so by Proposition 2.5, K/N is an RD-
submodule of M/N. Now the assertion follows from [3, Consequences 18-2.2(c)] and
Proposition 2.5. a

LEMMA 2.7. Let M be a nonzero module over a commutative domain R. Then M is
(0)-second if and only if M is (0)-secondary.

PROOF. The proof is completely straightforward. a

By [3, Proposition 11-3.11] and [11, Proposition 12, page 506] (see also [14]), and
the definitions of secondary and primary modules, we obtain the following corollary.

COROLLARY 2.8. Let R be a commutative ring.
(i) Every Artinian primary module over R is secondary.
(ii) Every Noetherian secondary module over R is primary.
(iii) Every finitely generated secondary module is primary.
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LEMMA 2.9. LetR be a commutative ring. Let K and N be submodules of an R-module
M such that N is prime and K is P-secondary. Then N N K is P-secondary.

PROOF. Letr € R.If r € P, then ¥"*(NNK) < ¥"K = 0 for some n. Suppose v ¢ P
and t € NnK. Then t = s for some s € K since K P-secondary. As N is prime, we
have s € N, and hence t € ¥ (N nK). This gives, NNnK =7 (NnK). O

THEOREM 2.10. Let M be a representable module over a commutative ring R, and
let N be a prime submodule of M with (N : M) = P. Then the following hold:
(i) N is representable;
(ii) M/N is P-secondary.

PROOF. (i) Let M be a representable R-module and let M = Z?LIMI' be a minimal
secondary representation with nilrad (M;) = P;. For each i,i=1,2,...,m, let m; € M;
and 7; € P;. Then ri"imi = 0 for some n;, and we have (ri"i +P)(m;+M;) =0 and
hence either P; < P or M; = N (i = 1,2,...,m). It follows that M; ¢ N for some i
(otherwise M = N). If M; ¢ N and M; ¢ N for i # j, then P = P; = P}, a contradiction
(for if t € P — P; then M; = tM; < tM < N). Therefore, without loss of generality, we
can assume that M ¢ N and M; € N,so Py =P and P; ¢ P (i = 2,3,...,m). Then
M>+Mz+---+M, <N and

N=NnM=Nn(M;+---+Mp)=My+---+My,+(NnM). (2.1)

Now the assertion follows from Lemma 2.9.
(ii) Since M = M, + N, we have M/N = (M; +N)/N = M, /(M; NnN), as required. O

PROPOSITION 2.11. Let R be a Dedekind domain, and let M be a 0 + P-secondary
R-module. Then M is a P-primary module.

PROOF. Let v € R. If v € P, then the homothety M - M is nilpotent since M is
secondary. Suppose that v ¢ P. If ra = 0 for some 0 = a € M, then by [6, Theorem
6.1], there exists 0 + b € M and Q € Ass(M) such that v € Q and Q = (0 :g b). As
(0:M) < (0:b) =Q, we have P = Q, a contradiction. So the homothety M = M is
injective, as required. O

REMARKS. (i) Let R be a domain which is not a field. Then R is a prime R-module
(since R is torsion-free) but it is not secondary (even it is not pure-injective).

(ii) Let R be a local Dedekind domain with maximal ideal P = Rp. We show that the
module E(R/P) is not prime (but it is (0)-secondary). Set E = E(R/P) and A,, = (0
P™) (n = 1). Then by [2, Lemma 2.6], PA,+1 = Ay, Ay € E is a cyclic R-module with
Ay, = Ray, such that pa,.1 = ay, every nonzero proper submodule L of E is of the
form L = A, for some m and E is Artinian module with a strictly increasing sequence
of submodules

AlCAC---CA,CAp 1 Co--. (2.2)
We claim that (A, g E) = 0 for every n. Suppose that » € (A, :g E) with ¥ = 0. Then

vE ¢ A, and for all a € M, we have a = b for some b € M since E is injective (=
divisible). Thus a = rb € A, so E = A,,, a contradiction. Therefore (A,, :gr E) = 0 for
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every integer n > 1. However no A,, is a prime submodule of E, for if m is any positive
integer, then p™ ¢ (A, iR E) =0 and a,m € An, but p™amn = an € Ay.

THEOREM 2.12. Let R be a Dedekind domain, and let M be an R-module. Then M is
0 = P-second if and only if M is P-prime.

PROOF. By Proposition 2.11, it is enough to show that if M is P-prime, then M is
P-second. Since (0: M) = P is a maximal ideal in R, so M is a vector space over R/P,
hence M is P-second. |

PROPOSITION 2.13. Let R be a Dedekind domain. Then any 0 + P-prime R-module
is a direct sum of copies of Rp/PRp = R/P.

