
Internat. J. Math. & Math. Sci.
Vol. 24, No. 2 (2000) 129–137

S0161171200002428
© Hindawi Publishing Corp.

THEORETICAL SCHEME ON NUMERICAL CONFORMAL MAPPING
OF UNBOUNDED MULTIPLY CONNECTED DOMAIN

BY FUNDAMENTAL SOLUTIONS METHOD

TETSUO INOUE, HIDEO KUHARA, KANAME AMANO, and DAI OKANO

(Received 8 December 1997)

Abstract. A potentially theoretical scheme in the fundamental solutions method, dif-
ferent from the conventional one, is proposed for numerical conformal mappings of un-
bounded multiply connected domains. The scheme is introduced from an algorithm on
numerical Dirichlet problem, based on the asymptotic theorem on extremal weighted
polynomials. The scheme introduced in this paper has the characteristic called “invari-
ant and dual.”
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1. Introduction. The fundamental solutionsmethod (or charge simulationmethod)
has been applied to the problem in electrical engineering, numerical conformal map-
pings [2, 3, 4, 6] and Dirichlet problems [8, 9, 15, 16].
The principle of the method is the approximation of the solution by a linear combi-

nation of logarithmic potentials. Though the method requires only solving a system
of simultaneous linear equations, it is possible to get a rather precise solution for
boundary problems with respect to domains bounded by smooth curves.
In this paper, we study the fundamental solutions method for numerical conformal

mappings of unbounded multiply connected domains. The new scheme is theoreti-
cally proposed applying the algorithm on numerical Dirichlet problem based on the
asymptotic theorems [7, 12, 13, 14] on extremal weighted polynomials.
Amano [2, 3] has recently proposed two kinds of schemes of approximations for the

conformal mappings onto the domains with circular or radial cuts, respectively. The
scheme introduced in this paper is applicable for both of above domains and has the
characteristic called “invariant and dual.”
Kuhara [10, 11] has also established a constructionmethod of the functionsmapping

multiply connected domains onto the rings with circular or radial slits, based upon
the works of Bergman [5] and using the fundamental solutions method. The method
is described from the two-dimensional electrostatic point of view.

2. Scheme for numerical Dirichlet problem. An algorithm has been recently pro-
posed for numerical Dirichlet problem of unbounded Jordan domains [8]. It is easily
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Figure 2.1. The domain D and D∗.

transformed to multiply connected domains. For the convenience of readers, the out-
line is shown with a minor modification as follows.
At first we introduce the notions of weighted polynomials (shortly w-polynomials)

and weighted capacity (w-capacity) depending on the author [7] and Mhaskar-Saff
[13, 14], respectively. The definitions of normalized counting measures and the weak
convergence are also shown.
Let D denote an unbounded domain whose boundary γ consists of Jordan curves

γi (i= 0(1)n).Without loss of generality, we assume that D contains∞ in its interior
and γ0 encloses the origin.
Let w =w(z) be an arbitrary, continuous, positive function defined on γ. For each

integer n≥ 1, we let Pn,w denote the class of all polynomials of the form

pn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)w(zn,i)

]
, (2.1)

which we call w-polynomials of degree n.
Let M(γ) denote the class of all positive unit Borel measures whose support is γ.

We define the w-energy of σ ∈M(γ) and the w-capacity by

Iw(σ)=
∫∫
log

[|z−t|w(z)w(t)
]
dσ(z)dσ(t) (2.2)

and

cap(w,γ)= exp(Vw), (2.3)

respectively, where

Vw = V(w,γ)= sup
σ∈M(γ)

Iw(σ). (2.4)

We note that the notions of w-energy and w-capacity were introduced in [13, 14].
Let µw ∈M(γ) be an extremal measure such that

Iw(µw)= Vw. (2.5)

The existence and the uniqueness of µw were shown in [14, Theorem 3.1(b)]. We as-
sume that Sw = γ, where Sw is support of µw .
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Lastly, we show the notions of the normalized counting measure on the zeros and
the weak convergence as follows: forw-polynomials pn,w(z) of degree n, the discrete
unit measure defined on compact sets in the complex plane C with mass 1/n at each
zero of pn,w(z) is denoted by µn,w = µ(pn,w). It is called the normalized counting
measure on the zeros of pn,w(z). If pn,w(z) has multiple zeros, the obvious modifi-
cation is considered.
The weak convergence of νn to ν as n→∞ is defined by

lim
n→∞

∫
fdνn =

∫
fdν (2.6)

for every continuous function in the complex plane C with compact support.
We present the fundamental lemma on extremal w-polynomials that shown in [8].

