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ABSTRACT. A mapping f: X — Y between continua X and Y is said to be atomic at a
subcontinuum K of the domain X provided that f(K) is nondegenerate and K = f~!(f(X)). The set
of subcontinua at which a given mapping is atomic, considered as a subspace of the hyperspace of all
subcontinua of X, is studied. The introduced concept is applied to get new characterizations of atomic
and monotone mappings. Some related questions are asked.
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INTRODUCTION

All spaces considered in the paper are assumed to be metric, and a mapping means a continuous
function. A continuum means a compact connected space. Recall that a mapping f : X — Y betweea
continua X and Y is said to be monotone if the inverse image of each point of Y (equivalently, of each
subcontinuum of Y) is connected. A surjective mapping f : X — Y between continua X and Y is said
to be atomic provided that, for each subcontinuum K of X such that f(K) is nondegenerate,
K = f~1(f(K)). The notion of an atomic mapping was introduced by R. D. Anderson in [1] to describe
special decompositions of continua. Soon, atomic mappings turned out to be important tools in
continuum theory and proved to be interesting by themselves, and several of their properties have been
discovered, e.g. in [3], [S] and [6]. The following fact on atomic mappings is known (see [3, Theorem 1,
p. 49] and [6, (4.14), p. 17]).

Fact. Every atomic mapping of a continuum is (hereditarily) monotone.

The paper consists of two parts. In the first one the composition factor property is discussed for the
class of atomic mappings. The second part deals with the family of subcontinua of the domain continuum
X at which a given mapping f : X — Y is atomic. In particular, atomic mappings as well as monotone
ones are characterized by conditions concerning the structure of this family. The paper is supplied with a
number of examples; open problems posed in both parts of the paper indicate some directions of a further
study in the area
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The following standard notation will be used. N, R and C stand for the sets of positive integers,
reals, and complex numbers, respectively, equipped with their natural topologies, if needed. In the plane
R? the symbol (z,y) means a point having z and y as its Cartesian coordinates.

1. COMPOSITION FACTOR PROPERTY

We say that a class M of mappings has the composition factor property if the composition g o h of
mappings h and g is in M only if g € M.

T. Mackowiak asked in [6, (5.22), p. 33] if the class of atomic mappings has the composition factor
property, and conjectured that it does. Later, in [7, Chapter 1, Example, p. 7] he has answered his
question in the negative. Another answer was given by E. E. Grace and E. J. Vought in [4, Section 4, p
140], who have shown that for the natural projection f of the circle of pseudo-arcs X onto the circle Z
(which is clearly an atomic mapping) there exist a continuum Y and two mappings 2 : X — Y and
g:Y — Z, such that f can be factored as the composition gok and g is not atomic. Both the
conjecture of Mackowiak and its negative solution by himself and by Grace and Vought show that the
composition factor property for the class of the atomic mappings should be studied in a more detailed
way, and that there are interesting problems around this property worthwhile clarifying.

In general, the following problem can be posed.

Problem 1.1. Let X, Y and Z be continua, and let h: X - Yand g: Y — Z be surjective
mappings. Determine conditions concerning (a) the continuum X, (b) the continuum Y, (c) the mapping
h, under which the implication holds

if goh is atomic, then g is atomic (12)

To be more precise, introduce the following definition.

Definition 1.3. A class of C of continua is said to have the composition factor property for a class
M of mappings provided that for each continuum X € C if the composition g o k defined on X is in M,
then g isin M.

A continuum is said to be decomposable if it is the union of two its proper subcontinua. Otherwise it
is said to be indecomposable. A continuum is said to be hereditarily decomposable (hereditarily
indecomposable) provided that each of its nondegnerate subcontinua is decomposable (indecomposable,
respectively). Finally recall that a space X is said to be homogeneous provided that for every two points
p and g of X there is a homeomorphism f : X — X such that f(p) = q.

It is shown in [2] that the circle of pseudo-arcs (that has been used in [4] as mentioned above) is
constructed in the Euclidean plane, is decomposable, and is homogeneous. Therefore the result of Grace
and Vought can be formulated even in a stronger form, as follows.

