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PROPERTIES OF SOLUTIONS OF OPTIMIZATION
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Abstract. A definition of a special class of optimization problems with set functions is
given. The existence of optimal solutions and first-order optimality conditions are proved.
This case of optimal problems can be transformed to standard mixed problems of mathe-
matical programming in Euclidean space. It makes possible the applications of various al-
gorithms for these optimization problems for finding conditional extrema of set functions.
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1. Introduction. We present selected methods of solving the optimization prob-

lems for set functions. These functions are the maps defined on the family of measur-

able subsets of a given space. The optimization problems for the set functions rely on

finding its conditional extrema. Decision variables are the measurable sets, that is, the

elements of Mk for some fixed k ≥ 1, where M is a given σ -algebra. These problems
are specific; they appear rather rarely in applications in comparison with “ordinary”

problems of mathematical programming (with the functions defined on subsets of the

Euclidean space). The optimization problems for set functions appear in some prob-

lems ofmathematical statistics (estimation theory, robust analysis, testing hypothesis,

for example, the problem of choosing the best critical set can be formulated as the

problem of finding conditional extremum of special set functions, see, for example,

[1, 5, 7]). Another class of problems with set functions can appear during the consid-

erations of optimal traffic flows assignment in a given transportation network (cf. [3]).

This paper concentrates on computational aspects of solving optimization prob-

lems for set functions. The wide class of these problems is equivalent to the well-

known problems of mathematical programming in Euclidean space (e.g., when the set

functions have the form F(S)=u(∫S v), where u,v are given functions). This fact al-
lowed to obtain existence theorem and first-order optimality conditions (Theorems 2.1

and 2.2). For these problems it is not necessary to construct new methods of finding

solutions, because the known methods can be easily adapted and implemented.

The general case is much more complicated, because the domain of set functions

usually does not have a linear, closed or convex structure. In this situation, the num-

ber of solving procedures (such as gradient algorithms) are less useful, but one can

adapt and apply the evolution algorithms. Finally, we give some remarks about the

possibility of implementing this kind of methods.

2. Optimization problems for set functions. Formulation of the problem and ex-

istence of solution. Let (X,M,µ) be a measurable space, that is, X is a nonempty set,
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M is a σ -algebra of subsets of X, and µ :M → R is a bounded measure. Without loss
of generality, we can assume that µ is nonnegative. A map F :Mk→ R will be called a
set function.

The main problem relies on determining the conditional extremum of a given set

function.

Without loss of generality, we may assume that the problem is to determine the

minimal value of a given set function F0 :Mk→ R

F0(S) �→min, (2.1)

under some additional conditions (constraints)

(1) the conditions defined by the set functions Fi :Mk→ R, where i= 1, . . . ,s

Fi(S)≤ 0 (i= 1, . . . ,s); (2.2)

(2) the conditions concerning directly the measurable sets formulated in terms of

the characteristic functions of the sets from M

S ∈Mk, χS(x)∈ V, for µ-a.a. x ∈X, (2.3)

where V is a given subset of {0,1}k.
The problem (2.1), (2.2), and (2.3) represents a class of optimization problems. Only

some of them can be effectively solved. In this paper, we consider the problems in

which Fi (i= 1, . . . ,s) have the form

Fi(S)=ui
(∫

S1
v1dµ,. . . ,

∫
Sk
vkdµ

)
, (2.4)

where vj :X → Rq, vi ∈ L1(X,M,µ) (j = 1, . . . ,k, q ∈N).
Theorem 2.1. The consistent problem (2.1), (2.1), and (2.3) (there exists at least one

feasible solution), in which

(1) the functions Fi (i= 0,1, . . . ,s) have the form (2.4);

(2) u0 is lower-semicontinuous, ui (i= 1, . . . ,k) are continuous;

has an optimal solution.