Lemma 2.1. The necessary and sufficient condition that

lim
n→∞

∣∣∣∣∣
n∏
i=1

(z−zn,i)w(zn,i)

∣∣∣∣∣
1/n

= exp
{∫
log[|z−t|w(t)]dµw(t)

}
(2.7)

holds uniformly on every compact subset of D is:
(A) µn,w converges weakly to µw as n→∞, where µn,w = µ(pn,w) is the normalized

counting measure of pn,w(z)=
∏n

i=1[(z−zn,i)w(z)w(zn,i)].
Furthermore, if the condition (A) is satisfied, the equality

exp
{∫
log[|z−t|w(t)]dµw(t)

}
cap(w,γ)

= 1
w(z)

(2.8)

holds quasi-everywhere (q.e.) on γ (we say that a property holds q.e. on γ if the subset
γ′ of γ where it does not hold has capacity zero).

Let D and D∗(D ⊂D∗) be unbounded multiply connected domains with the bound-
aries γ and γ∗ =∑m

i=0γ
∗
i , respectively. We assume that both D and D∗ contain∞ and

zero in their interiors and exteriors, respectively (see Figure 2.1).
Let the function H(z) be harmonic in D∗, where H(z) = h(z) and h∗(z) on γ and

γ∗, respectively. Then, we apply Lemma 2.1 for the domain D∗ and let

w∗(z)= exp{−(h∗(z)+ log |z|)}= exp
{−h∗(z)}
|z| . (2.9)

When the points {zn,i}ni=1 on γ∗ satisfying the condition (A) are determined, the equal-
ities

H1(z)= log limn→∞

∏n
i=1

∣∣(z−zn,i)w∗(zn,i)
∣∣1/n

cap(w∗,γ∗)
=
∫
log

|z−t|w∗(t)
cap(w∗,γ∗)

dµw∗(t) (2.10)

hold uniformly on every compact subset of D∗, which follows from Lemma 2.1.
Since γ is a compact set in D∗, the convergence is uniform on γ. Furthermore, from

(2.8),

exp
{∫
log

[|z−t|w∗(t)
]
dµw∗(t)

}
cap(w∗,γ∗)

= 1
w∗(z)

(2.11)
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holds q.e. on γ∗. Combining (2.9), (2.10), and (2.11), the function

H∗(z)=H1(z)− log |z| = log limn→∞

∏n
i=1

∣∣(1−zn,i/z)w∗(zn,i)
∣∣1/n

cap(w∗,γ∗)
(2.12)

satisfies H∗(z)= h∗(z) q.e. on γ∗. Since

lim
z→∞H

∗(z)=
∫
log

w∗(t)
cap(w∗,γ∗)

dµw∗(t) (2.13)

is finite, H∗(z) is harmonic in D∗∪∞ [17].
Applying generalized Maximun Principle (two harmonic functions with q.e. same

boundary values are equal to each other in the domain [17]) for the function H(z)−
H∗(z), we obtain the equality H(z)=H∗(z) in D∗∪∞.
Let h(z) be a given function which is continuous on γ. The above argument suggests

us the following algorithm for the fundamental solutions method of Dirichlet problem
(i.e., to find the function H(z) harmonic in D∪{∞} such that H(z)= h(z) on γ).

Algorithm 2.2. The approximation Hn(z) of H(z) is obtained as follows:
(i) Let {zn,i}ni=1 (called charge points) and {ζn,i}ni=1 (called collocation points) be

appropriately chosen on γ∗ and γ, respectively.
(ii) When αi (i = 0,1,2, . . . ,n) are the solution of a system of simultaneous linear

equations

α0+
n∑
i=1

αi log
∣∣∣∣1− zn,i

ζn,k

∣∣∣∣= h(ζn,k)
(
k= 1,2, . . . ,n), n∑

i=1
αi = 1, (2.14)

the charges at {zn,i}ni=1 are given by {αi}ni=1.
(iii) The approximation Hn(z) is represented by

