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ABSTRACT. The present work is a study of multivalued functions and measures

which have many applications to mathematical economics and control problems.

Both have received considerable attention in recent years. We study the set

of selectors of the space of all p- integrable, X- valued additive set func-

tions. This space contains an isometrically imbedded copy of LP(x).
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i. INTRODUCTION.

In his studies of classical function spaces such as Lp spaces, S. Leader

[7] found it convenient to consider the Lp spaces of finitely additive set

functions which he denoted by Vp. All the set functions are real valued and

Lp can be isometrically embedded in Vp.

In [9] the work of [7] is generalized in two ways. First the set functions

take values in a Banach space X. Instead of studying p-summable functions,

Orlicz spaces of finitely additive set functions are considered. This space is

denoted by V(X). Of course, if we let p(x) Ixl p, then V(X) becomes the

space of all p-integrable, X valued additive set functions. It is shown that

Lp(X) is isometrically embedded in Vp(X)

In recent years the study of multivalued functions and measures has

received considerable attention as have their applications to mathematical

economics and control problems. We refer the reader to [I], [2], [3], [4], [6],

[8] for a small sample of the work done along these lines.

A multSmeasure is defined to be a function from a o-algebra into the set

of non-empty, bounded closed convex subsets of a Banach space X. Countable

additivity is defined through the use of the Hausdorff metric. Let denote a

multimeasure. The set of selectors of plays a very important role in the

study of . By a elector, we mean an X-valued measure m such that m(A) c (A)

for all A. For example, Godet-Thobie (see [6]) shows that if (A) is weakly

compact for all A, then has at least one selector and in fact a sequence of

selectors {mn} such that {mn(A)} is dense in (A) for all A. Conditions are

also given on the space X that insure the existence of the sequence {ran}.

The main purpose of the present paper is to study the set of selectors of

MPm"m that belong to vP(x). Denote that set by We assume here that p > i.
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Now MP is an important set to consider because it will be shown that it is
m

a convex closed subset of vP(x) that characterizes , that is MPI MP2 if and

only if i 2" The first result deals with the case of a a-finite space where

the values of m are weakly compact subsets of X. With certain additional assump-

tions and using a Radon-Nikodym theorem of Tolstonogov B], we show that if

MP^ # , then a sequence {mn} of selectors in vP(x) exists with {mn(A)} dense in
m

m(A) for all A. This remains true if the values of m are assumed to be strongly

convex and closed instead of weakly compact.

Next the case where the underlying space is finite is considered. Under

certain assumptions using a Radon-Nikodym theorem of Cost [3], the same result

is arrived at. These two results are thus along the line of results shown in

[6]. Next a new space is naturally introduced, the space AMP which is the

miAi) where m’ are selectors ofspace of all measures of the form2 .r(Ai rAi i

Aie
and where denotes a partition (finite), r is the underlying measure and rAi
is the contraction of r to Ai. A result establishes the relation between AMP,

AMPUl and AMP2 where I + 2" Also it is shown that MPCclAMP. Finally

the case where m has absolutely closed convex values is considered.

2. NOTATIONS AND PERTINENT RESULTS

The purpose of this section is to present some concepts and state some

results that are needed to show our results.

Let X denote a Banach space. It is said that X has the Radon-Nikodym

property if very X-valued measure with finite variation has a density relative

to its variation. It is known that reflexive spaces and separable dual spaces

have that property. Throughout this paper we assume p > I.
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Let 7 denote a -algebra of subsets of a set . Let r denote a finitely

additive positive set function defined on E. Let F be a finitely additive set

function from 7. into X with the property r(A) 0 implies F(A) 0, and

Ip(F,B) sup !IF(En)I[p(En)p-I
Ene

where denotes a finite collection of disjoint subsets of B where B e 7.

and r(En) < .
Now F is said to have finite p-variation if Ip(F) Ip(F,) < .
Let F (-) ’F(En) r[En (.)], and AP(x) denote the set of finitely

(mn)
E e
n

additive set functions F mapping I into X with finite p-variation and with the

property r(A) 0 implies F(A) 0.