Proof. By denoting aj =
∫
Sj vj dµ for j = 1, . . . ,k,

W =
{(∫

S1
v1dµ,. . . ,

∫
Sk
vkdµ

)
: S ∈Mk, χS(x)∈ V for µ-a.a. x ∈X

}
,

T = {x ∈ Rk :ui(x)≤ 0, for i= 1, . . . ,s},
(2.5)

the problem (2.1), (2.2), and (2.3) can be rewritten as

u0
(
a1, . . . ,ak

)
�→min, (2.6)

subject to (
a1, . . . ,ak

)∈ T ∩W. (2.7)
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By the generalized Lapunov convexity theorem if a measure µ is nonatomic, then the
set of its values {µ(S) : S ∈Mk} is convex (cf. [4]; some generalizations are proved in
[3]). The set T∩W is nonempty and compact. The Weierstrass theorem gives the exis-

tence of the optimal solution a∗ = (a∗1 , . . . ,a∗k ) of (2.6), (2.7). It follows from definition

of W , in (2.5), that there exists an element S∗ = (S∗1 , . . . ,S∗k )∈Mk, such that

a∗ =
(∫

S∗1
v1dµ,. . . ,

∫
S∗k
vkdµ

)
. (2.8)

This element is obviously the optimal solution of the problem (2.1), (2.2), and (2.3).

Of course, if u0 is upper-semicontinuous, then the problem (2.1), (2.2), and (2.3) with

maximization criterion in (2.1) has optimal solution. This completes the proof.

For the wide class of problems (2.1), (2.2), and (2.3), where the set functions have

the form (2.4), it is easy to obtain (from general theorems, see, for example, [2, 3]) the

necessary conditions for optimality.

Theorem 2.2. (1) If S∗ = (S∗1 , . . . ,S∗k ) is the optimal solution of (2.1), (2.2), and (2.3),

where Fi have the form (2.4), the measure µ is nonatomic, and the ui (i= 0, . . . ,s) are

differentiable, then there exist constants λ∗0 , . . . ,λ∗s ≥ 0 such that, for j = 1, . . . ,k and a

feasible solution S, ∫
X

�(x)·(χS(x)−χS∗(x))dµ(x)≥ 0, (2.9)

where for x ∈X,

�(x)=
s∑
i=0
λ∗i u

′
i

(∫
S∗1
v1dµ,. . . ,

∫
S∗k
vkdµ

)(
v1(x), . . . ,vk(x)

)′. (2.10)

(2) If conditions (2.2), (2.3) do not appear explicitly, then for j = 1, . . . ,k,

x ∈ S∗j �⇒
∂u0
∂xj

(∫
S∗1
v1dµ,. . . ,

∫
S∗k
vkdµ

)
vj(x)≤ 0;

x ∉ S∗j �⇒
∂u0
∂xj

(∫
S∗1
v1dµ,. . . ,

∫
S∗k
vkdµ

)
vj(x)≥ 0;

u
(
tS∗1 −aµv1dµ+

∫
S1∩aµ

v1dµ,. . . ,
∫
S∗k −aµ

vkdµ+
∫
Sk∩aµ

vkdµ
)

−u
(∫

S∗1
v1dµ,. . . ,

∫
S∗k
vkdµ

)
≥ 0.

(2.11)

Example 2.3. If u : Rq → R is differentiable, then the problem

F0(S) �→max(min), (2.12)

subject to

S ∈M ; (2.13)

where

F0 :M �→ R, F0(S)=u
(∫

S
v1dµ,. . . ,

∫
S
vq dµ

)
, (2.14)
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has an optimal solution (see Theorem 2.1). If S∗ is optimal, then for any S ∈M

x∈S∗ �⇒fS∗,S∩aµ (x)≤0; x �∈S∗ �⇒fS∗,S∩aµ (x)≥0; φS∗
(
S∩aµ

)≥0, (2.15)

where

fS∗,S∩aµ =
q∑
i=1

∂u
∂xi

(∫
S∗−aµ

v1dµ+
∫
S∩aµ

v1dµ,. . . ,
∫
S∗−aµ

vq dµ+
∫
S∩aµ

vq dµ
)
·vi|X−�µ ,

φS∗
(
S∩aµ

)=u
(∫

S∗−aµ
v1dµ+

∫
S∩aµ

v1dµ,. . . ,
∫
S∗−aµ

vq dµ+
∫
S∩aµ

vq dµ
)

−u
(∫

S∗−aµ
v1dµ+

∫
S∗∩aµ

v1dµ,. . . ,
∫
S∗−aµ

vq dµ+
∫
S∗∩aµ

vq dµ
)
.

