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The Clifford number formalism for Maxwell equations is considered. The Clifford imagi-
nary unit for space-time is introduced as coordinate independent form of fully antisymmet-
ric fourth-rank tensor. The representation of Maxwell equations in massless Dirac equation
form is considered; we also consider two approaches to the invariance of Dirac equation
with respect to the Lorentz transformations. According to the first approach, the unknown
column is invariant and according to the second approach it has the transformation prop-
erties known as spinorial ones. The Clifford number representation for nonlinear electro-
dynamics equations is obtained. From this representation, we obtain the nonlinear like
Dirac equation which is the form of nonlinear electrodynamics equations. As a special
case we have the appropriate representations for Born-Infeld nonlinear electrodynamics.
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1. Introduction. At present Born-Infeld nonlinear electrodynamics arouse consid-

erable interest for various points of view. There are some propositions which allow

considering this nonlinear electrodynamics as a unique field model. This model, con-

sidered by Born and Infeld [1], is obtained from some variational principle proposed

by Eddington [9]. This model appears also in the string theory [11]. It was shown in

[2] that the electrodynamical part of the Einstein unified field model, with nonsym-

metrical metric [10], is equivalent to Born-Infeld electrodynamics. The characteris-

tic equation for Born-Infeld electrodynamics has a very notable form [3]. Also, some

propositions which set off Born-Infeld electrodynamics from electrodynamical mod-

els, are presented in [7]. About author’s opinion on a significance of such nonlinear

electrodynamics models, see [5].

At present, Born-Infeld model is considered as a possible vacuum electrodynamics

and future experiments must have solved what model is more appropriate [6].

Thus, any results which may help us in the mathematical investigation of this field

model are strongly welcomed.

For the conventional Maxwell electrodynamics we know the Clifford number repre-

sentation (see [12, 14]). Maxwell system of equations may be written in highly compact

form for this representation. In addition, it may be more convenient for some math-

ematical problems. Clifford numbers give also the representation of Maxwell system

in massless Dirac equation form, that may help to find more profound connections

between electrodynamics and quantum mechanics.

In this connection, the application of Clifford numbers for representation of Born-

Infeld nonlinear electrodynamics model is the important problem.
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2. Clifford numbers and Maxwell equations. Clifford numbers are convenient

enough for the treatment of geometric objects in space-time. In particular, we can

relate the tensor of electromagnetic field to the Clifford number by the formula

F̂ = 1
2
Fµνγ̂µγ̂ν = Ei

(
γ̂i∧ γ̂0)+ 1

2
ε0ijkBkγ̂iγ̂j , (2.1)

where the Greek indexes take the values 0, 1, 2, 3, the Latin ones take the values 1, 2,

3, and εµνσρ are the components of fully antisymmetric fourth-rank tensor such that

ε0123 =
√|g|. Here we use the designations for electromagnetic field vectors which is

appropriate to arbitrary coordinate system [4]. We designate the Clifford numbers by

letters with hat, as distinct from ordinary numbers.

Symmetric (inner) and antisymmetric (exterior) Clifford number products are des-

ignated by a dot (·) and a wedge (∧) accordingly. For the reference vectors γ̂µ we

have γ̂µ · γ̂ν = 1̂gµν . They can be represented by Dirac’s matrices and 1̂ means unit

Clifford number or (4×4) unit matrix.

Notice that F̂ in (2.1) is an invariant geometrical object. This means, in particular,

that in the matrix representation the appropriate matrix components do not depend

on used coordinate system.

If we introduce the invariant differential operator

∂̂ ≡ γ̂µ ∂
∂xµ

≡ γ̂µ∂µ, (2.2)

then the equation

∂̂F̂ = 0 (2.3)

is a coordinate-free form of Maxwell system of equations (without currents). For the

specified form of Dirac’s matrices, we can easily obtain the appropriate coordinate

representation from (2.3).

We introduce some designations concerning Clifford numbers, which we will use:

ρ̂i ≡ γ̂i∧ γ̂0 �⇒ ρ̂i · ρ̂j =−g00gij+gi0gj0,
ρ̂i · ρ̂j ≡ δij �⇒ ρ̂i = γ̂0∧ γ̂i,

(2.4)

where γ̂µ · γ̂ν ≡ 1̂δµν , and

ı̂≡ 1
4!
εµνσργ̂µγ̂ν γ̂σ γ̂ρ (2.5)

implies (
ı̂
)2 =−1̂, γ̂j ı̂=−ı̂γ̂j , ρ̂j ı̂= ı̂ρ̂j . (2.6)

As we see, the Clifford number ı̂ is coordinate-free form of fully antisymmetric

fourth-rank tensor. Because for space-time ı̂2 =−1̂, we can call it here Clifford imag-

inary unit. (This appellation is not allowable for arbitrary space because there are

spaces for which construction of type (2.5) has unit square.)