Theorem 1.4. The following classes of continua do not have the composition factor property for the
class of atomic mappings: plane continua, decomposable continua, homogeneous continua, as well as the
intersection of any of these classes.

On the other hand, it is known that each atomic mapping defined on an arcwise connected continuum
is a homeomorphism provided that the image continuum is nondegenerate (see [6, (6.3), p. 51]). Since
the class of homeomorphisms obviously has the composition factor property [6, (5.14), p. 32], the
following result is immediate.

Statement 1.5. The class of arcwise connected continua (of locally connected ones, in particular) has
the composition factor property for the class of atomic mappings.

Thus the following problem is natural.

Problem 1.6. Determine the classes of continua which have the composition factor property for the
class of atomic mappings.

Two particular questions related to this problem are of a special interest.
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Question 1.7. Does the class of hereditarily decomposable continua have the composition factor
property for the class of atomic mappings?

Question 1.8. Does the class of hereditarily indecomposable continua have the composition factor
property for the class of atomic mappings?

A surjective mapping k : X — Y between continua X and Y is said to be weakly confluent provided
that for each subcontinuum Q of Y there is a subcontinuum C of X such that h(C) = Q. In connection
with Problem 1.1, part (c), recall the following result (see [6, (5.29), p. 35]).

Proposition 1.9. If the mapping h : X — Y is weakly confluent, then implication (1.2) is satisfied.

Note that the converse to Proposition 1.9 is not true. Namely we have the following example

Example 1.10. There are mappings h: X — Y and g: Y — Z such that the composition g o h and
the second mapping g are atomic, while  is not weakly confluent.

Proof. Take as X the well known sin(1/z)-curve S defined by

S={(0,y) eR*:ye[-1,1)} U{(z,sin(1/z)) € R? : z € (0,1]}, (1.11)

and let L be the limit segment of S. Identify the two end points of L and denote by h: X — Y the
identification mapping. Thus Y is the union of a half line and the circle h(L). Now let us shrink h(L) to
a point, and let g : Y — Z be the quotient mapping. Thus Z is an arc, both g and g o h are atomic, while
h is not weakly confluent.

A surjective mapping h : X — Y between continua X and Y is said to be confluent provided that for
each subcontinuum Q of Y and for every component C of the inverse image h~!(Q) we have h(C) = Q.
Since a continuum Y is hereditarily indecomposable if and only if each mapping from a continuum onto Y’
is confluent (compare [6, (6.11), p. 53]), and since each confluent mapping obviously is weakly confluent,
we get a corollary to Proposition 1.9, which is related to part (b) of Problem 1.1.

Corollary 1.12. If the continuum Y is hereditarily indecomposable, then implication (1.2) is satisfied.

2. ATOMICITY
Given a continuum X with a metric d, we let 2X denote the hyperspace of all nonempty closed
subsets of X equipped with the Hausdorff metric H defined by

H(A, B) = max{sup{d(a, B) : a € A},sup{d(b, A) : b € B}}

(equivalently: with the Vietoris topology, see e.g. [8, (0.1), p. 1 and (0.12), p. 10]. Further, we denote
by C(X) the hyperspace of all subcontinua of X, i.e., of all connected elements of 2%, and by F} (X) the
hyperspace of singletons. The reader is referred to Nadler's book [8] for needed information on the
structure of hyperspaces. In particular, the following is well known (see [8, Theorem (1.13), p. 65]).
Fact 2.1. For each continuum X the hyperspace C(X) is a subcontinuum of the hyperspace 2% .
Given a mapping f : X — Y between continua X and Y, we consider mappings (called the induced
ones)

2/:2X 5 9Y and C(f):C(X) — C(Y)
defined by
27(A) = f(A) forevery Ac 2X and C(f)(A) = f(A) for every A € C(X).
Thus, by Fact 2.1, the following is obvious.
Fact 2.2. For every continua X and Y and for each mapping f : X — Y we have 2/|C(X) = C(f)
A proof of the next fact is straightfoward.

