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1. Introduction. Cho et al. [1] proved a common fixed point theorem for compatible

mappings of type (A) in non-Archimedean (NA) Menger PM-space. The aim of this

paper is to generalize the results of Cho et al. [1] for weak compatible mappings of

type (A) in a 2 NA Menger PM-space.
We first give some definitions and notations.

Definition 1.1. Let X be any nonempty set and D the set of all left-continuous

distribution functions. An ordered pair (X,F) is said to be a 2 non-Archimedean prob-
abilistic metric space (briefly 2 NA PM-space) if F is a mapping from X×X×X into
D satisfying the following conditions where the value of F at x,y,z ∈ X ×X ×X is
represented by Fx,y,z or F(x,y,z) for all x,y,z ∈X such that

(i) Fx,y,z(t)= 1 for all t > 0 if and only if at least two of the three points are equal.
(ii) Fx,y,z = Fx,z,y = Fz,y,x .
(iii) Fx,y,z(0)= 0.
(iv) If Fx,y,s(t1)= Fx,s,z(t2)= Fs,y,z(t3)= 1, then Fx,y,z(max{t1, t2, t3})= 1.
Definition 1.2. A t-norm is a function ∆ : [0,1]× [0,1]× [0,1] → [0,1] which is

associative, commutative, nondecreasing in each coordinate, and ∆(a,1,1) = a for
every a∈ [0,1].

Definition 1.3. A 2 NA Menger PM-space is an ordered triplet (X,F,∆), where ∆
is a t-norm and (X,F) is a 2 NA PM-space satisfying the following condition

Fx,y,z
(
max

{
t1, t2, t3

})

≥∆(Fx,y,s
(
t1
)
,Fx,s,z

(
t2
)
,Fs,y,z

(
t3
)) ∀x,y,z ∈X, t1, t2, t3 ≥ 0.

(1.1)

Definition 1.4. Let (X,F,t) be a 2 NAMenger PM-space and t a continuous t-norm,
then (X,F,t) is Hausdorff in the topology induced by the family of neighborhoods

{
Ux
(
ε,λ,a1,a2, . . . ,an

)
; x,ai ∈X, ε > 0, i= 1,2, . . . ,n, n∈ Z+

}
, (1.2)

where Z+ is the set of all positive integers and

Ux
(
ε,λ,a1,a2, . . . ,an

)= {y ∈X; Fx,y,ai(ε) > 1−λ, 1≤ i≤n
}

=∩ni=1
{
y ∈X; Fx,y,ai(ε) > 1−λ, 1≤ i≤n

}
.

(1.3)
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Definition 1.5. A 2 NA Menger PM-space (X,F) is said to be of type (C)g if there
exists a g ∈Ω such that

g
(
Fx,y,z(t)

)≤ g(Fx,y,a(t)
)+g(Fx,a,z(t)

)+g(Fa,y,z(t)
) ∀x,y,z,a∈X, t ≥ 0, (1.4)

where Ω = {g | g : [0,1] → [0,∞) is continuous, strictly decreasing, g(1) = 0, and
g(0) <∞}.

Definition 1.6. A 2 NA Menger PM-space (X,F,∆) is said to be of type (D)g if
there exists a g ∈Ω such that

g
(
∆
(
t1, t2, t3

))≤ g(t1
)+g(t2

)+g(t3
) ∀t1, t2, t3 ∈ [0,1]. (1.5)

Remark 1.7. If 2 NA Menger PM-space (X,F,∆) is of type (D)g , then (X,F,∆) is of
type (C)g .

Throughout this paper, let (X,F,∆) be a complete 2 NA Menger PM-space with a
continuous strictly increasing t-norm∆. Letφ : [0,∞)→ [0,∞) be a function satisfying
the condition (Φ) φ is upper semi-continuous from right and φ(t) < t for all t > 0.

