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ABSTRACT. The present work is a study of multivalued functions and measures
which have many applications to mathematical economics and control problems.
Both have received considerable attention in recent years. We study the set
of selectors of the space of all p - integrable, X - valued additive set func-
tions. This space contains an isometrically imbedded copy of LP(X).
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1. INTRODUCTION.

In his studies of classical function spaces such as P spaces, S. Leader
[7]1 found it convenient to consider the LP spaces of finitely additive set
functions which he denoted by VP. All the set functions are real valued and
LP can be isometrically embedded in VP.

In [9] the work of [7] is generalized in two ways. First the set functions
take values in a Banach space X. Instead of studying p-summable functionms,
Orlicz spaces of finitely additive set functions are considered. This space is
denoted by V¢(X). 0f course, if we let p(x) = |x|p, then V¢(X) becomes the
space of all p-integrable, X valued additive set functions. It is shown that
LP(X) is isometrically embedded in VP(X).

In recent years the study of multivalued functions and measures has
received considerable attention as have their applications to mathematical
economics and control problems. We refer the reader to [11, (21, (31, [4], [6],
[8] for a small sample of the work done along these lines.

A multimeasure is defined to be a function from a o-algebra into the set
of non-empty, bounded closed convex subsets of a Banach space X. Countable
additivity is defined through the use of the Hausdorff metric. Let fi denote a
multimeasure. The set of selectors of f plays a very important role in the
study of fi. By a gelector, we mean an X-valued measure m such that m(A) ¢ fA(a)
for all A. For example, Godet-Thobie (see [6]) shows that if M(A) is weakly
compact for all A, then @i has at least one selector and in fact a sequence of
selectors {m,} such that {m,(A)} is dense in fi(A) for all A. Conditions are
also given on the space X that insure the existence of the sequence {mn}.

The main purpose of the present paper is to study the set of selectors of

f that belong to VP(X). Denote that set by Mpﬁ. We assume here that p > 1.
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Now Mpa is an important set to consider because it will be shown that it is
a convex closed subset of VP(X) that characterizes fi, that is Mpﬁl = Mpaz if and
only if ﬁl = ﬁz. The first result deals with the case of a o-finite space where
the values of fi are weakly compact subsets of X. With certain additional assump-
tions and using a Radon-Nikodym theorem of Tolstonogov (8], we show that if
Mpﬁ\1 # ¢, then a sequence {mn} of selectors in VP(X) exists with {mn(Aﬂ>dense in
A(A) for all A. This remains true if the values of @ are assumed to be strongly
convex and closed instead of weakly compact.

Next the case where the underlying space is finite is considered. Under
certain assumptions using a Radon-Nikodym theorem of Costé {3], the same result

is arrived at. These two results are thus along the line of results shown in

[6]. Next a new space is naturally introduced, the space AMpﬂ which is the

1
space of all measures of the form E%ié%l TA; where m'i are selectors of
r .
i
Ajem

and where 1 denotes a partition (finite), r is the underlying measure and TA;

is the contraction of r to A;. A result establishes the relation between AMPa,
AMpﬁl, and AMpﬁ2 where i = @] + fly. Also it is shown that Mpﬁ(:clAMpﬁ. Finally
the case where m has absolutely closed convex values is considered.

2. NOTATIONS AND PERTINENT RESULTS

The purpose of this section is to present some concepts and state some
results that are needed to show our results.

Let X denote a Banach space. It is said that X has the Radon-Nikodym
property if @very X-valued measure with finite variation has a density relative
to its variation. Tt is known that reflexive spaces and separable dual spaces

have that property. Throughout this paper we assume p > 1.
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Let I denote a O-algebra of subsets of a set 2. Let r denote a finitely
additive positive set function defined on I. Let F be a finitely additive set

function from I into X with the property r(A) = 0 implies F(A) = 0, and

T r(E )p-1
Enen

where m denotes a finite collection of disjoint subsets of B where B € [

and r(En) < o,

Now F is said to have finite p-variation if IP(F) = Ip(F,Q) < o,

Let F (*) = 3 FEy) rlE, N ()], and AP(X) denote the set of finitely
m r(Ep)
E em
n
additive set functions F mapping I into X with finite p-variation and with the
property r(A) = 0 implies F(A) = O.
Let Vp(X) be the submanifold of Ap(X) consisting of r-continuous set

functions, that is lim ||F(E)|| = 0.
u(E)~>0

It is shown in [9] that when p > 1, AP(X) = Vp(X).

