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ON S3-EQUIVARIANT HOMOLOGY
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ABSTRACT. We prove that the group $3 (norm 1 quaternions) cannot be a geometric re-
alization of a crossed simplicial group and construct an exact sequence connecting S3-
equivariant homology of an S3-space with its Pin(2)-equivariant homology.
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1. Introduction. This paper arose from a desire to better understand the topolog-
ical interpretation of quaternionic homology given in [4]. Because of the four-fold
periodicity of this homology, one wants the existence of a small category % such that
its classifying space B% is equal to the classifying space of the Lie group S3. This is
the analogue of the result concerning the category A such that its classifying space
is homotopically equivalent to the classifying space of the circle S' (see [1]). The first
result in the former case was obtained by Dwyer et al. [2] giving the p-completion of
BS3 for any prime number p. For p = 2, they give an explicit way of constructing the
2-completion of BS3 using some finite subgroups of S3. The p-completion, for p odd
prime, of infinite quaternionic projective space BS? is the same as the p-completion
of the classifying space of the normalizer Pin(2) of a maximal torus in S3. Fiedorowicz
and Loday [3] generalized Connes’ notion of the cyclic category A by introducing the
category of crossed simplicial groups with simplicial groups as objects and crossed
group homomorphism as morphisms (see Definition 3.1). The geometric realization of
a crossed simplicial group G is a topological group |G |. Theorem 5.15 of [3] restricts
the kinds of topological groups, including the Lie group S3, which can result from geo-
metric realization. In Proposition 3.11 of [4], Loday defined a category AQ such that its
classifying space is homeomorphic to BPin(2) and showed that quaternionic homol-
ogy is Pin(2)-equivariant homology. Combining this result and a long exact sequence
connecting the S3-equivariant homology of an S3-space with its Pin(2)-equivariant ho-
mology (Theorem 4.1), we deduce that if 2 is invertible in the ground field k, A is a
k-algebra with involution and Y is the geometric realization of the quaternionic sim-
plicial k-module associated to A (see [3] for complete definition), then quaternionic
homology becomes an S3-equivariant homology and the Connes’s exact sequence for
quaternionic homology becomes the Gysin exact sequence of an S3-fibration. We are
currently working on linking the two concepts when 2 is not invertible in the ground
field.

2. Preliminaries on quaternionic homology. Let A be an involutive unital k-algebra
where k is a commutative ring. When the set of rationals Q is contained in k,
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quaternionic, respectively dihedral homology (here they coincide because 2 is invert-
ible in k), can be defined as the homology of the coinvariant space of A®"+1 for the ac-
tion of the quaternionic group Q.1 = {x,y | x"*! = y2 yxy~1 = x~1) (respectively,
the dihedral group Dy,.1 = (x,¥ | x"*! = 2 = 1,yxy~! = x~1)) usually denoted
by (A®™M+D /(1 —x,1—y)). HQu(A) = Hy(A®**D /(1 - x,1 - y),b), where b is the
Hochschild boundary b = 3/ (-1)id;, and the generators x and y act on A®"+1) by
x(ag,ai,...,an) = (=1)"(an,ao,...,an-1) and y(aog,ai,...,an) = (=1)"+V/12(gq a,,
dan-1,...,41). For the case when 2 is not invertible, Loday [4] defined the quaternionic
homology as the homology of the total complex of a bicomplex obtained using a free
periodic resolution of period four of Z as trivial Q,1-module and gives an important
result on quaternionic homology which is the periodicity exact sequence

+ — HTn(A) — HQn(A) — HQn-4(A) — HTy 1 (A) — -+ -, (2.1

where HT, is the homology of a complex T, obtained by elimination of acyclic com-
plex in the bicomplex (see [4] for more details). The theory HT is to quaternionic
homology as Hochschild homology is to cyclic homology.

3. Crossed simplicial groups. Using the notion of crossed simplicial groups
(Definition 3.1) and their homology [3], the quaternionic homology can be understood
as Pin(2)-equivariant homology instead of S3-equivariant homology which seems to
be the natural candidate because of the fourth periodicity. The reason why it is not
the latter homology is connected to the next Lemma 3.2. We will then in the main
theorem connect these two homologies.

DEFINITION 3.1 (see [3]). A crossed simplicial group is a family of groups {Gy} x>0
such that there exists a small category AG with the following properties:

(1) The objects of AG are ordered sets [n] = {0,1,...,n}.

(2) AG contains the simplicial category A as a subcategory.

(3) The automorphism group of [n] in AG is the group G° (opposite group of G,,).

(4) Any morphism from [n] to [m] in AG can be uniquely written as a composite
® o g, where ® € Homy ([n],[m]) and g € Autag([n]) = G-

The classical examples (see [3]) are the family of cyclic groups {Z/mZ},,>1, dihe-
dral groups {D, }m=1, quaternionic groups {Q, }m=1, and the family of permutation
groups {S;;}m=1. The geometric realizations of these crossed simplicial groups are,
respectively, the circle group S!, the orthogonal group O(2), the normalizer of S! in
S3, and the infinite sphere S® = lim,, S™. Then a natural question arises: does there
exist a crossed simplicial group such that its geometric realization is the Lie group $3?