Fact 2.3. Let a mapping f: X —Y between continua X and Y be given  Then
C(HF(X)) c A(Y).
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For an arbitrary surjection f : X — Y between continua we consider subcontinua of X at which the
mapping satisfies the atomicity condition. More precisely, given a surjective mapping f: X —» Y
between continua X and Y, we denote by A(X,, f) the family of all subcontinua K of X such that f(K)
is nondegenerate and the equality K = f~!(f(X)) holds, i.e.,

AX, f) = {K e CONCWH) (R : K = fFHF(K)}- 249

Thus the following result is a consequence of this definition.
Statement 2.5. Let a mapping f : X — Y between continua X and Y be given. Then

X e AX,f), so A(X,f) isnonempty; 26)
A(X, f) c CO\C) (Fi(Y)). 2.7

Further, we put
B(X,f) = AX, f)u (C(f)) " (Fi(Y)). 28)

Proposition 2.9. For every decreasing sequence of continua belonging to B(X, f) the limit of the
sequence also is in B(X, f).

Proof. For each n € N assume K, € B(X, f) and K, C K,,. Put K =LimK,, and note that
K =({K,:n €N}

Consider two cases. First, if K, € (C(f)) (Fy(Y)) for almost all n €N, then K € (C(f)) (F,(Y)),
too, because Fi(Y) is compact, and so is its preimage under C(f). Thus K € B(X, f). Second, if
K, € A(X, f) for almost all n € N, then f~!(f(K,)) = K, for these indices n, and we have

FUSE) = FHFLImK,)) = £ (Lim f(Ka)) = £ ({f(Kn) :neN}) =
N (F(Kn) :neN} =[){Kn:neN} = K.

Thus either K € A(X, f) (if f(K) is not a singleton), or K € (C(f)) /(R (Y)) (f F(K) is
degenerate). Consequently, K € B(X, f) by (2.8). The proofis then complete.

The example below shows that the conclusion of Proposition 2.9 is not true for arbitrary sequences of
continua In particular, the assumption "decreasing” cannot be replaced by "increasing” in Proposition
29.

Example 2.10. There is a continuum X, an increasing sequence of subcontinua K, in X and a
monotone mapping f : X — Y such that K,, € B(X, f) for eachn € N, while Lim K, ¢ B(X, f)

Proof. Let S be the sin(1/x)-curve defined by (1.11). Put A = {(0,y) € R?: y € [1,2]}, and
define X = SUA. Let Y=[0,1], and let f : X — Y be the projection defined by f(z,y) = z. For each
neN let K,=f"1([1/(n+1),1]). Then K, € A(X,f) C B(X,f), and LimK, =S. Since
f(S)=Y, we have f~}(f(S)) = X, and thus LimK, ¢ B(X, f), as claimed. The argument is
complete.

Theorem 2.11. For each surjective mapping f : X — Y between continua X and Y the following
assertions are equivalent:

f is atomic; 212
A(X, f) = CCONCU) T ERX)); (2.13)
B(X, f) = C(X); (214

A(X, f) is an open subset of C(X). (2 15)
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Proof. Equivalence of (2.12) and (2.13) is evident from the definitions, and (2.14) is another form of
(2 13) by (2.8). Thus (2.12), (2.13) and (2.14) are equivalent. The implication from (2.13) to (2 15) is
obvious. We will show that (2.15) implies (2.14). To this aim recall that an order arc in the hyperspace
C(X) is a family £ of subcontinua of X such that for every two members A and B of £ we have either
AC BorBC A Let pbe an arbitrary point of X and let £ denote an order arc in C(X) from {p} to
X. By (2.15) the intersection £ N A(X, f) is an open subset of £. Denote by C the component of the
intersection that contains X, and by K the (only) element of the boundary of C in £. Then
K ¢ LNA(X, f). Take a decreasing sequence {K, € C: n € N} of subcontinua of X converging to
K. Then K =[\{K,:n €N}, and since K, € C C A(X, f) C B(X, f) by (28), we infer from
Proposition 2.9 that K € B(X, f). Since K ¢ A(X, f), we have K € (C(f)) 1 (F.(Y)) by (2.8),
whence it follows that f(K) € F1(Y), and therefore, by the definition of an order arc, the subarc of £
from {p} to K is contained in (C(f))™'(F,(Y)), thus in B(X, f), while the rest of the order arc L, i.e.,
C, is contained in A(X, f) by its definition. So, we conclude by (2.8) that the whole order arc £ is
contained in B(X, f). Now, since p was chosen as an arbitrary point of X, we infer from £ C B(X, f)
that C(X) C B(X, f), whence (2.14) follows. The proof is complete.
The next theorem is a characterization of monotone mappings in the introduced terms
Theorem 2.16. For each surjective mapping f : X — Y between continua X and Y the following
, assertions are equivalent:

