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Abstract. We introduce the class of rings satisfying (m,1)-stable range and investigate
equivalent characterizations of such rings. These give generalizations of the corresponding
results by Badawi (1994), Ehrlich (1976), and Fisher and Snider (1976).
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Let R be an associative ring with identity. A ring R is said to have stable range one

provided that aR+bR = R implies that a+by ∈U(R) for y ∈ R. It is well known that

MR cancels from direct sums if EndRM has stable range one. For further properties

of stable range one condition, we refer the reader to [1, 2, 5, 7, 9, 10, 13, 14].

Many authors have studied rings generated by their units (see [3, 4, 7, 8, 10, 12]).

It was shown that every unit-regular ring in which 2 is invertible is generated by its

unit (see [7, Theorem 5]) and every strongly π -regular ring in which 2 is invertible is

generated by its units (see [8, Theorem 3]). So far one always investigate such rings

under stable range one condition.

In this paper, we generalize stable range one condition and introduce rings satis-

fying (m,1)-stable range so as to investigate rings generated by their units. Also we

give generalizations of the corresponding results in [3, 7, 8].

Throughout, rings are associative with identity and modules are right modules.

GLn(R) denotes the general linear group of R, U(R) denotes the set of units of R, and

that Um(R) = {x ∈ R | ∃u1, . . . ,um ∈ U(R) such that x = u1+···+um}. Let Bij(x) =
I2+xeij (i ≠ j, 1 ≤ i, j ≤ 2), [α,β] = αe11+βe22, where eij (1 ≤ i, j ≤ 2) are matrix

units (1 in the i,j position and 0 elsewhere).

Definition 1. The ring R is said to satisfy (m,1)-stable range provided that aR+
bR = R implies that a+by ∈U(R) for y ∈Um(R).

Proposition 2. The following are equivalent:

(1) The ring R satisfies (m,1)-stable range.

(2) Whenever ax+b = 1, there exists y ∈Um(R) such that a+by ∈U(R).
Proof. (1)⇒(2). The proof is obvious.

(2)⇒(1). Given aR+bR = R, then ax+by = 1 for some x,y ∈ R. So we can find

z ∈ Um(R) such that axz+b = u ∈ U(R), and then axzu−1+bu−1 = 1. Hence we

have w∈Um(R) such that a+bu−1w ∈U(R). Clearly, u−1w ∈Um(R), as desired.

Proposition 3. The following are equivalent:

(1) The ring R satisfies (m,1)-stable range.

(2) The ring R/J(R) satisfies (m,1)-stable range.
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Proof. (1)⇒(2). Given āx̄+ b̄ = 1̄ in R/J(R), then ax+ (b+ r) = 1 for some r ∈
J(R). SinceR satisfies (m,1)-stable range, we havey ∈Um(R) such that a+(b+r)y ∈
U(R). Therefore ā+ b̄ȳ ∈ U(R/J(R)) with ȳ ∈ Um(R/J(R)), hence R/J(R) satisfies

(m,1)-stable range by Proposition 2.

(2)⇒(1). Givenax+b = 1 inR, then āx̄+b̄ = 1̄ inR/J(R). So there is ȳ ∈Um(R/J(R))
such that ā+ b̄ȳ = ū ∈ U(R/J(R)). Assume that y = w1 +w2 + ··· +wm with all

wi ∈U(R/J(R)). Since units lift modulo J(R), we may assume that all wi ∈U(R) and

u ∈ U(R), and that a+b(w1+w2+···+wm) = u+r for some r ∈ J(R). Obviously,

u+r ∈ U(R) and w1+w2+···+wm ∈ Um(R). Hence R satisfies (m,1)-stable range,

as asserted.

Theorem 4. Let R be an associative ring with identity, K a set of some elements of

R. Then the following are equivalent:

(1) Whenever ax+b = 1, there exists y ∈K such that a+by ∈U(R).
(2) Whenever ax+b = 1, there exists z ∈K such that x+zb ∈U(R).

Proof. (1)⇒(2). Since ax + b = 1, we see that
(a −b

1 x
)−1 = ( x 1−xa

−1 a
) ∈ GL2(R).

Clearly, xa+(1−xa) = 1. So there exists z ∈ K such that x+(1−xa)z = u ∈ U(R).
Hence

(a −b
1 x

)−1(1 0
z 1

) = (u ∗∗ ∗) ∈ GL2(R). Thus we know that
(a −b

1 x
)−1 = (u ∗∗ ∗)( 1 0

−z 1

)
.

Therefore
(a −b

1 x
) = (

1 0
z 1

)(u ∗
∗ ∗
)−1. Since there is w ∈ U(R) such that

(u ∗
∗ ∗
) =(

1 0
∗ 1

)(u 0
0 w
)(

1 ∗
0 1

)
, we have v = w−1 ∈ U(R) such that

(u ∗
∗ ∗
)−1 = (

1 ∗
0 1

)(
u−1 0

0 v

)(
1 0
∗ 1

)
.