We denote by NP(F) = Ip(F)llp. It is also shown that Vp(X) is a Banach
space under the norm Np. Moreover the set functions of the form F1r form a
dense subset of VP(X) provided that X has the Radon-Nikodym property and p > 1.

Let F be a function from Q@ into the non-empty closed bounded convex subsets

of X. If F has weakly compact values, we define, following Tolstonogov [8],

SFdr {ffdrlfeL'(r) and f(w)eF(w) a.e.}

Otherwise,

Fdr = cl{ffdr|feL'(r) and f(w)eF(w) a.e.}
Let ﬁc denote the non-empty bounded closed convex subsets of X. Following
[6]1 we define

A + B = c1{A+B} for Aeﬁé, Bef..
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If m: I - ﬁc’ then i is called a multi-measure if

B(UA) = *3f(Ap) = lim [8(A)) + fi(Ap) + ... + B(Ap)]

n
For every sequence of disjoint sets Ai € I where the limit is with respect to the
Hausdorff metric (It is shown in [6] that + is an abelian and associative
operation on ﬁc).

The reader is referred to [3] and [8] for Radon-Nikodym theorems pertaining
to multimeasures. If Asie, |A| will denote the Hausdorff distance between {0}

and A, that is

|A] = sup ||x]]
XeEA

Also acoS will refer to the absolute convex envelope of a subset S of X,

that is acoS is the set of all finite sums of the form

o with s;eS and Zlailsl

i%1
Of course, acoS denotes the closure of acoS. Finally X is said to have
property P if its dual space X' has a sequence {x%} that separates points of X.
3. MAIN RESULTS
Let 1 denote a multi-measure from I into ic and let Mpﬁ denote all measures

m: I - X such that m(A)efi(A) for all Aef with meVP(X) that is Mpﬁ is the set of

all "selectors of fi" that are in VP(X). Mpﬁ is a closed subset of Vp(X).

PROOF. Let Ael with r(A) < =. Let mjeMPy with N (m-m;)>0 and meVP (X).
Now for € > 0 and i large enough:
| Im(a)-my (&) | [P

r(A)p_1

<€

Since m(A) is closed it follows that m(A)efi(A). Thus meMpﬁ. Let (2,Z,)) denote

a T-finite space. Let iw denote all weakly compact convex subsets of X, We

assume that the convex hull of the average range of m is relatively weakly compact,

that is |}%{%%1KEZ,K<:E,O<A(K)<m is relatively compact for every E € I.
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THEOREM 2. Let m be a multi-measure from I into X, Assume that
(1) The convex hull of the average range of m is relatively compact.
(2) The space X' is separable (in particular X' satisfies P).
(3) For every e>0 there exists 6>0 such that A(A)<S implies |m(A)|<e.
(4) X has the Radon-Nikodym property.
Then if Mpﬁ # ¢ for p > 1, then there exists {m,} a sequence in Mpm such that
m(A) = cl{m,(A)} for every A e I.
PROOF. From (2) and [6] it follows that there exists a sequence {cn} where
o, are selectors of fi with m(A) = cl{o (A)} for Ae I, o, are X-valued measures.
Now A(A) = O implies m(A) = {0} by (3). Thus 0 <<X. Now (4) implies
Vn(A) = fAfndA for some fneL’x(A) and all AerX.
By a theorem of [8], (1) implies that there exists a function F from Q into ﬁw
such that m(A) = fAFdX. Thus fAfndkefAFdA for all AcZ, We now show that this
implies f,(w)eF(w) a.e,
Let fAhdkefAFdA for all AeZ, Let {xg} be a dense sequence in X'. Then
x€F(w) if and only if <x,x:> < sup<y,x¥> for all n.
This is because F(w) is convex, closed anz)gézided. If h(w) ¢ F(w) on a set

of positive measure then there exists Ael and n such that A(A) > 0 and

<h(w),x¥> > sup <y,x;> over A

yeF (w)
Consequently
<fphdr, x%> = fA<h,xﬁ>dk > [, sup  <y,x#>dA
yeF (w)
> sup fAfg(w),x§>dX 2 sup < ngdX,x§>
g(w)eF(w) g(w)eF(w)

Thus ngdkicl{ngdAIg(w)eF(w)}. This contradicts /,hde/,FdX for all AcI,

Thus fn(w)eF(w) a.e, for all n.
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14 = P
Now let m eM® then mo(4) = Spf,dX and by [9], feL X
Let Aj’] = {w|1-1<||fj||s1} where 1 is a positive integer. Let {Ay} be a

partition of Q such that A(Ap)<=. Let
Byator = A Ak RIS TR IS IS RS
clearly sj,],keLﬁ. Define mj’]’k(A) =S5 sj,1,kdk . By [9]

mj,],kevp(x), also my 1K€ Mpa since

By (8) = O (ANANA )+ mo(AnB'y | )eR(A).