3.1. The Lie group S3 is not a crossed simplicial group
LEMMA 3.2. The group S* is not nilpotent.

PROOF. This is because, if S were nilpotent, there would exist ¢ normal sub-
groups Hiy,Ha,...,H, of S3 such that $® = Hy > Hy D -+ D Hy = {1} and for all k,
0 <k <q—1, there would be an inclusion Hy/Hy.1 C center(S3/Hy.1). In particular,
H; ; C center(S3) = {+1}. We can assume that the inclusion H, C Hy- is strict, which
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implies H;_1 = {#+1}. In the same way, H; 2/H;_1 C center(S3/{+1}) = {1} because
S3/{=1} is simple. This implies that Hg_» = H4_1. So the sequence of inclusions re-
duces to §3 = Hy D H; = {#1} > H, = {1} and then O*(3,R) = $3/{+1} = Hy/H; C
center(S3/H;) = {1}, giving us a contradiction. O

THEOREM 3.3 (see [3]). If G4 is a crossed simplicial group such that the geomet-
ric realization |G| is a Lie group, then the path component of the identity of |G|
is nilpotent.

As a consequence of Lemma 3.2 and Theorem 3.3, there is no crossed simplicial
group with geometric realization S3.

Another approach to the question is to consider the discrete subgroups of S3. For
this we need to recall the following theorem.

THEOREM 3.4 (see [5]). Every finite subgroup of S* is a cyclic, binary dihedral, or
binary polyhedral group. If two finite subgroups of S3 are isomorphic, then they are
conjugate in S3. A finite subgroup of S3 is contained in a complex subfield of H if and
only if it is cyclic, and is contained in the real subfield of H if and only if it is cyclic of
order 1 or 2.

Based on this theorem, we see that S° cannot be a crossed simplicial group. In fact,
if the topological group S* were a crossed simplicial group S3 = |G|, then by Propo-
sition 5.13 in [3], there would be inclusions of discrete subgroups G,, C S3. Moreover,
the discrete subgroups of S3 are, up to conjugations, the families of cyclic subgroups
{Z/nZ}, those of quaternionic {Q}, the binary tetrahedral group, the binary octa-
hedral, and the binary icosahedral. In addition, the geometric realizations of these
five simplicial groups give, respectively, the circle S!, the group Pin(2), the binary
tetrahedral group, the binary octahedral group, and the binary icosahedral group and
therefore they cannot give S3.

4. S3-equivariant homology. Let G be a group and €G be the category with one
object x such that the monoid Homeg (*, %) is the group G. The geometric realization
of the nerve of this category is a contractible space denoted by EG = [€G]|. The group G
acts transitively on EG and the orbit space is the classifying space BG of the group G.
In fact there is a principal G-bundle EG — BG.

For a G-space Y, the Borel space is the quotient of EG x Y by the equivalence relation
generated by (gx,gz) ~ (x,z) forall g € G and x,z € Y. This space is usually denoted
by EGXY. Recall that there is a fibration

G —EGXY — EGXgY. 4.1)

The G-equivariant homology of Y is, by definition, the homology of the associated
Borel space HG (Y, k) := Hy (EG Xg Y, k).
The main result of this paper is the following theorem.

THEOREM 4.1. Let Y be a connected S3-space. There is a long exact sequence

- —HS (Y,2/27) — HP"® (V) — HS (Y) — HS ,(Y,2/2Z) — ---.  (4.2)
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PROOF. The inclusion Pin(2) — S$3 induces the following fibration:
RP(2) — EPin(2)Xpin2)Y — ES3x Y. (4.3)

Since Hy(RP(2)) = 0 for g + 0 and g # 1, the spectral sequence lies on the two hor-
izontal lines g = 0 and q = 1. The only nonzero differential is d?. The filtration of
HY?) (y) is given by

0=FyCF C---CFy CEHM?(Y) = HM(Y). (4.4)
The successive quotients are given by
Pin(2)
H"Fim =Ey, =ker (HS’(Y) — Hp_2(ES3%g3Y;2/27)), (4.5)
n-1
Fn1/Fn2=E; 1q,and Fy 2 =Fy 3= ---=Fy=0 because Ep,=0since q > 2.
Thus we have the exact sequence,
0—Ep,, — H™(Y) — Eyy— 0. (4.6)
We also have
- H, (ES3 Y;7)27
:fl=51311= $3 n( S xsa¥id] ) : (4.7)
: T Im(HS,(Y) — Hp(ES3x43Y;2/27))
Therefore, the filtration of H2™? (Y) becomes
3 . _
0CF, = - Hy_1(ES3%g3Y;2/27) CF,= HZln(Z)(y)’ (4.8)
Im(H, ,(Y) — Hyp_1(ES3x3Y;2/27))
and the quotient becomes
Pin(2)
Fn _Hn 7 yer (HS' (V) — Hooo (ES®x 3 Y;2/27)). 4.9)
Fn—l anl
Then we obtain the exact sequence
0—Epyg—Epo—E; 21 —Ey ., —0. (4.10)
Now, by combining (4.6) and (4.10), the exact sequence follows. O

COROLLARY 4.2. If2 is invertible in the field k, and A is a k-algebra with involution,
then the geometric realization of the quaternionic simplicial k-module associated to
A, {A®+D o, allows one to obtain the periodicity exact sequence in quaternionic
homology,

- — HTy(A) — HQn(A) — HQn-4(A) — HT1(A) — - -+, (4.11)
as the Gysin exact sequence of an S3-fibration.

When 2 is invertible in k and if Y is the geometric realization of the simplicial mod-
ule {A®"+D}, o, then the mapping EPin(2)Xpmno2) Y — ES3X¢3Y induces homology
isomorphisms.

l;he groups Hf (Y,Z/27) look like obstruction to the isomorphisms H-™? (Y) =
HY (Y).
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