Hence
(a −b

1 x
) = (

1 0
z 1

)(∗ ∗
∗ v
)
, v ∈ U(R). So

(
1 0
−z 1

)(a −b
1 x

) = (∗ ∗
∗ v
)
. Thus, we see that

x+zb = v ∈U(R), as required.

(2)⇒(1). Applying (1)⇒(2) to the opposite ring Rop, we complete the proof.

Theorem 4 is a general result for symmetry of stable range conditions. As appli-

cations, we see that stable range one conditions, unit 1-stable range conditions and

rings having many unit-regular elements are symmetric. The following result shows

that (m,1)-stable range condition is right-left symmetric.

Corollary 5. The following are equivalent:

(1) The ring R satisfies (m,1)-stable range.

(2) Whenever ax+b = 1, there exists some z ∈Um(R) such that x+zb ∈U(R).
(3) Whenever Ra+Rb = R, there exists some z ∈Um(R) such that a+zb ∈U(R).

Proof. (1)�(2). Set K =Um(R). Then the equivalence follows by Theorem 4.

(3)⇒(2). The proof is trivial.

(2)⇒(3). Given Ra+ Rb = R, then xa+ yb = 1 for some x,y ∈ R. So we have

s ∈ Um(R) such that sxa + b = u ∈ U(R), hence u−1sxa + u−1b = 1. Therefore

a+vu−1b ∈U(R) for some v ∈Um(R), as required.

Proposition 6. The following are equivalent:

(1) The ring R satisfies (m,1)-stable range.

(2) For any A ∈ GL2(R), there exists some w ∈ Um(R) such that A =
[∗,∗]B21(w)B12(∗)B21(∗).

(3) For any A ∈ GL2(R), there exists some w ∈ Um(R) such that A =
[∗,∗]B12(∗)B21(∗)B12(w).
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Proof. (1)⇒(2). Let A ∈ GL2(R), and let A−1 = (bij). Since b11R+b12R = R, we

can find some y ∈ Um(R) such that b11 + b12y = u ∈ U(R). We easily check that

A−1 = B21(b21+b22u−1)[u,b22− (b21+b22y)u−1b12]B12(u−1b12)B21(−y). Thus A =
[∗,∗]B21(w)B12(∗)B21(∗) for some w ∈Um(R).

(2)⇒(1). Given ax + b = 1 in R, then we have
( a b
−1 x

) ∈ GL2(R). Thus we have a

w ∈ Um(R) such that
( a b
−1 x

)−1 = [∗,∗]B21(w)B12(∗)B21(∗). Therefore we see that( a b
−1 x

) = [∗,∗]B21(∗)B12(∗)B21(−y) for some y ∈ Um(R). Consequently, a+by ∈
U(R) with y ∈Um(R), as desired.

(1)�(3). Applying (1)�(2) to the opposite ring Rop, we complete the proof by the

symmetry of (m,1)-stable range conditions.

Let R be generated by m units. If R has stable range one, then it satisfies (m,1)-
stable range. Conversely, we easily check that every ring satisfying (m,1)-stable range

is generated by m + 1 units. Now we show that (m,1)-stable range condition is

inherited by matrix rings.

Lemma 7. The following are equivalent:

(1) The ring R satisfies (m,1)-stable range.

(2) Given ax+b = 1 in R, then there exists y ∈ R such that a+by ∈ U(R) and

1−xy ∈Um(R).
(3) Given ax + b = 1 in R, then there exists z ∈ R such that x + zb ∈ U(R) and

1−za∈Um(R).

Proof. (1)⇒(2). Given ax + b = 1 in R, then
( a b
−1 x

) ∈ GL2(R). In view of

Proposition 6, we have a w ∈ Um(R) such that
( a b
−1 x

) = [∗,∗]B21(w)B12(∗)B21(∗).
So we can find some −y ∈ R such that

( a b
−1 x) = [∗,∗]B21(w)B12(∗)B21(−y). There-

fore a+by ∈U(R) and 1−xy =−(−1+xy)∈Um(R), as required.

(2)⇒(1). Given ax+b = 1 in R, then there exists some y ∈ R such that a+by =u∈
U(R) and 1 − xy = v ∈ Um(R). So we know that

( a b
−1 x

)( 1 0
y 1

) = ( u b
−v x

) =
[∗,∗]B21(w)B12(∗) for somew ∈Um(R). Thus

( a b
−1 x

)= [∗,∗]B21(w)B12(∗)B21(−y).
So we can find z ∈ Um(R) such that

(
1 0
z 1

)( a b
−1 x

)= [∗,∗]B12(∗)B21(∗). Consequently,

we show that x+zb ∈ U(R) for some z ∈ Um(R). Therefore R satisfies (m,1)-stable

range by Corollary 5.