Lemma 1.8. If a function φ : [0,∞)→ [0,∞) satisfies the condition (Φ), then we get

(1) For all t ≥ 0, limn→∞φn(t)= 0, where φn(t) is the nth iteration of φ(t).
(2) If {tn} is a nondecreasing sequence of real numbers and tn+1 ≤φ(tn),n= 1,2, . . . .

Then limn→∞ tn = 0. In particular, if t ≤φ(t) for all t ≥ 0, then t = 0.

Lemma 1.9. Let {yn} be a sequence in X such that limn→∞Fyn,yn+1,a(t) = 1 for all

t > 0. If the sequence {yn} is not a Cauchy sequence in X, then there exist ε0 > 0, t0 > 0,

and two sequences {mi} and {ni} of positive integers such that

(i) mi >ni+1 and ni→∞ as i→∞.

(ii) Fymi ,yni ,a(t0) < 1−ε0 and Fymi−1,yni ,a(t0)≥ 1−ε0, i= 1,2, . . . .
Definition 1.10. LetA,S :X →X bemappings,A and S are said to be compatible if

lim
n→∞g

(
FASxn,SAxn,a(t)

)= 0 ∀t > 0, a∈X, (1.6)

when {xn} is a sequence in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X. (1.7)

Definition 1.11. Let A,S :X →X be mappings, A and S are said to be compatible
of type (A) if

lim
n→∞g

(
FASxn,SSxn,a(t)

)= 0= lim
n→∞g

(
FSAxn,AAxn,a(t)

) ∀t > 0, a∈X, (1.8)

when {xn} is a sequence in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X. (1.9)
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Definition 1.12. Let A,S : X → X be mappings, A and S are said to be weak com-
patible of type (A) if

lim
n→∞g

(
FASxn,SSxn,a(t)

)≥ lim
n→∞g

(
FSAxn,SSxn,a(t)

)
,

lim
n→∞g

(
FSAxn,AAxn,a(t)

)≥ lim
n→∞g

(
FASxn,AAxn,a(t)

) ∀t > 0, a∈X, (1.10)

whenever {xn} is a sequence in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X. (1.11)

Proposition 1.13. Let A,S : X → X be continuous mappings. If A and S are com-

patible of type (A), then they are weak compatible of type (A).

Proof. Suppose that A and S are compatible of type (A). Let {xn} be a sequence
in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X, (1.12)

then

lim
n→∞g

(
FSAxn,SSxn,a(t)

)= 0
≤ lim
n→∞g

(
FASxn,SSxn,a(t)

)

�⇒ lim
n→∞g

(
FASxn,SSxn,a(t)

)≥ lim
n→∞g

(
FSAxn,SSxn,a(t)

)
.

(1.13)

Similarly, we can show that

lim
n→∞g

(
FSAxn,AAxn,a(t)

)= 0
≥ lim
n→∞g

(
FASxn,AAxn,a(t)

)
.

(1.14)

Therefore, A and S are weak compatible of type (A).

Proposition 1.14. Let A,S : X → X be weak compatible mappings of type (A). If

one of A and S is continuous, then A and S are compatible of type (A).

Proof. Let {xn} be a sequence in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X. (1.15)

Suppose S is continuous so SSxn,SAxn → Sz as n → ∞. Since A and S are weak
compatible of type (A), so we have

lim
n→∞g

(
FASxn,SSxn,a(t)

)≥ lim
n→∞g

(
FSAxn,SSxn,a(t)

)

= lim
n→∞g

(
FSz,Sz,a(t)

)= 0. (1.16)

Thus

lim
n→∞g

(
FASxn,SSxn,a(t)

)= 0. (1.17)

Similarly,

lim
n→∞g

(
FSAxn,AAxn,a(t)

)= 0. (1.18)

Hence A and S are compatible of type (A).
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Proposition 1.15. Let A,S : X → X be continuous mappings. Then A and S are

compatible of type (A) if and only if A and S are weak compatible of type (A).

Note that Proposition 1.15 is a direct consequence of Propositions 1.13 and 1.14.

Proposition 1.16. Let A,S : X → X be mappings. If A and S are weak compatible

of type (A) and Az = Sz for some z ∈X. Then SAz =AAz =ASz = SSz.