Let vP(x) be the submanifold of AP(x) consisting of r-continuous set

functions, that is lim IIF(E) II 0.
(E)+0

It is shown in [9] that when p > I, Ap(X) Vp(X).
I/p

We denote by Np(F) Ip(F) It is also shown that vP(x) is a Banach

space under the norm Np. Moreover the set functions of the form F form a

dense subset of vP(x) provided that X has the Radon-Nikodym property and p > I.

Let F be a function from into the non-empty closed bounded convex subsets

of X. If F has weakly compact values, we define, following Tolstonogov [8],

fFdr {ffdrlfeL’(r) and f(w)eF(w) a.e.}

Otherwise,

Fdr cl{IfdrlfeL’(r) and f(w)eF(w) a.e.}

Let Xc denote the non-empty bounded closed convex subsets of X. Following

[6] we define

A + B cI{A+B} for AX%, B.
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If : E + Xc, then m is called a multi-measure if

(U) "7.(Ai) -= lira [(AI) $ (A2) $ $ (An)]
n

For every sequence of disjoint sets Ai e 7 where the limit is with respect to the

Hausdorff metric (It is shown in [6] that $ is an abelian and associative

operation on Xc).
The reader is referred to [3] and [8] for Radon-Nikodym theorems pertaining

multimeasures. If AXc [A will denote the Hausdorff distance between {0}to

and A, that is

xeA

Also acoS will refer to the absolute convex envelope of a subset S of X,

that is acoS is the set of all finite sums of the form

s with sieS and 7.1eil.<lZi i

Of course, acoS denotes the closure of acoS. Finally X is said to have

property P if its dual space X’ has a sequence {Xn*} that separates points of X.

3. MAIN RESULTS

Let denote a multi-measure from 7. into c and let MP^ denote all measures
m

m: I / X such that m(A)e(A) for all Ae7. with meVP(x) that is MP is the set of

all "selectors of " that are in vP(x). MP^ is a closed subset of vP(x).m

PROOF. Let Aer. with r(A) < . Let mieMPf with Np(m-mi)/0 and mevP(x).

Now for > 0 and i large enough:

lm(A)-mi(A) IIp
<

r(A)P-I

Since (A) is closed it follows that m(A)e(A). Thus meMP. Let (,Z,) denote

a ’-finite space. Let X denote all weakly compact convex subsets of X. We

assume that the convex hull of the average range of m is relati_velx weakly comRaqt,

IKe. KCE O<I(K)<1-%(K)that is [ J
is relatively compact for every E 7.
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THEOREM 2. Let m be a multi-measure from E into Xw. Assume that

(i) The convex hull of the average range of m is relatively compact.

(2) The space X’ is separable (in particular X’ satisfies P).

(3) For every e>O there exists 8>0 such that %(A) implies Im(A)
(4) X has the Radon-Nikodym property.

Then if Mp. # qb for p > 1, then there exists {mn} a sequence in Mp. such that

(A) =cl{mn(A)} for every A e I.

PROOF. From (2) and [6] it follows that there exists a sequence {on where

on are selectors of with re(A) cl{On(A)} for A e Y., o
n are X-valued measures.

<<% Now (4) impliesNow %(A) 0 implies (A) {0} by (3) Thus on

vn(A) /Afnd% for some fneL/x(% and all AsE.

By a theorem of [8], (i) implies that there exists a function F from into

such that (A) fAFd%. Thus fAfnd%eYAFd% for all AeY.. We now show that this

implies fn(w)eF(w) a.e.

Let /Ahd%e/AFd% for all AsY.. Let {Xn*} be a dense sequence in X’. Then

< sup<y,Xn*> for all n.xeF(w) if and only if <X,Xn>
y’F (w)

This is because F(w) is convex, closed and bounded If h(w) F(w) on a set

of positive measure then there exists AeF. and n such that % (A) > 0 and

<h(w),Xn*> > sup <Y,Xn*> over A
ye F (w)

Consequently

</Ahd%, Xn*> fA<h,xn*>d% > /A sup <Y,Xn*>d%
yeF (w)