PROOF. By the proof of Proposition 2.11, every element of R — P acts invertibly on
M, so the R-module structure of M extends naturally to a structure of M as a module
over the localisation Rp of R at P. Therefore, we can assume that R is a commutative
local Dedekind domain with maximal ideal P = Rp. Let M; denote the indecomposable
summand of M, so M, is P-prime. Let m; be anonzero element of M}, hence (0:m;) =
(0:M) =P. Then Rm; = R/P is pure in M; since m; is not divisible by p in M;, but
by [1, Proposition 1.3], the module R/P is itself pure-injective, so Rm; is a direct
summand of M}, and hence M; = Rm, as required. |

3. Pure-injective modules

PROPOSITION 3.1. Let M be a P-secondary module over a commutative ring R. Then
H = H(M), the pure-injective hull, is P-secondary.

PROOF. lLetr e R.Ifr ¢ P, then M = M, so M satisfies the sentence for all x there
exists y (x = ry), and hence so does H (because any module and its pure-injective
hull satisfy the same sentences [7, Chapter 4]). If ¥ € R, then ¥"M = 0, so M satisfies
the sentence for all x (#"*'x = 0), hence so does in H, as required. O

THEOREM 3.2. The following conditions are equivalent for a Prufer domain R:
(i) the ring R is a Dedekind domain;
(ii) every secondary R-module is pure-injective.

PROOF. Let R be a Dedekind domain and M a secondary R-module. If Ann(M) =0,
then M is divisible, hence injective. If Ann(M) = 0, then M is a torsion R-module of
bounded order, so that M is Z-pure-injective (see [15]). In both cases, M is Z-pure-
injective (so pure-injective).

Conversely, let R be a Prufer domain with the property that every secondary module
is pure-injective. In order to prove that R is Dedekind domain, it suffices to show
that every divisible R-module is injective. Let M be a divisible R-module. Then M is
secondary, Hence pure-injective. Since R is Prufer, pure-injective modules are RD-
injective (see [7]). The embedding of M in its injective envelope E(M) is an RD-pure
monomorphism, because for every nonzero v € R we have that M = M, so that
vE(M)nM < M < vM. Since M is the RD-injective, M is a direct summand of E(M).
Thus M is injective. This shows that R is a Dedekind domain. a
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REMARKS. (i) There is a module over a commutative regular ring which is injective
but not secondary (see [9, Theorem 2.3]). The commutative regular ring R = F X F,
F a field, is an Artinian Gorenstein, that is, R is injective (so pure-injective) as an R-
module. But R is not secondary, because multiplication by (1,0) is neither nilpotent
nor surjective.

(ii) The above consideration thus leads us to the following question: are secondary
modules pure-injective? The answer is yes because of the following reason. Every
non-Noetherian Prufer domain has secondary modules that are not pure-injective. For
instance, every non-Noetherian valuation domain has secondary modules that are not
pure-injective.

PROPOSITION 3.3. Let M be an R-module.
(i) M is > -secondary if and only if M is secondary.
(ii) Let M be a direct sum of modules M; (i € I) where for each i, M; is secondary
and Ann(M;) = Ann(M;) for alli,j € I. Then M is secondary.

PROOF. (i) The necessity is immediate by the definition. Conversely, suppose that
M is P-secondary. Given an index set J, and let v € R.If v € P, then "M = 0 for some
n,s0 "M =0.If r ¢ P then *M = M, so M) = MV as required.

(ii) Since the annihilators of all direct summands coincide, we can assume that M;
is P-secondary (say) for all i € I. Now the proof of (ii) is similar to that (i) and we omit it.

O

COROLLARY 3.4. Let M be an indecomposable 3-pure-injective module over a com-
mutative Prufer ving R. Then M is secondary.

PROOF. Set P = {r € R : Annyr + 0} and P’ = n,P"™. Then P and P’ are prime
ideals in R by [8, Fact 3.1 and Lemma 2.1]. By [8, Fact 3.2], M is either P-secondary or
P’-secondary, as required. a

COROLLARY 3.5. Every X-pure-injective module over a Prufer ring is representable.

PROOF. Suppose M is a X-pure-injective module over a commutative Prufer ring R.
By [8, page 967], we can write M = M, & - - - ® M,,, where M; is secondary for all i by
Proposition 3.3 and Corollary 3.4, as required. a
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