Proof. Suppose that {xn} is a sequence in X defined by xn = z, n = 1,2, . . . , and
Az = Sz for some z ∈ X. Then we have Axn,Sxn → Sz as n→∞. Since A and S are
weak compatible of type (A) so

lim
n→∞g

(
FASxn,SSxn,a(t)

)≥ lim
n→∞g

(
FSAxn,SSxn,a(t)

)
,

lim
n→∞g

(
FSAxn,AAxn,a(t)

)≥ lim
n→∞g

(
FASxn,AAxn,a(t)

)
.

(1.19)

Now

lim
n→∞g

(
FSAz,AAz,a(t)

)= lim
n→∞g

(
FSAxn,AAxn,a(t)

)≥ lim
n→∞g

(
FASxn,AAxn,a(t)

)

= g(FASz,SSz,a(t)
)
.

(1.20)

Since Sz =Az, then SAz =AAz. Similarly, we have ASz = SSz. But Az = Sz for z ∈X
implies that AAz =ASz = SAz = SSz.

Proposition 1.17. Let A,S : X → X be weak compatible mappings of type (A) and

let {xn} be a sequence in X such that limn→∞Axn = z = limn→∞Sxn for some z ∈ X,

then

(1) limn→∞ASxn = Sz if S is continuous at z.

(2) SAz =ASz and Az = Sz if A and S are continuous at z.

Proof. Suppose that S is continuous and {xn} is a sequence in X such that

lim
n→∞Axn = z = limn→∞Sxn for some z ∈X, (1.21)

so

SSxn �→ Sz as n �→∞. (1.22)

Since A and S are weak compatible of type (A), we have

g
(
FASxn,Sz,a(t)

)= lim
n→∞g

(
FASxn,SSxn,a(t)

)

≥ lim
n→∞g

(
FSAxn,SSxn,a(t)

)
�→ 0 as n �→∞ (1.23)

for all t > 0 which implies that ASxn→ Sz as n→∞.
(2) Suppose that A and S are continuous at z. Since Axn → z as n → ∞ and S is

continuous at z, by Proposition 1.17(1) ASxn→ Sz as n→∞. On the other hand, since
Sxn→ z as n→∞ and A is also continuous at z, ASxn→Az as n→∞. Thus Az = Sz
by the uniqueness of the limit and so by Proposition 1.16, SAz =AAz =ASz = SSz.
Therefore, we have ASz = SAz.

Theorem 1.18. Let A,B,S,T :X →X be mappings satisfying

(i) A(X)⊂ T(X), B(X)⊂ S(X),
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(ii) the pairs A,S and B,T are weak compatible of type (A),
(iii) S and T is continuous,

(iv) g(FAx,By,a(t))≤φ(max{g(FSx,Ty,a(t)),g(FSx,Ax,a(t)),g(FTy,By,a(t)),
(1/2)(g(FSx,By,a(t))+g(FTy,Ax,a(t)))}),

for all t > 0, a ∈ X where a function φ : [0,∞) → [0,∞) satisfies the condition (Φ).
Then by (i) since A(X) ⊂ T(X), for any x0 ∈ X, there exists a point x1 ∈ X such that

Ax0 = Tx1. Since B(X) ⊂ S(X), for this x1, we can choose a point x2 ∈ X such that

Bx1 = Sx2 and so on, inductively, we can define a sequence {yn} in X such that

y2n =Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2, for n= 0,1,2, . . . . (1.24)

First we prove the following lemma.

Lemma 1.19. Let A,S :X →X be mappings satisfying conditions (i) and (iv), then the

sequence {yn} defined by (1.24), such that

lim
n→∞g

(
Fyn,yn+1(t)

)= 0 ∀t > 0, a∈X, (1.25)

is a Cauchy sequence in X.