*> d% >. sup < YAgd%, Xn*>.> sup fA<g(w),xn
g (w)eF (w) g (w)e F (w)

Thus YAgd%cl{fAgd%Ig(w)sF(w)}. This contradicts /Ahd%S/AFd% for all

Thus fn(w)eF(w) a.e. for all n.
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Now let moeMPm then mo(A) fAfod% and by [9], foeLPX-
Let Aj,] {wl]-l<llfjIl.<]} where is a positive integer. Let {Ak} be a

partition of such that %(Ak)<=. Let

Bj,],k Aj,]Ak sj,],k XBj,],kfj + XB’j,],kfo

clearly sj,],keL. Define mj,],k(A) fA sj,]’kd% By [9]

mj,],keVP(x) also mj l,ke MP^m since

mj,],k(A) oj(AAkf-!Aj,]) + mo(AnB’j,],k)e(A).

All finite sums of the form Y. (A.Ak[ Aj,]) + E(A. Ak(.Aj,]) are dense in
k k

(A) (for j and fixed) and since

%(A’ / 0 as / (for j fixed) it is easy to see that (3) implies

that all finite sums of the form

E m,],k(A)j are dense in (A) as j and range over the
k

positive integers.

These finite sums form the desired sequence {m }.
n

This completes the proof.

Let Xs denote all bounded closed non-empty, strictly convex subsets of X,

that is Ae implies that for all x’eX’ there exists a unique xeX such that

x’ (x) sup {x’ (y)

COROLLARY 3. Let (,E,%) be a o-finite measure space. Let be a

multimeasure from E into Xs assume

is of the form (A) fAFd% where F(w)ec.
(2) X’ is separable.

(3) X has the Radon-Nikodym property.

Then if MP # for p > i, then there exists a sequence {mn} in MP such that
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(A) cl{mn(A)} for all A e E.

PROOF. From a result in [6] and since m has values in X the existence of
s

the sequence {n as defined in the proof of theorem 2 follows. The rest of the

proof follows as in Theorem 2.

We now consider a measure from E into X We define the variation of by
c

Il sup l(Ai) where the sup is over finite collections of disjoint

sets Ai.

We consider the case where (,E,) is a finite measure space.

THEOREM 4. Let (,E,) be a finite measure space. Let be a multimeasure

from E into X Assume:
c

(I) has u-finite variation.

(2) (a) 0 implies (A) {0}.

(3) X’ is separable.

(4) X has the Radon-Nikodym property.

Then if MP # for p > 1 then there exists a sequence {mn} in MP such that

(A) cl{m (A)} for all A e E.
n

PROOF. From a result in [2] and since takes values in c and since (2)

holds, is uniformly continuous with respect to . Since is finite by a

result of [3] it follows that there exists a function F from into Xc such that

(A) fAFd for all A E.

The rest of the proof proceeds as in Theorem 2.

We now show that MP characterizes .
COROLLARY 4. Let i and 2 be two multimeasures. Under the hypothesis of

theorem 2 or theorem 4

MPI MP2 if and only if I 2"
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PROOF. The proof follows immediately from the statement (A) cl{mn(A)}.

PROPOSITION 5. Let be a multimeasure from 7. into c of finite variation

and having no atoms. Assume X has the Radon-Nikodym property then MP is a

convex set.

PROOF. From a result in [2] and since m has no atoms, (A) is convex for

all A e 7.. It is then straight-forward to check that MP is convex.

From now on y will denote % when the hypothesis of theorem 2 are verified

and when the hypothesis of theorem 4 are verified. Recall that we use the

word "partition" as in [9] that is a finite collection of disjoint subsets of

finite measure.

THEOREM 6. Assume the hypothesis of theorem 2 or of theorem 4 and assume

MP^ # Then there exists a sequence {mi} in Mp such that for e > 0 andm

meMP there exists a partition 0 such that if refines

subset {min} of {mj} such that

Im-ymi (En) nl
then there is a

where YEn denotes the contraction of Y to En.

PROOF. Let e > 0, meMP. By [9] there exists a partition 0 such that ifm

refines 0 then

By theorem 2 or theorem 4 there exists a sequence {mi} in MP^ such that
m

m(E) cl{mi(E)} for all E E.