f is monotone; 217

CUHBX, ) =C). (2.18)

Proof. Assume f is monotone. Since one inclusion of equality (2.18) is obvious, we have to show
the other one. Let L be a nondegenerate subcontinuum of Y, ie. L € C(Y)\Fi(Y) Putting
K = f~1(L) we see that K is a continuum by monotoneity of f, and we have f~1(f(K))=f"1(L)=K
Thus K € A(X, f) C B(X, f) by (2.4) and (2.8), whence L € C(f)(B(X, f)), and (2.18) follows

Assume equality (2.18) holds. Take a point yo € Y and, to show that f is monotone, i.e, that
f}(yo) is connected, consider for each positive integer n the component L, containing yo of a
closed 1/n-neighborhood about yp in Y. Thus L, is a nondegenerate subcontinuum of Y, ie,
L,e CY)\F1(Y). Again by (2.18) we infer that L, € C(f)(A(X, f)), whence (for each n) there
exists a nondegenerate subcontinuum K, of X such that f(K,) = L, and K, = f "} (f(K,))=f~1(L,)
Observe that for each n we have L.,y C Ly, i.e, that the sequence {L,} is decreasing, and that
{vo} =({Ln :n € N}. Thus it follows from the equality K, = f~!(L,) that the sequence {K,} is
decreasing, too, and we have

@) = FH((MLn:neN}) = J{f'(Ln) :neN} =[){Kn:neN}.

Thus f~!(yo) is a continuum as the intersection of a decreasing sequence of continua K,, The proof
is then complete.

Theorems 2.11 and (indirectly) 2.16 motivate the following question.

Question 2.19. What is the Borel class of the set A(X, f) considered as a subspace of the
hyperspace C(X)?

In connection with (2.6) of Statement 2.5 observe that the mapping h of the unit circle
S! = {2 € C: || = 1} (where C stands for the complex plane) onto itself defined by h(z) = 2% has the
property that the whole S is the only element of A(X, f), i.e., A(X, f) = {S'}. Generalizing this
phenomenon, consider the following class of mappings.

Definition 2.20. A surjective mapping f : X — Y between continua X and Y is called contratomic
provided that A(X, f) = {X}. In other words, a nonconstant mapping f is contratomic if the only
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subcontinuum K of X having nondegenerate image and satisfying the equality K = f~!(f(K)) is X
itself.

The above considered mapping h of S! onto itself is an example of a contratomic mapping. Note that
the class of contratomic mappings does not contain homeomorphisms (moreover, any homeomorphism,
being atomic, is not contratomic). In connection with this observe that if again h : S! — S! is defined by
h(z) =22 and g:S! — S! is the identity, then the compositions hog=~h and goh =h are
contratomic, while g is not. This leads to the following observation.

Observation 2.21. The class of contratomic mappings does not have the composition factor
property.

Proposition 2.22. Let h: X —» Y and g:Y — Z be surjective mappings between continua X,Y
and Z, respectively. If either k or g is contratomic, then the composition g o h is contratomic, too

Proof. For any K C X we have

K ch™'(h(K)) and h(K)C g '(g(h(K)))

Let K € C(X)\{X}. If h is contratomic, then K& h~!(h(K)); and if g is contratomic, then
h(K)s g7 1(g(h(K))), which leads to

K c h {(h(E)sh (g7 (g(h(K))))

since h is surjective. Putting f = go h, we get K& h™'(g71(g(h(K)))) = f~1(f(K)) in either of the
two considered cases The proof is then complete.
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