(2.16)

We consider the special case where X = [0,1], M = β([0,1]), µ is the sum of the

Lebesgue measure on [0,1], and the probability measure concentrated on {1}; the set
function is given by the formula

F :M �→ R, F(S)=
∫
S
v1(x)dµ(x)+

(∫
S
v2(x)dµ(x)

)2
, (2.17)

with v1(x)= x, v2(x)= 1−2x for x ∈ [0,1].
We will solve the problems

F(S) �→max,(min) (2.18)

subject to S ∈ M . Both of these problems have, of course, optimal solutions. Let S∗
denote the optimal solution of the problem of minimizing F . Theorem 2.2 gives

v1(x)+2
(∫

S∗
v2dµ

)
v2(x)≤ 0 if x ∈ S∗−{1},

v1(x)+2
(∫

S∗
v2dµ

)
v2(x)≥ 0 if x ∈ [0,1]−(S∗∪{1}), (2.19)

and for any S
∫
S∩{1}

v1dµ+
(∫

S∗−{1}
v2dµ+

∫
S∩{1}

v2dµ
)2

≥
∫
S∗∩{1}

v1dµ+
(∫

S∗−{1}
v2dµ+

∫
S∗∩{1}

v2dµ
)2
.

(2.20)

First we check if x = 1 belongs to S∗. If {1} ⊂ S∗, then by (2.20), it follows that for
every S satisfying S∩{1} =∅ we have

0+
(∫

S∗−{1}
v2dµ

)2
≥ 1+

(∫
S∗−{1}

v2dµ−1
)2
, (2.21)

hence ∫
S∗−{1}

v2dµ ≥ 1. (2.22)
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The last inequality cannot hold because the maximum value of
∫
Av2dµ (where A =

[0,1/2]) is equal to 1/4. This contradiction shows that 1 �∈ S∗.
Equation (2.19) now becomes (dξ denotes the Lebesgue measure on [0,1])

x+2(1−2x)
∫
S∗
v2(ξ)dξ ≤ 0 for x ∈ S∗,

x+2(1−2x)
∫
S∗
v2(ξ)dξ ≥ 0 for x ∈ [0,1]−(S∗∪{1}). (2.23)

It is sufficient to search the solution S∗ in the family of subintervals of [0,1]. Putting
S∗ = [a,b], where 0≤ a≤ b ≤ 1, into (2.23) we obtain

x ∈ [a,b] �⇒ x ≤ −2Λ
1−4Λ , x ∈ [0,1[−[a,b] �⇒ x ≥ −2Λ

1−4Λ , (2.24)

where

Λ=
∫ b
a
(1−2ξ)dξ = (b−a)−(b2−a2). (2.25)

This clearly implies that a = 0. Moreover, two last implications are true for the set
S∗ = [0,b], if b satisfies the equation

b =−2 b−b2
1−4(b−b2) . (2.26)

It has only one real solution b = 0. We conclude that F takes minimum value (equal 0)

for S∗ = {0} and clearly for all subsets [0,1] with null Lebesgue measure.
We find the maximum of F . Denote the set for which F takes a maximum value by

S∗∗. The conditions are similar to (2.19) and (2.20) (with opposite signs of inequalities).
It is easy to show that 1∈ S∗∗.
From the formulas

x ∈ S∗∗−{1} �⇒ v1(x)+2v2(x)
∫
S∗∗
v2dµ ≥ 0,

x ∈ [0,1]−S∗∗ �⇒ v1(x)+2v2(x)
∫
S∗∗
v2dµ ≤ 0,

(2.27)

substituting S∗∗ = [a,b]⊂ [0,1] we obtain immediately that a< 1, b = 1 or a= b = 1.
In the first case, a must satisfy the equation