(1)�(3). Applying (1)�(2) to the opposite ring Rop, we complete the proof.

In [6], the author shows that every matrix ring over a ring satisfying unit 1-stable

range also satisfies unit 1-stable range. Now we extend [6, Theorem 2.2] to (m,1)-
stable range conditions by a similar route.

Theorem 8. If R satisfies (m,1)-stable range, then so does Mn(R) for any n≥ 1.

Proof. Given BC+D = In inMn(R), thenA= ( B D
−In C

)∈ GL2n(R). SetA= (Aij) (1≤
i,j ≤ 2) with all Aij = (aijst)∈Mn(R) (1≤ s, t ≤n). Then there exist x1, . . . ,xn,y1, . . . ,
yn ∈ R such that a11

11x1 + ··· +a11
1nxn +a12

11y1 + ··· +a12
1nyn = 1, . . . ,a11

n1x1 + ··· +
a11
nnxn+a12

n1y1+···+a12
nnyn = 0, a21

11x1+···+a21
1nxn+a22

11y1+···+a22
1nyn = 0, . . . ,

a21
n1x1+···+a21

nnxn+a22
n1y1+···+a22

nnyn = 0. In view of Lemma 7, there is z1 ∈ R
such that a11

11+a11
12x2z1+···+a11

1nxnz1+a12
11y1z1+···+a12

1nynz1 = u1 ∈ U(R) and

1−x1z1 = v1 ∈Um(R). So we claim that
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[∗,∗]A[∗,∗]B21(∗)=




u1 a11
12 ··· a11

1n a12
11 ··· a12

1n

0 b11
22 ··· b11

2n b12
21 ··· b12

2n

...
...

. . .
...

...
. . .

...

0 b11
n2 ··· b11

nn b12
n1 ··· b12

nn

a21
11v1 a21

12 ··· a21
1n a22

11 ··· a22
1n

...
...

. . .
...

...
. . .

...

a21
n1v1 a21

n2 ··· a21
nn a22

n1 ··· a22
nn




. (1)

Likewise, we have u2,u3, . . . ,un ∈U(R) and v2,v3, . . . ,vn ∈Um(R) such that

[∗,∗]A[∗,∗]B21(∗)=




u1 ∗ ∗ ··· ∗ a12
11 ··· a12

1n

0 u2 ∗ ··· ∗ b12
21 ··· b12

2n

0 0 u3 ··· ∗ c12
31 ··· c12

3n

...
...

...
. . .

...
...

. . .
...

0 0 0 ··· un d12
n1 ··· d12

nn

a21
11v1 a21

12v2 a21
13v3 ··· a21

1nvn a22
11 ··· a22

1n

...
...

...
. . .

...
...

. . .
...

a21
n1v1 a21

n2v2 a21
n3v3 ··· a21

nnvn a22
n1 ··· a22

nn




.

(2)

Similar to the consideration in [6, Theorem 2.2] , we can find some E ∈ GLn(R) such

that [∗,∗]A[∗,∗]B21(∗)=[∗,∗]B21(−E−1 diag(v1, . . . ,vn))B12(∗). Consequently,A=
[∗,∗]B21(W)B12(∗)B21(∗)withW ∈Um(Mn(R)). So there isW ′ ∈Um(Mn(R)) such that

B21
(
W ′)( B D

−In C

)
= [∗,∗]B12(∗)B21(∗), so C+W ′D ∈ GLn(R). (3)

It follows from Corollary 5 that Mn(R) satisfies (m,1)-stable range.

Corollary 9. Let R satisfy (m,1)-stable range, then every n×n matrix over R is

the sum of m+1 invertible matrices.

Proof. Let A ∈Mn(R). Since R satisfies (m,1)-stable range, so does Mn(R) from

Theorem 8. As AMn(R)+ InMn(R) =Mn(R), we can find some U ∈ Um(Mn(R)) such

that A+In×U = V ∈ GLn(R). Thus A= (−U)+V , as desired.

Recall that a ring R is said to be an exchange ring if for every right R-module A and

any two decompositions A = M′ ⊕N =⊕i∈I Ai, where M′
R 	 RR and the index set I

is finite, then there exist submodules A′i ⊆ Ai such that A =M′ ⊕(⊕i∈I A′i). A ring R
is said to be strongly π -regular provided that for any x ∈ R, there exists a positive

integer n such that xn = xn+1y for some y ∈ R.

We note that R satisfies (m,1)-stable range if and only if it has stable range one and

for any x,y∈R, there existsw∈Um(R) such that xy+xw+1∈U(R). By an argument
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of M. Henriksen [11], we claim that the ringR has stable range one if and only if the ring

M2(R) satisfies (3,1)-stable range. For exchange rings, we now derive the following.