All finite sums of the form I ﬁ(Af?Akf A. ,) + IM(A A (" A! ;) are dense in
Kk 351 Kk k Jv]
m(A) (for j and 1 fixed) and since
A(A'j ]) +0as | > » (for j fixed) it is easy to see that (3) implies
t ]

that all finite sums of the form

I m,,., (A) are dense in fm(A) as j and 1 range over the
k 3 1’k

positive integers.
These finite sums form the desired sequence {mn}.
This completes the proof.
Let ﬁs denote all bounded closed non-empty, strictly convex subsets of X,

that is Aeﬁs implies that for all x'eX' there exists a unique xeX such that

x'(x) = sup {x"(y)]|yeAl}.
COROLLARY 3. Let (Q,Z,A) be a o-finite measure space. Let fi be a
multimeasure from I into ks assume
(1) f is of the form @a(A) = J,Fd) vhere F(w)eﬁc.
(2) X' is separable.
(3) X has the Radon-Nikodym property.

Then if Mpﬁ # ¢ for p > 1, then there exists a sequence {m,} in Mpﬁ such that
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m(A) = cl{m_ (A)} for all A e ZI.

PROOF. From a result in [6] and since i has values in ﬁs the existence of
the sequence {on} as defined in the proof of theorem 2 follows., The rest of the
proof follows as in Theorem 2.

We now consider a measure i from I into ﬁc' We define the variation of @ by

Iﬁl = sup EIﬁ(Ai)I where the sup is over finite collections of disjoint
sets A;.

We consider the case where (2,Z,u) is a finite measure space.

THEOREM 4. Let (Q,Z,u) be a finite measure space. Let m be a multimeasure
from I into ﬁc' Assume:

(1) f has o-finite variation.

(2) u(a) = 0 implies @m(A) = {0}.

(3) X' is separable.

(4) X has the Radon-Nikodym property.

Then if Mpﬁ # ¢ for p > 1 then there exists a sequence {mn} in Mpﬁ such that

f(A)

cl{mn(A)} for all A € I.

PROOF., From a result in [2] and since fi takes values in ﬁc and since (2)
holds, fi is uniformly continuous with respect to p. Since p is finite by a
result of [3] it follows that there exists a function F from Q into ﬁc such that
m(A) = /,Fdu for all A € I.

The rest of the proof proceeds as in Theorem 2.

We now show that Mpﬁ characterizes fi.

COROLLARY 4. Let ﬁl and ﬁz be two multimeasures. Under the hypothesis of
theorem 2 or theorem 4

WP = n, if and only if fiy = f.
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PROOF. The proof follows immediately from the statement m(A) = cl{mn(Aj}.

PROPOSITION 5. Let i be a multimeasure from I into ic of finite variation
and having no atoms. Assume X has the Radon-Nikodym property then Mpﬁ is a
convex set,

PROOF, From a result in [2] and since @ has no atoms, fi(A) is convex for
all A € Z, It is then straight-forward to check that Mpﬁ is convex.

From now on y will denote )X when the hypothesis of theorem 2 are verified
and # when the hypothesis of theorem 4 are verified. Recall that we use the
word "partition" as in [9] that is a finite collection of disjoint subsets of
finite measure.

THEOREM 6. Assume the hypothesis of theorem 2 or of theorem 4 and assume
Mpﬁ # ¢. Then there exists a sequence {my} in Mpﬁ such that for € > 0 and

meMPa there exists a partition m, such that if refines m, then there is a
m p 0

0

subset {min} of {mj} such that

m; (Ep)
N m—z__j;n._E_n__YE < g
P Een Y(E)) n
n
where Yp denotes the contraction of Y to E,.
n
PROOF, Let € > 0, meMpﬁ. By [9] there exists a partition = such that if

m refines m; then

m(E )Yg ]

N m-
p EnETI‘ Y(En)

< ef2.