2Λ
4Λ−1 = a. (2.28)

It has the unique solution ā belonging to [0,1]

ā= 0,416, . . . . (2.29)

In the case when a= b = 1, the formula (2.28) is inconsistent. Finally,

S∗∗ = [ā,1], (2.30)

and the maximum value of F is F(S∗∗)= 2,958, . . . .
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3. Selected aspects of solving optimization problems for set functions. We start

this section by reformulating the problem (2.1), (2.2), and (2.3), or equivalently (2.6),

(2.7).

Let � denote a family of atoms of measure µ, µat-section of µ into σ -algebra gen-
erated by � and µna = µ−µat.
Defining, for j = 1, . . . ,k,

tj =
∫
Sj
vj dµna, t̄j =

∫
Sj
vj dµat =

∑
a∈�µ

vj(a)µ(a)xj,a, (3.1)

where for a∈�µ

xj,a =

1 if µ

(
a−Sj

)= 0,
0 if µ

(
a−Sj

)
> 0,

W =
{(∫

S1
v1dµna, . . . ,

∫
Sk
vkdµna

)
: S ∈Mk, χS(x)∈ v(x) for µ-a.a. x ∈X

}
,

(3.2)

we can transform the problem (2.1), (2.2), and (2.3), or equivalently (2.6), (2.7), to the

following form

u0
(
t1+ t̄1, . . . , tk+ t̄k

)
�→min, (3.3)

subject to

ui
(
t1+ t̄1, . . . , tk+ t̄k

)≤ 0, i= 1, . . . ,s, (t1, . . . , tk)∈W ;
t̄j =

∑
a∈�µ

vj(a)µ(a)xj,a, xj,a ∈ {0,1}, j = 1, . . . ,k, a∈�µ. (3.4)

Moreover, denoting φ :
∏k[0,1]�µ → R, we have

φ
((
x1,a

)
a∈�µ , . . . ,

(
x1,a

)
a∈�µ

)
=

 ∑
a∈�µ

v(a)µ(a)x1,a, . . . ,
∑
a∈�µ

v(a)µ(a)xk,a


, (3.5)

the problem (3.3), (3.4) may be written as

u0
(
t1+ t̄1, . . . , tk+ t̄k

)
�→min, (3.6)

subject to

ui
(
t1+ t̄1, . . . , tk+ t̄k

)≤ 0, i= 1, . . . ,s, (t1+ t̄1, . . . , tk+ t̄k)∈W +φ({0,1}�µ
)
; (3.7)

this problem has a countably set of decision variables, namely, k continuous vari-
ables tj and k|�µ| binary variables xj,a (measure µ is bounded; this implies that its
family of atoms is countable). Equations (3.3) and (3.4) are mixed problems of math-

ematical programming. The binary variables are therefore connected with the family

of µ’s atoms.
The relaxation is the problem in which the binary variables may take values from

the interval [0,1]. This corresponds to replacing the last group of constraints in (3.3)
and (3.4) by

xj,a ∈ [0,1], j = 1, . . . ,k, a∈�µ, (3.8)
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or equivalently—the last condition (3.7) is changed to

(
t1+ t̄1, . . . , tk+ t̄k

)∈W +φ([0,1]�µ
)
. (3.9)

Example 3.1. Consider the problem solved in Example 2.3. The equivalent problem

of mathematical programming has the following form

t1+t3+
(
t2−t3

)2
�→max(min), (3.10)

subject to (
t1, t3

)∈W, t3 ∈ {0,1}, (3.11)

where

W =
{(∫

S
xdx,

∫
S
(1−2x)dx

)
: S ∈ β([0,1])}. (3.12)

In this case it is relatively easy to determine the set W . It is sufficient to consider in
(3.12) only the family of intervals S = [a,b], where 0≤ a≤ b ≤ 1. Hence