Let e’ > 0 then there exists an integer i such that
n

(En)-m(En)ll < e’.
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Now

X m(En min(EnNp
_

(En) YEn z y (En)
YEnEne Ene

Y(En YEn

] - [m(En (mn)
p

Ip m(En)-min(En) YEn sup /. -min
Y(En)

j Aje
Y(E )P-

< e’P Aje lYE(--- ] p-I e ’p

Y(En)P sup YEn(A]) -<
Y(En)P_I

^ [ y(Aj)

YEn(AJ) p

Y(Aj) -i

clearly e’ may be picked so that

Np /. m(En)-min(En)
Ene Y(En) YEn

This finishes the proof.

Motivated by the above theorem we define AMP to be the set of all finite

sums of the form E i(Ai) where m’
Aie Y (Ai) YAi ieMP"

If I and 2 are multimeasures from E into we define
c

(i + 2) (A) I(A) $ 2(A).

Also let AMPUl s AMP2 be the set of all finite sums of the form

\’ mii(Ai) + m’ (Ai)
z_ 2i with eMPI, ieMP2
Ai Y(Ai) YAi mli m

2

That is the partition is kept the same for I and 2"

THEOREM 7. Let I + 2" Under the hypothesis of theorem 2 or theorem 4

cI{AMP} cI{AMPI Js AMP2 }.
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PROOF. By theorem 2 or theorem 4 there exists sequences {mi} {mli}

{m2i} m, MP, MPI MP2 such that

(A) cl{mi(A)} I(A) cl{mli(A)} 2(A) cl{m2i(A)} for A

mConsider y. i(Ai YAi, then as in theorem 6 one may pick e’ > 0 small enough
Y(Ai)

so that
m, i(Ai mi (Ai)

lm i(Ai)-mi(Ai)ll<e implies Np (Ai
YAi YAi!

Since (A) cl{mli(A)+m2j (A)} again let

Imi(Ai)-(mlki+m21i)(Ai)l l<e "where e" is small enough so that

mi(Ai) (mlki+m21i)(Ai) YAi] < e. This shows thatNp Y" Ai E -Y(Ai)

clAMP& el [AMPul ’ AMP2] Since m’ li (Ai)+m’ 2j (Ai)el (Ai)$2 (Ai)’

the converse is also clear.

Let us note that if MP # , MP2 # $ then whenever satisfies the abovem1

hypothesis, i and 2 do.

Let be the partition {Ai} let AieE_m’i(Ai)y(Ai) YAi where m’leMP

Now let be a multimeasure from into c, define (a--d )(A) a--d-((A)).

PROPOSITION 8. The following are true.

(i) If is an ic valued multimeasure, then so is aco .
2 Mp cIAMP.

(3) Let {Ai} be a partition and assume that the values of are

absolutely convex sets in Then (A)e(A) whenever is a partition of A with

Y (AinA)

Aie -i
.< i

We would like to show (Ai) E ac--- (Ai) forPROOF. any
i= i i= i

sequence of disjoint sets Ai.
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Now the proof in [5] (p. 415) shows with obvious modifications that

aco(A+B) aco A + aco B. Thus

co(A+B). aco A + aco B and by continuity of +

ado A + d6 B acoA+acoB a6o (A+B)

Thus aco A aco B aco (A+B) and by induction

aco [In (Ai) hd i(Ai)
i=l i--i

By a result of [4], J[d A, dB B] .< J[A,B] where A and B are in c and

denotes the Hausdorff metric Thus letting n go to infinity

aco "E(Ai "E (Ai)
-i=l i=l

This shows the first part of the theorem.

MP. CclAMP follows from [9] since F are dense in vP(x). Finally let
m

c eAMp. Then

(A) 1 y_(A,( Ai)mi
(Ai).YAi/ (A)=.AieZm:l (Ai) --Y(Ai)

If Z
y(AAi)

Y(Ai). <i since mi(Ai)e(Ai)C (A) (this because 0e(B) if (B) is

absolutely convex for all BeZ) this implies c(A)e(A).
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