By analogy with ordinary complex numbers, we introduce the conjugation operation

for Clifford numbers in four-dimensional space-time. Any such Clifford number or any

(4×4) real matrix can be represented as

Ĉ = a1̂+bµγ̂µ+ciρ̂i+diı̂ρ̂i+eµı̂γ̂µ+f ı̂ (2.7a)

= (a+ ı̂f )1̂+(bµ+ ı̂eµ)γ̂µ+(ci+ ı̂di)ρ̂i, (2.7b)
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wherea, bµ , ci,di, eµ , f are real numbers, and we define the conjugate Clifford number

as

Ĉ† = (a− ı̂f )1̂+(bµ− ı̂eµ)γ̂µ+(ci− ı̂di)ρ̂i
= a1̂+bµγ̂µ+ciρ̂i−diı̂ρ̂i−eµı̂γ̂µ−f ı̂.

(2.8)

Using (2.4), (2.5), (2.6), (2.7), and (2.8) we can write

F̂ = Ê− ı̂B̂, F̂† = Ê+ ı̂B̂, (2.9)

where

Ê ≡ Eiρ̂i, B̂ ≡ Biρ̂i. (2.10)

The Clifford number (2.7) is an invariant geometrical object and we can mark out

three parts of it. In the representation (2.7b) the first part is scalar because the coef-

ficients a and f are scalars for arbitrary coordinate transformation. The second part

is vector and the coefficients bµ and eµ transform like vector’s components. The third

part is known as bivector and, as we see, it is an antisymmetrical second-rank tensor.

In (2.7) we call a the real part of scalar and ı̂f the imaginary part of it. Also, we mark

out real (bµ γ̂µ) and imaginary (̂ıeµ γ̂µ) parts of vector, and real (ciρ̂i) and imaginary

(̂ıdiρ̂i) parts of bivector.

Equation (2.3) is written also in the form

∂̂ · F̂+ ∂̂∧ F̂ = 0. (2.11)

Using representation (2.9), we can write it in the following form:

γ̂0∂0∧ Ê+ γ̂i∂i · Ê+ γ̂i∂i∧ Ê− γ̂0∂0 · ı̂B̂− γ̂i∂i · ı̂B̂− γ̂i∂i∧ ı̂B̂ = 0. (2.12)

Here we use that γ̂0 · ρ̂i = 0, γ̂0 ∧ ı̂ρ̂i = 0 and for simplicity we consider that the

reference vectors γ̂µ do not depend on coordinates. The left-hand side of (2.12) is a

vector. We single out its time and space components, real and imaginary parts in each

of them. As a result, we have the system

γ̂i∂i∧ Ê = 0, (2.13a)

γ̂i∂i · ı̂B̂ = 0, (2.13b)

γ̂0∂0∧ Ê− γ̂i∂i∧ ı̂B̂ = 0, (2.13c)

γ̂0∂0 · ı̂B̂− γ̂i∂i · Ê = 0. (2.13d)

Here we use (2.10) and the following relations:

γ̂i∧ ρ̂j =−δijγ̂0, γ̂0∧ ρ̂i = γ̂i, γ̂i∧ ı̂ρ̂j =−ε0ijkγ̂k,

γ̂i · ı̂ρ̂j = δij ı̂γ̂0, γ̂0 · ı̂ρ̂i =−ı̂γ̂i, γ̂i · ρ̂j =−ε0ijkı̂γ̂k,
(2.14)

where ε0123 =−1/
√|g|.
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We can easily verify that system (2.13) is Maxwell system of equations, where the

left-hand sides of (2.13a) and (2.13b) are divergences of electromagnetic field vectors.

Now, take a Cartesian coordinate system with −g00 = g11 = g22 = g33 = 1 and

gµν = 0 for µ �= ν . For this case ı̂= γ̂0γ̂1γ̂2γ̂3.

Consider the appropriate Dirac’s matrices in the form

γ̂0 =



i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 −i


 , γ̂1 =




0 0 0 i
0 0 i 0

0 −i 0 0

−i 0 0 0


 ,

γ̂2 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 , γ̂3 =




0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0


 .