Proof. Since g ∈ Ω, it follows that limn→∞(Fyn,yn+1,a(t)) = 0 for all a > 0, a ∈ X
if and only if limn→∞g(Fyn,yn+1,a(t)) = 0 for all t > 0. By Lemma 1.9, if {yn} is not
a Cauchy sequence in X, there exist ε0 > 0, t0 > 0, and two sequences {mi},{ni} of
positive integers such that

(A)mi >ni+1 and ni→∞ as i→∞,
(B) g(Fymi ,yni ,a(t0)) > g(1−ε0) and g(Fymi−1,yni ,a(t0))≤ g(1−ε0), i= 1,2, . . . , since

g(t)= 1−t. Thus we have

g
(
1−ε0

)
<g

(
Fymi ,yni ,a

(
t0
))

≤ g(Fymi ,yni ,ymi−1
(
t0
))+g(Fymi ,ymi−1 ,a

(
t0
))+g(Fymi−1,yni ,a

(
t0
))

≤ g(Fymi ,yni ,ymi−1
(
t0
))+g(Fymi ,ymi−1,a

(
t0
))+g(1−ε0

)
.

(1.26)

As i→∞ in (1.26), we have

lim
n→∞g

(
Fymi ,yni ,a

(
t0
))= g(1−ε0

)
. (1.27)

On the other hand, we have

g
(
1−ε0

)
< g

(
Fymi ,yni ,a

(
t0
))

≤ g(Fymi ,yni ,yni+1
(
t0
))+g(Fymi ,yni+1,a

(
t0
))+g(Fyni+1,yni ,a

(
t0
))
.

(1.28)

Now, consider g(Fymi ,yni+1,a(t0)) in (1.28), assume that both ni andmi are even. Then
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by (iv), we have

g
(
Fymi ,yni+1,a

(
t0
))= g(FAxmi ,Bxni+1,a

(
t0
))

≤φ(max{g(FSxmi ,Txni+1,a
(
t0
))
,

g
(
FSxmi ,Axmi ,a

(
t0
))
,g
(
FTxni+1,Bxni+1,a

(
t0
))
,

1
2

(
g
(
FSxmi ,Bxni+1,a

(
t0
))+g(FTxni+1,Bxni+1,a

(
t0
)))})

=φ(max{g(Fymi−1,yni ,a
(
t0
))
,

g
(
Fymi−1,ymi ,a

(
t0
))
,g
(
Fyni ,yni+1,a

(
t0
))
,

1
2

(
g
(
Fymi−1,yni+1,a

(
t0
))+g(Fyni ,ymi ,a

(
t0
)))})

.
(1.29)

By (1.27), (1.28), and (1.29), letting i→∞ in (1.29), we have

g
(
1−ε0

)≤φ(max{g(1−ε0
)
,0,0,g

(
1−∈0

)})=φ(g(1−ε0
))
< g

(
1−ε0

)
, (1.30)

which is a contradiction. Therefore, {yn} is a Cauchy sequence in X.
Now, we prove our main theorem.

If we prove limn→∞g(Fyn,yn+1,a(t)) = 0 for all t > 0, then by Lemma 1.19, the se-
quence {yn} defined by (1.24) is a Cauchy sequence in X.
First we prove limn→∞g(Fyn,yn+1,a(t))= 0 for all t>0. In fact, by Theorem 1.18(iv)

and (1.24), we have

g
(
Fy2n,y2n+1,a(t)

)= g(FAx2n,Bx2n+1,a(t)
)

≤φ(max{g(FSx2n,Tx2n+1,a(t)
)
,

g
(
FSx2n,Ax2n,a(t)

)
,g
(
FTx2n,Bx2n+1,a(t)

)
,

1
2

(
g
(
FSx2n,Bx2n+1,a(t)

)+g(FTx2n+1,Ax2n,a(t)
))})

=φ(max{g(Fy2n−1,y2n,a(t)
)
,

g
(
Fy2n−1,y2n,a(t)

)
,g
(
Fy2n,y2n+1,a(t)

)
,

1
2

(
g
(
Fy2n−1,y2n+1,a(t)

)+g(1))})