W =
{(
1
2

(
b2−a2),b−a−(b2−a2)) : 0≤ a≤ b ≤ 1}. (3.13)

Solving the system

t1 = 1
2

(
b2−a2), t2 = b−a−

(
b2−a2), (3.14)

we obtain

a= 1
2

(
2t1

2t1+t2 −
(
2t1+t2

))
, b = 1

2

(
2t1

2t1+t2 +
(
2t1+t2

))
. (3.15)

The constraints 0≤ a≤ b ≤ 1 lead to the set of conditions defining W

2t1+t2 ≥ 0, 2
(
2t1+t2

)≥ (2t1+t2)2+2t1, 2t1 ≥
(
2t1+t2

)2, t1 ≥ 0. (3.16)

The problem (2.1), (2.2), and (2.3) with the set functions having the form (2.4) can be

solved by the methods for mixed integer mathematical programming. In most cases, it

is very difficult to determine the shape of the set W (or W̃ ). Because this set is convex
(see Lapunov convexity theorem), it can be approximated by convex hull generated

by finite number of its elements: if S(1), . . . ,S(m) is a sequence of sets satisfying (2.3),
thenW can be (for largem) replaced, with sufficient precision, by (the symbol conv(B)
denotes the convex hull of the set B, that is, the set of all finite convex combinations
of the elements of B)

conv
(
t
(
S(1)

)
, . . . , t

(
S(m)

))
, (3.17)

where

t
(
S(p)

)=
(∫

S(p)1

v1dµ,. . . ,
∫
S(p)k
vkdµ

)
. (3.18)

Of course, the above construction is based on the specific form of the problem (2.1),

(2.2), and (2.3) with (2.4). Below we present an appropriate construction in the general

case (without the assumption (2.4)). Unfortunately, it seems that the procedure is less
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effective and it is not rather helpful in finding optimal solutions. We introduce the

measurable space (X̃,M̃, µ̃), where

X̃ =X×[0,1], M̃ =
{(
A−aµ

)×{0}∪ ⋃
a∈�µ

a×Ba :A∈M, Ba ∈ β
(
[0,1]

)}
, (3.19)

µ̃ : M̃ → R is defined by

µ̃


A×{0}∪ ⋃

a∈�µ

a×Ba

= µ(A)+ ∑

a∈�µ

µ(a)λ
(
Ba
)
. (3.20)

In (3.19) and (3.20), β([0,1]) denotes the family of Borel subsets of [0,1], λ is the
Lebesgue measure on [0,1], �µ is the family of atoms of µ and aµ is the sum of all

sets from �µ .

Note that condition (3.9) can be written as

(
t1+ t̄1, . . . , tk+ t̄k

)∈ W̃ , (3.21)

where

W̃ =
{(∫

S1
ṽ1dµ̃, . . . ,

∫
Sk
ṽk dµ̃

)
: S̃ = (S1, . . . ,Sk)∈ M̃k,

χ(S1,...,Sk)(x,t)∈ ṽ(x) for µ̃- a.a. (x,t)∈ X̃
}
,

(3.22)

where pr1 is a projection on X in X×[0,1] and ṽj = vj ◦pr1 for j = 1, . . . ,k.
Note that it is possible to construct a relaxation for any problem (2.1), (2.2), and

(2.3). It suffices to replace the functions Fi (i= 0, . . . ,s) in (2.1), (2.2), and (2.3) by other
functions F̃i defined on M̃ with the following conditions.

(1) If λ(Bai)= 1, for i= 1, . . . ,n, then

F̃


A×{0}∪ n⋃

i=1
ai×Bai


= F


A∪ n⋃

i=1
ai


. (3.23)

(2) For any {a1, . . . ,an} ⊂�µ

F̃


A×{0}∪ n⋃

i=1
ai×Bai


= F̃


A×{0}∪n−1⋃

i=1
ai×Bai


(1−λ(Ban))

+λ(Ban)F̃

A×{0}∪n−1⋃

i=1
ai×Bai∪an×[0,1]


.