(2.15)

As we can see, the matrix F̂ in (2.1) has four independent complex components

only. We designate the first column of the matrix F̂ by F̄ , then

F̄ = F̂ 1̄=



F̄1

F̄2

F̄3

F̄4


=




−iB3

−iB1−B2

E3

E1−iE2


 , 1̄≡




1

0

0

0


 . (2.16)

And the matrices F̂ and F̂† can be written in the following form:

F̂ =



F̄1 −F̄∗2 F̄3 F̄∗4
F̄2 F̄∗1 F̄4 −F̄∗3
F̄3 F̄∗4 F̄1 −F̄∗2
F̄4 −F̄∗3 F̄2 F̄∗1


 ,

F̂† =



−F̄1 F̄∗2 F̄3 F̄∗4
−F̄2 −F̄∗1 F̄4 −F̄∗3
F̄3 F̄∗4 −F̄1 F̄∗2
F̄4 −F̄∗3 −F̄2 −F̄∗1


 .

(2.17)

Extracting the first column in the matrix equation (2.3), we obtain the following

representation of Maxwell equations in the form of massless Dirac equation:

∂̂F̄ = γ̂µ ∂F̄
∂xµ

= 0. (2.18)

Note that system (2.13) is an overdetermined one, because there are eight equations

for six unknown functions Ei(x), Bi(x). Traditionally, the determined system (2.13c),

(2.13d) with additional conditions (2.13a) and (2.13b) are considered. These conditions

are conserved in time according to (2.13c) and (2.13d). Thus, if we have the problem

with initial conditions which satisfy (2.13a) and (2.13b), then (2.13a) and (2.13b) will

be satisfied for any point of time. But general solution of system (2.13c) and (2.13d) is

not general solution of Maxwell equations. Formally, system (2.18) has four complex
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equations for four complex unknown functions or column F̄(x) in (2.16). But in this

case, we have also two additional conditions that F̄1 is pure imaginary and F̄3 is real.

Of course, the form of such conditions is connected with the specified form of the

matrix representation for γ̂µ which we use.

3. Coordinate transformations and spinors. Because we have Maxwell equations

in massless Dirac equation form (2.18), it is necessary to elucidate the transformation

properties of an unknown column F̄ . As noted above, because γ̂µ are the reference

vectors, the operator ∂̂ and the bivector F̂ are invariant geometrical objects. Thus, if

we have two coordinate systems {xµ} and {x′µ}, then

∂̂ = γ̂µ ∂
∂xµ

= γ̂′ν ∂
∂x′ν

, F̂ = Fµνγ̂µγ̂ν = F ′µνγ̂
′µγ̂

′ν . (3.1)

Consider the Lorentz transformation

x′ν = Lν.µxµ. (3.2)

Then for Dirac’s matrices we have

γ̂
′ν = Lν.µγ̂µ = Λ̂−1γ̂νΛ̂, (3.3)

where Λ̂ is some matrix.

When we relate a specified form of Dirac’s matrices (e.g., (2.15)) with appointed

coordinate system {xµ}, then we define invariant matrix F̂ , numerical values of its

components do not depend on coordinate system. That is, for example, the component

F̂11 or F̄1 is −iB3. If we use another coordinate system {x′µ}, matrices of reference

vectors are changed to {γ̂′µ} but it is kept that F̂11 = F̄1 = −iB3, where B3 is the

third component of the magnetic field vector in the coordinate system {xµ}. Thus the

column F̄ in (2.18) is also an invariant object.

In this connection we should recall [8] in which Dirac introduces his equation. In

this article he considers the case when the unknown column is invariant. On the other

hand, Pauli [13] has proposed to keep the γ-matrices invariable when the coordinates

are transformed. In this case, we must transform the unknown column into Dirac

equation. In our designations this means that

γµ
∂F̄
∂xµ

= 0 �→ γµ ∂F̄
′

∂x′µ
= 0 �⇒ F̄ ′ = Λ̂F̄ , (3.4)

where it is essential that Λ̂≠ Λ̂(x).
This transformation for column F̄ is called spinor transformation. On this topic, see

[15], where comparative analysis for these two approaches to the invariance of Dirac

equation with respect to Lorentz transformations is given.

Though in (3.4) we have Lorentz transformation for coordinates (3.2), transforma-

tion (3.4) is not space-time rotation for Maxwell equations in massless Dirac equation

form (2.18). Really, so far as we keep the relation between components of F̄ and Ei,
Bi (2.16), transformation (3.4) changes the vector components Ei, Bi to components
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of some other vector E′i , B
′
i which, in general, may be complex numbers. But transfor-

mation (3.4) keeps (2.18) invariant. Hence, this transformation gives new solution of

(2.18)

F̄
(
xµ
)
�→ Λ̂F̄(Lµ.νxν). (3.5)

Here the matrices Λ̂ and (Lµ.ν) are interconsistent in the sense of the relation Lν.µγ̂µ =
Λ̂−1γ̂νΛ̂, but transformation (3.5) is not real space-time rotation. In particular, if

Lorentz matrix (Lµ.ν) corresponds to the space rotation for 2π , then transformation

(3.5) changes any solution of Maxwell equations to the same solution with opposite

sign.