≤φ(max{g(Fy2n−1,y2n,a(t)
)
,g
(
Fy2n,y2n+1,a(t)

)
,

g
(
Fy2n−1,y2n,a(t)

)+g(Fy2n,y2n+1,a(t)
)})

(1.31)

if g(Fy2n−1,y2n,a(t)) ≤ g(Fy2n,y2n+1,a(t)) for all t > 0, then by Theorem 1.18(iv),

g(Fy2n,y2n+1,a(t))≤φ(g(Fy2n,y2n+1,a(t))) and thus, by Lemma 1.8, g(Fy2n,y2n+1,a(t))=0 for
all t>0. Similarly, we haveg(Fy2n+1,y2n+2,a(t))=0, thuswe have limn→∞g(Fyn,yn+1,a(t))
= 0 for all t > 0. On the other hand, if g(Fy2n−1,y2n,a(t)) ≥ g(Fy2n,y2n+1,a(t)), then by
Theorem 1.18(iv), we have

g
(
Fy2n,y2n+1,a(t)

)≤φ(g(Fy2n−1,y2n,a(t)
)) ∀t > 0. (1.32)
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Similarly,

g
(
Fy2n+1,y2n+2,a(t)

)≤φ(g(Fy2n,y2n+1,a(t)
)) ∀t > 0, (1.33)

hence

g
(
Fyn,yn+1,a(t)

)≤φ(g(Fyn−1,yn,a(t)
)) ∀t > 0, n= 1,2,3, . . . , (1.34)

therefore by Lemma 1.8,

lim
n→∞g

(
Fyn,yn+1,a(t)

)= 0 ∀t > 0, (1.35)

which implies that {yn} is a Cauchy sequence in X by Lemma 1.19. Since (X,F,∆) is
complete, the sequence {yn} converges to a point z ∈ X and so the subsequences

{Ax2n}, {Bx2n+1}, {Sx2n}, and {Tx2n+1} of {yn} also converge to the limit z.
Now, suppose that T is continuous. Since B and T are weak compatible of type (A),

by Proposition 1.17, BTx2n+1,TTx2n+1 tend to Tz as n tends to ∞. Putting x = x2n
and y = Tx2n+1 in Theorem 1.18(iv), we have

g
(
FAx2n,BTx2n+1,a(t)

)

≤φ(max{g(FSx2n,TTx2n+1,a(t)
)
,g
(
FSx2n,Ax2n,a(t)

)
,g
(
FTTx2n+1,BTx2n+1,a(t)

)
,

1
2

(
g
(
FSx2n,BTx2n+1,a(t)

)+g(FTTx2n+1,Ax2n,a(T)
))}) ∀t > 0.

(1.36)

Letting n→∞ in (1.36), we get

g
(
Fz,Tz,a(t)

)≤φ(max{g(Fz,Tz,a(t)
)
,g
(
Fz,z,a(t)

)
,g
(
FTz,Tz,a(t)

)
,

1
2

(
g
(
Fz,Tz,a(t)

)+g(FTz,z,a(t)
))})

=φ(g(Fz,Tz,a(t)
)) ∀t > 0,

(1.37)

which means that g(Fz,Tz,a(t))= 0 for all t > 0 by Lemma 1.8 and so we have Tz = z.
Again replacing x by x2n and y by z in Theorem 1.18(iv), we have

g
(
FAx2n,Bz,a(t)

)≤φ(max{g(FSx2n,Tz,a(t)
)
,g
(
FSx2n,Ax2n,a(t)

)
,g
(
FTz,Bz,a(t)

)
,

1
2

(
g
(
FSx2n,Bz,a(t)

)+g(FTz,Ax2n,a(t)
))}) ∀t > 0.