Hn(z)=α0+
n∑
i=1

αi log
∣∣∣∣1− zn,i

z

∣∣∣∣. (2.15)

If the charge points and the collocation points are “theoretically” chosen, we suppose
that the approximations

α0 �H(∞), αi � 1n (i= 1,2, . . . ,n) (2.16)

hold.
Now, we consider the case when D is a bounded multiply connected domain con-

taining 0 and ∞ in its interior and exterior, respectively. Using the transformation
z→ 1/z, we propose the new scheme (to be called “dual”) corresponding to (2.15) as
follows:

Hn(z)=α0+
n∑
i=1

αi log
∣∣∣∣1− z

zn,i

∣∣∣∣,
n∑
i=1

αi = 1. (2.17)
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Figure 3.1. f(z) mapping conformally D onto D′.

3. Scheme for numerical conformal mapping. Let D and D′ denote unbounded
multiply connected domains whose boundaries γ and γ′ consist of Jordan curves γi
and γ′i (i= 0(1)m), respectively.
We assume that γ0, γ′0 enclose the origin. Let γ

′
0 be a circle {w;|w| = r0}. Let f(z)

map conformally D onto D′ with the continuation to a bijection mapping from

D∪γ �→ D′ ∪γ′, (3.1)

corresponding γi to γ′i . f(z) is uniquely determined under the condition f(∞) = ∞,
f ′(∞)= 1 [1].
We propose the following scheme of approximations of f(z):

fn(z)= z
n∏
i=1

(
1− zn,i

z

)αi
,

n∑
i=1

αi = 1, (3.2)

where the charge points {zn,i}ni=1 are appropriately chosen interior to γ.
Algorithm 2.2 suggests us the scheme (3.2) for the approximation fn(z) of f(z) in

the fundamental solutions method. More precisely, we consider the equality

log |fn(z)| = log |z|+
n∑
i=1

αi log
∣∣∣∣1− zn,i

z

∣∣∣∣ , (3.3)

which follows from (3.2).
Comparing (3.2) with (2.15), note that log |fn(z)| has the term log |z| but the con-

stant one α0. This is reasonable from the normalized condition f(∞)=∞, f ′(∞)= 1.
When D′ is {w;|w|> r0} with circular cuts

∑m
i=1γ

′
i , we propose the algorithm com-

puting approximations of f(z) as follows.

Algorithm 3.1. The approximation fn(z) of f(z) may be obtained as follows:
(i) {z(j)nj ,i}

nj
i=1 and {ζ(j)

nj ,i}
nj
i=1 with

∑m
j=0nj = n are appropriately chosen interior to

γj and on γj (j = 0(1)m), respectively.
(ii) When α(j)

i (i=0(1)nj, j=0(1)m) are the solutions of a system of n0+···+
nm+m+1 simultaneous linear equations assuming n0 = ··· = nm = n, and using
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Figure 3.2. The domain D′ with circular cuts.

Dirichlet and charge conditions [11]

α(l)
0 + log

∣∣∣ζ(l)
nj ,k

∣∣∣+ m∑
j=0

nj∑
i=1

α(j)
i log

∣∣∣∣∣∣1−
z(j)nj ,i

ζ(l)
nl,k

∣∣∣∣∣∣= 0
(
k= 1(1)nl, l= 0(1)m

)
, (3.4)

n0∑
i=1

α(0)
i = 1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
, (3.5)

the charges at {z(j)nj ,i}
nj
i=1 are given by {α(j)

i }
nj
i=1 (j = 1(1)m), respectively.

(iii) The approximation fn(z) is represented by

fn(z)= z
m∏
j=0

nj∏
i=1

(
1−

z(j)nj ,i

z

)α(j)i
,

n0∑
i=1

α(0)
i = 1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
, (3.6)

equation (3.6) may be transformed to

fn(z)=
m∏
j=0

nj∏
i=1

(
z−z(j)nj ,i

)α(j)i ,
n0∑
i=1

α(0)
i = 1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
, (3.7)

which implies that∫
γ0
dargfn(z)= 2π,

∫
γj
dargfn(z)= 0

(
j = 1(1)m)

. (3.8)