(3.24)

(3) For any permutation π of the set {1, . . . ,n}

F̃


A×{0}∪ n⋃

i=1
ai×Bai


= F̃


A×{0}∪ n⋃

i=1
aπ(i)×Baπ(i)


. (3.25)

(4) For any element of M̃k

F̃


A×{0}∪ ⋃

a∈�µ

a×Ba

= liminf

n→+∞ F̃


A×{0}∪ n⋃

i=1
ai×Bai


. (3.26)
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Other kinds of problems may appear in the case when ui in (2.4) are not sufficiently
smooth (continuous, convex, differentiability, etc.). Fortunately, even when the diffi-

culties with applying themethods using differentiability appear, one can use evolution

algorithms. These procedures can be applied even if the set functions do not have the

form (2.4). Suitable transformation of the initial problem with a proper structure of

data lead to a solution with arbitrary precision.

Let ∆ = {∆t : t = 1, . . . ,T} be a measurable partition of X (the family ∆ satisfy the
conditions ∆t ∈M for t = 1, . . . ,T , X = ⋃Tt=1∆t and µ(∆t1 ∩∆t2) = 0 for t1 ≠ t2). The
approximation depend on replacing the condition S ∈Mk in (2.3) by S ∈ σ(∆)k, where
σ(∆) denotes the σ -algebra generated by the collection ∆. The feasible solution S of
(2.1), (2.2), and (2.3) may be encoded as the map φ : {1, . . . ,T} → V is defined as

φ(t)= v ⇐⇒∀j=1,...,k
(
∆t ⊂ Sj ⇐⇒ vj = 1

)
. (3.27)

To determine an approximation of the element S∗ ∈ σ(∆)k, in which (2.1) takes the
minimum one can apply the genetic algorithm. The chromosomes can be identified

with the maps φ. Set functions Fi correspond to the maps defined on chromosomes
for S ∈ σ(∆)k and i= 0,1, . . . ,s, we define F̂i by

F̂i(φ)= Fi(S)⇐⇒ (φ,S) satisfy (3.27). (3.28)

The problem (2.1), (2.2), and (2.3) should be replaced by

F̂0(φ)+FK(φ) �→min, (3.29)

subject to φ : {1, . . . ,T} → V , in which the function FK(·) protects against violating
the constraints (2.2). This function can be given by the following formula

FK(φ)=m· max
i=1,...,k

(
0, F̂i(φ)

)
, (3.30)

where m denotes a great positive number. The family of functions φ admits such

operations as selection, mutation (inversion) and crossing. It is easy to see that these

operations lead to feasible solutions of the problem (3.29) (the full review of another

operation that can be defined on the chromosomes can be found for example in [6]).

The key-problem is the proper choice of the family σ(∆). It follows from the necessary
conditions for optimality, that it should be finer than the σ -algebra generated by the
sets

⋂k
j=1v

−1
j (B), where B is any Borel subset of R.
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Wydawnictwo Naukowe, Warsaw, 1982 (Polish). MR 83g:62003. Zbl 556.62001.

[2] S. Dorosiewicz, Optymalizacja w algebrach zbiorow [Optimization problems for set func-
tions], to appear.

[3] ,Modelwanie Sieci Transportowych. Wybrane Zagadnienia [Modelling of Transporta-
tion Networks. Selected Topics], Monografie i Operacowania, vol. 437, Warsaw School
of Economics, Warsaw, 1997 (Polish).

[4] M. Kisielewicz, Differential Inclusions and Optimal Control, Mathematics and its Applica-
tions, East European Series, vol. 44, Polish Scientific Publishers andKluwer Academic
Publishers Group, Warszawa and Dordrecht, 1991. MR 93c:49001. Zbl 731.49001.

http://www.ams.org/mathscinet-getitem?mr=83g:62003
http://www.emis.de/cgi-bin/MATH-item?556.62001
http://www.ams.org/mathscinet-getitem?mr=93c:49001
http://www.emis.de/cgi-bin/MATH-item?731.49001


408 SLAWOMIR DOROSIEWICZ
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