Lemma 10. LetR be an exchange ring with 1/2∈R. Then the following are equivalent:

(1) The exchange ring R has stable range one.
(2) The exchange ring R satisfies (7,1)-stable range.

Proof. (2)⇒(1). The proof is clear.

(1)⇒(2). Given ax+b = 1 in R, then a+by ∈U(R) for y ∈ R. Since R is an exchange
ring, there exists an idempotent e∈ R such that e=ys and 1−e= (1−y)t. Obviously,

ey and (1−e)(1−y) are both regular. Thus ey = fu,(1−e)(1−y) = gv for some

f = f 2, g = g2 ∈ R and u,v ∈ U(R). Hence y = ey − (1− e)(1−y)+1− e = fu−
gv+1−e. As 2 ∈ U(R), we see that f = 2−1+2−1(2f −1), g = 2−1+2−1(2g−1) and

e = 2−1+2−1(2e−1). Clearly, 2−1(2f −1),2−1(2g−1),2−1(2e−1) ∈ U(R). Therefore

y ∈U7(R), as required.

Theorem 11. Let R be a strongly π -regular ring. If 2 is a nonnilpotent of R, then
there exists some nonzero idempotent e ∈ R such that Mn(eRe) satisfies (7,1)-stable
range.

Proof. Since R is a strongly π -regular ring, there exists n ≥ 1 such that 2n = eu
for some e = e2, u ∈ U(R). Since 2 is a nonnilpotent of R, we see that e ≠ 0. Assume

that uv = 1 for v ∈ R. We easily check that (eue)(eve)= 2neve= euve= e. Likewise,

we have (eve)(eue)= e. Thus 2e∈U(eRe). On the other hand, we know that eRe is a

strongly π -regular ring. By virtue of [1, Theorem 4], R has stable range one. Thus we

complete the proof by Theorem 8 and Lemma 10.

Proposition 12. The following are equivalent:
(1) The ring R satisfies (m,1)-stable range.

(2) Whenever aR+bR = dR, there exist y ∈Um(R), u∈U(R) such that a+by = du.
(3) Whenever Ra+Rb = dR, there exist z ∈Um(R), u∈U(R) such that a+zb =ud.

Proof. (1)⇒(2). Given aR+bR = dR, then (a,b)M2(R)= (d,0)M2(R). Assume that

(d,0)A = (a,b) and (a,b)B = (d,0). From AB+ (I2 −AB) = I2, we have Y ∈ M2(R)
such that A+(I2−AB)Y =W ∈ GL2(R). Thus (a,b)= (d,0)A= (d,0)(A+(I2−AB))=
(d,0)W . Assume that W = (wij). Then w11R+w12R = R, whence w11+w12y = u ∈
U(R) for y ∈Um(R). Therefore a+by = du, as desired.

(2)⇒(1). The proof is trivial.

(1)�(3). Applying (1)�(2) to the opposite ring Rop, we complete the proof by the

symmetry of (m,1)-stable range property.

Corollary 13. Let R be a ring which is quasi-injective as a right R-module. Then
the following are equivalent:

(1) The ring R satisfies (m,1)-stable range.
(2) Whenever r ·ann(a)∩r ·ann(b) = r ·ann(d), there exists z ∈ Um(R) such that

r ·ann(a)∩r ·ann(b)= r ·ann(a+zb).
(3) Whenever l · ann(a)∩ l · ann(b) = l · ann(d), there exists y ∈ Um(R) such that

l·ann(a)∩l·ann(b)= l·ann(a+by).
Proof. (1)⇒(2). Suppose r ·ann(a)∩r ·ann(b)= r ·ann(d). By [5, Proposition 3.4],

we claim that Ra+Rb = Rd. Using Proposition 12, we can find some z ∈Um(R) such
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that a+zb = du for some u ∈ U(R). Therefore r ·ann(a)∩r ·ann(b) = r ·ann(d) =
r ·ann(a+zb), as desired.

(2)⇒(1). Assume that Ra+Rb = R. Then r ·ann(a)∩r ·ann(b) = r ·ann(1). Thus,

we claim that r · ann(a)∩ r · ann(b) = r · ann(a+ zb) for a z ∈ Um(R). Therefore

r ·ann(1) = r ·ann(a+zb). By [5, Proposition 3.4], we show that R = R(a+zb), and

then a+ zb = u is left invertible in R. Assume that vu = 1 for some v ∈ R. From

Rv +R(1−uv) = R, we also have w ∈ Um(R) such that v +w(1−uv) = t is left

invertible in R. Clearly, we have tu = (v +w(1−uv))u = 1. Hence t is a unit of R.

Therefore a+zb =u is a unit of R, as desired.

(1)�(2). By the symmetry of (m,1)-stable range condition, we complete the proof.
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