Note that ∫
γ0
dargf(z)= 2π,

∫
γj
dargf(z)= 0 (

j = 1(1)m)
(3.9)

for the smooth boundaries γj (j = 0(1)m).
Note that the approximations

α(j)
0 �− logrj

(
j = 0(1)m)

(3.10)

hold, where rj is the radius of γ′j .
The solutions of a system of simultaneous linear equations in Algorithm 3.1 are

invariant in the sense that the transformation z→ az (a > 0) implies

α(j)
0 �→α(j)

0 + loga (
j = 0(1)m)

,

α(j)
i �→α(j)

i
(
i= 1(1)n, j = 0(1)m)

.
(3.11)

Then, fn(z) is transformed to itself.
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Figure 3.3. The domain D′ with radial cuts.

The invariant scheme of approximations has been first shown for the numerical
Dirichlet problem by Murota [15, 16]. It is physically natural and mathematically rea-
sonable.
When D′ is {w;|w| > r0} with radial cuts

∑m
i=1γ

′
i , we propose the algorithm com-

puting approximations of f(z) as follows.

Algorithm 3.2. The approximation fn(z) of f(z) may be obtained as follows:
(i) {z(j)nj ,i}

nj
i=1 and {ζ(j)

nj ,i}
nj
i=1 with

∑m
j=0nj = n are appropriately chosen interior to

γj and on γj (j = 0(1)m), respectively.
(ii) Whenα(j)

i (i=0(1)nj, j=0(1)m) are the solutions of a system of (m+1)(n+1)
simultaneous linear equations using Dirichlet-Neumann and charge conditions [11,
10]:

α(0)
0 + log

∣∣∣ζ(0)
n0,k

∣∣∣+ m∑
j=0

nj∑
i=1

α(j)
i log

∣∣∣∣∣∣1−
z(j)nj ,i

ζ(0)
n0,k

∣∣∣∣∣∣= 0
(
k= 1(1)n0

)
, (3.12)

α(l)
0 +arg

∣∣∣ζ(l)
nl,k

∣∣∣+ m∑
j=0

nj∑
i=1

α(j)
i arg


1− z(j)nj ,i

ζ(l)
nl,k


= 0 (

k= 1(1)nl, l= 1(1)m
)
, (3.13)

n0∑
i=1

α(0)
i = 1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
, (3.14)

the charges at {z(j)nj ,i}
nj
i=1 are given by {α(j)

i }
nj
i=1 (j = 1(1)m), respectively.

(iii) The approximation fn(z) is represented by

fn(z)= z
m∏
j=0

nj∏
i=1

(
1−

z(j)nj ,i

z

)α(j)i

,
n0∑
i=1

α(0)
i = 1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
. (3.15)

The solutions of a system of simultaneous linear equations in Algorithm 3.2 are also
invariant. Note that the approximations

α(0)
0 �− logr0, α(j)

0 �−θj
(
j = 1(1)m)

(3.16)

hold, where θj is the argument of γ′j .

The solutions of a system of simultaneous linear equations in Algorithm 3.2 are also
invariant in the sense that the transformation z→ az (a > 0) implies
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α(0)
0 �→α(0)

0 + loga, (3.17)

α(j)
0 �→α(j)

0

(
j = 1(1)m)

, (3.18)

α(j)
i �→α(j)

i
(
i= 1(1)n, j = 0(1)m)

. (3.19)

Then, fn(z) is transformed to itself.

4. Concluding remark. When D and D′ are a bounded multiply connected domain
and {w;|w| < r0} with circular or radial cuts, respectively, we propose the following
scheme of approximations for the function f(z) mapping D onto D′ with f(0) =
0, f ′(0)= 1, considering the transformation f(z)→ 1/f(1/z):

fn(z)= z
m∏
j=0

nj∏
i=1

(
1− z

z(j)nj ,i

)α(j)i

,
n0∑
i=1

α(0)
i =−1,

nj∑
i=1

α(j)
i = 0 (

j = 1(1)m)
. (4.1)

The object of this paper is the study of the theoretical scheme based on the asymp-
totic theorem on extremal weighted polynomials, different from the conventional one,
for the numerical conformal mapping onto {w;|w|> r0} with circular or radial cuts.
The scheme introduced in this paper is applicable for both of the above domains and
has the characteristic called “invariant and dual.” The numerical experiments in detail
by the scheme will appear in a future paper.
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