Equation (2.18) may be called spinor representation for Maxwell equations.

4. Born-Infeld electrodynamics and Clifford numbers. Equations of Born-Infeld

electrodynamics in arbitrary coordinates (and outside of singularities) are written in

the following form (see [4]):

√
|g|

−1
∂i
√
|g|Di = 0,√

|g|
−1
∂i
√
|g|Bi = 0,√

|g|
−1
∂0

√
|g|Di+ε0ijk∂jHk = 0,√

|g|
−1
∂0

√
|g|Bi−ε0ijk∂jEk = 0,

(4.1)

where Ei ≡ Fi0, Bi ≡−(1/2)ε0ijkFjk, Di ≡ f 0i, Hi ≡ (1/2)ε0ijkf jk, and

fµν = 1
�

[
Fµν− χ

2

2
�εµνσρFσρ

]
, (4.2)

�≡
√∣∣1−χ2�−χ4�2

∣∣, �≡ 1
2
FµνFνµ, �≡ 1

8
εµνσρFµνFσρ, (4.3)

where χ is some dimensional constant.

By analogy with (2.1) and (2.9), we have

f̂ = 1
2
fµνγ̂µγ̂ν = D̂− ı̂Ĥ. (4.4)

Now consider the following equation:

∂̂ · F̂+ ∂̂∧ f̂ = 0. (4.5)

By analogy with derivation from (2.11) to (2.13), we have from (4.5) that

γ̂i∂i∧D̂ = 0,

γ̂i∂i · ı̂B̂ = 0,

γ̂0∂0∧D̂− γ̂i∂i∧ ı̂Ĥ = 0,

γ̂0∂0 · ı̂B̂− γ̂i∂i · Ê = 0.

(4.6)
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This system conforms with system (4.1) in the coordinates for which γ̂µ ≠ γ̂µ(x). But

coordinate-free equation (4.5) fully conforms with system (4.1) for any coordinates.

This is also verified by direct substitution.

As we can see, system (4.1) is appropriate for any nonlinear electrodynamics model.

Thus, (4.5) is a Clifford number form for equations of nonlinear electrodynamics. In

this case the relation between f̂ and F̂ defines concrete model. It can easily be shown

that Born-Infeld relation (4.2) is written in the form

f̂ = 1
�

(
1̂+ ı̂χ2�

)
F̂ , (4.7)

�1̂= 1
2

[
F̂2+(F̂†)2

]
, �1̂= 1

4
ı̂
[
F̂2−(F̂†)2

]
. (4.8)

Making elementary transformations with (4.5) and extracting the first column in ma-

trix equation (see (2.16) and (2.18)), we obtain

∂̂F̄ =
[
∂̂∧(F̂− f̂ )]1̄. (4.9)

Using relation of type (4.7) and representation (2.17), the right-hand side of (4.9) can

be represented by F̄ and F̄∗. Thus, we have the nonlinear like Dirac equation which is

the form of nonlinear electrodynamics equations.

5. Conclusion. We have considered the Clifford number formalism for Maxwell

equations. The Clifford imaginary unit for space-time ı̂ is introduced as coordinate

independent form of fully antisymmetric fourth-rank tensor. Earlier (see [12]) the

pseudoscalar γ̂0γ̂1γ̂2γ̂3 was used as such imaginary unit. This distinction plays an

important role for curvilinear coordinates and for generalization to curved space-

time.

We have considered the representation of Maxwell equations in massless Dirac

equation form. In this connection, we have discussed two approaches to the invari-

ance of Dirac equation with respect to the Lorentz transformations. According to the

first unjustly forgotten approach, the unknown column is invariant and according to

the second approach, it has the transformation properties known as spinorial ones.

We have obtained the Clifford number representation for nonlinear electrodynam-

ics equations. From this representation, we obtain the nonlinear like Dirac equation

which is the form of nonlinear electrodynamics equations. As a special case, we have

obtained the appropriate representations for Born-Infeld nonlinear electrodynamics.

These representations can help to obtain new solutions in Born-Infeld electrody-

namics. Also such approach may make clear the relations between nonlinear electro-

dynamics and particle physics.
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