(1.38)

Letting n→∞ in (1.38), we get

g
(
Fz,Bz,a(t)

)≤φ(max{g(Fz,z,a(t)
)
,g
(
Fz,Bz,a(t)

)
,g
(
Fz,Bz,a(t)

)
,

1
2

(
g
(
Fz,Bz,a(t)

)+g(Fz,z,a(t)
))}) ∀t > 0,

(1.39)

which implies that g(Fz,Bz,a(t)) ≤ φ(g(Fz,Bz,a(t))) for all t > 0 and so we have Bz =
z. Since B(x) ⊂ S(X), there exists a point w ∈ X such that Bz = Sw = z. By using
condition Theorem 1.18(iv) again, we have

g
(
FAw,z,a(t)

)= g(FAw,Bz,a(t)
)

≤φ(max{(FSw,Tz,a(t)
)
,g
(
FSw,Aw,a(t)

)
,g
(
FTz,Bz,a(t)

)
,

1
2

(
g
(
FSw,Bz,a(t)

)+g(FTz,Aw,a(t)
))})

≤φ(g(FAw,z,a(t)
)) ∀t > 0,

(1.40)
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which means that Aw = z. Since A and S are weak compatible mappings of type
(A) and Aw = Sw = z, by Proposition 1.16, Az = ASw = SSw = Sz. Again by using
Theorem 1.18(iv), we have Az = z.
Therefore, Az = Bz = Sz = Tz = z, that is, z is a common fixed point of the given

mappings A,B,S,T . The uniqueness of the common fixed point z follows easily from
Theorem 1.18(iv).

Remark 1.20. In Theorem 1.18, if S and T are continuous, then by Proposition
1.15, the theorem is true even though the pairs A,S and B,T are compatible of type
(A) instead of the condition (ii).

Application

Theorem 1.21. Let (X,F,t) be a complete 2 NA Menger PM-space and A,B,S, and

T be the mappings from the product X×X to X such that

A
(
X×{y})⊆ T(X×{y}), B

(
X×{y})⊆ S(X×{y}),

g
(
FA(T(x,y),y),T(A(x,y),y),a(t)

)≤ g(FA(x,y),T(x,y),a(t)
)
,

g
(
FB(S(x,y),y),S(B(x,y),y),a(t)

)≤ g(FB(x,y),S(x,y),a(t)
)
,

(1.41)

for all t > 0. If S and T are continuous with respect to their direct argument and

g
(
FA(x,y),B(x′,y′),a(t)

)

≤φ(max{g(FS(x,y),T(x′,y′),a(t)
)
,

g
(
FS(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),B(x′,y′),a(t)

)
,

1
2

(
g
(
FS(x,y),B(x′,y′),a(t)

)+g(FT(x′,y′),A(x,y),a(t)
))})

(1.42)

for all t > 0 and x,y,x′,y ′ in X, then there exists only one point b in X such that

A(b,y)= S(b,y)= B(b,y)= T(b,y) ∀y in X. (1.43)

Proof. By (1.42),

g
(
FA(x,y),B(x′,y′),a(t)

)

≤φ(max{g(FS(x,y),T(x′,y′),a(t)
)
,

g
(
FS(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),B(x′,y′),a(t)

)
,

1
2

(
g
(
FS(x,y),B(x′,y′),a(t)

)+g(FT(x′,y′),A(x,y),a(t)
))})

(1.44)

for all t > 0, therefore by Theorem 1.18, for each y in X, there exists only one x(y)
in X such that

A
(
x(y),y

)= S(x(y),y)= B(x(y),y)= T(x(y),y)= x(y), (1.45)
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for every y,y ′ in X

g
(
Fx(y),x(y′),a(t)

)= g(FA(x(y),y),A(x(y′),y′),a(t)
)

≤φ(max{g(FA(x,y),A(x,,y′),a(t)
)
,

g
(
FA(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),A(x′,y′),a(t)

)
,

1
2

(
g
(
FA(x,y),A(x′,y′),a(t)

)+g(FA(x′,y′),A(x,y),a(t)
))})

= g(Fx(y),x(y′),a(t)
)
.

(1.46)

This implies that x(y)= x(y ′) and hence x(·) is some constant b ∈X so that

A(b,y)= b = T(b,y)= S(b,y)= B(b,y) ∀y in X. (1.47)
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