By theorem 2 or theorem 4 there exists a sequence {m{} in Mpa such that
m(E) = cl{mi(E)} for all E ¢ I,

Let €' > O then there exists an integer in such that

lImg_(E)-mE)]] <.
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Now

< m(E)) N omy (Ep)
N n) _y, - , _in_ 1 y
p [ﬁéﬂv'(rznj' Ey EnLéw Y(Ey) En

N m(E )-mi_(E.)
< L,NP _H_Y(EJ;)_E_ﬂ_YEn and

1
RGO | nEDmegED [P YEacay)®
P Ty B . Y(E )P VPl
En J m Ajen h|

g'P [YE (A1) ] -1 e'?
n(Aj (A9) ¢
YEIT W S LYy TS Yy
clearly ¢' may be picked so that

N/, fff&l:finigal < gf2.

P EET Y (Ep) YEn
This finishes the proof.
Motivated by the above theorem we define AMPﬁ to be the set of all finite

m' i (Ai) '
sums of the form I —LL- where m' eMPgs.
Ajer Y(AD) A4

If @; and fi, are multimeasures from I into ﬁc we define
(@, + fip) (A) = i (A) + fix(A).

Also let AMpﬁ1 &% A&ﬂﬂaz be the set of all finite sums of the form

mii(A1) + my; (A4)

14 P
'Y(Ai) YA:'L with m]'_iEM ﬁl, méieM mye

Aieﬂ

That is the partition 7 is kept the same for fi; and fij.

THEOREM 7. Let @ = ﬁl + fiy. Under the hypothesis of theorem 2 or theorem 4

cl{AMPy} = cl{aMPs, @ AMPg,}.
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PROOF. By theorem 2 or theorem 4 there exists sequences {mj}, {m;},
{mp;}, m, MPg, Mpﬁl, Mpﬁz such that

m(A) = cl{m;(a)}, @ (A) = clim;(A)}, my(A) = C1{m21(A)} for A e I.

Consider y m'i(Ai) ¥ then as in theorem 6 one may pick €' > 0 small enough
I = s Yy P 8

Y(Ai)
so that A
m'i(Ai) my Ai Ya.l < €
[ Im'; (Ag)-mg (A7) || <€’ implies N, [2 VG Yoy -2 Y(&;) Ai!
[ <4

Since fi(A) = cl{mli(A)+m2j(A)} again let

llmi(Ai)-(mlki+m211)(Ai)||<e "where €" is small enough so that

A-
e T_)_;) Ya, -y Mukitmoan) (A1) vy

N | Z
i Y(A1) i

P < g, This shows that

clAMPLC el ’:AMpﬁl ) AMpm] . Since m'y (Ap)+m'y  (Ag)ef) (Ay)Hip (Ay),
the converse is also clear.
Let us note that if Mpﬁl # b, Mpﬁz # ¢ then whenever fi satisfies the above
hypothesis, fi; and fi do.

1
Let T be the partition {Ai}’ let o, = I ELlﬁéll YAi where m'ieMpﬁ
Ader Y(Ai)

Now let fi be a multimeasure from I into ﬁc, define (aco 1) (A) = aco(m(A)).
PROPOSITION 8. The followingare true.
(1) If fi is an ﬁc valued multimeasure, then so is aco f.
(2) MP.Cc1am’y.
(3) Let w = {Ai} be a partition and assume that the values of fi are
absolutely convex sets in ic. Then c“(A)eﬁ(A) whenever 1 is a partition of A with

Z YA
Y&

LET
A1

PROOF. We would like to show @To @ (LfAi) = +Z*® 3aco S(Ai) for any
i=1 i=1

sequence of disjoint sets Ai'
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Now the proof in [5] (p. 415) shows with obvious modifications that
aco(A+B) = aco A + aco B, Thus
aco(A+B) . aco A + aco B and by continuity of +
aco A + acé B .acoA+acoB = aco (A+B)

Thus aco A + aco B = aco (A+B) and by induction

T [-zn (A | = -1 aco n(a,)
i=1 ST

By a result of [4], J[aco A, aco B] < J[A,B] where A and B are in ﬁc and
J denotes the Hausdorff metric. Thus letting n go to infinity

. > o
aco i:Z ﬁ(Aizj = °*% aco ﬁ(Ai)
-i=1 i=1

This shows the first part of the theorem.
Mpﬁ{AClAMpa follows from [9] since F, are dense in VP(X). Finally let
P
cﬂe AM f Then
m!(A) (An A
i A)= T m'(A,) L(ApN A7)
Ajem VZAisYAi ®) Ajer 1 Y (A1)

ANA{ ~ ~
If 1 lﬁ_é%ﬁ%% <1 since mi(Ai)eﬁ(Ai)C:m(A) (this because Oefi(B) if @(B) is

absolutely convex for all BeX) this implies ow(A)eﬁ(A).
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