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ABSTRACT. The present paper is intended as a first step toward the establishment of a general theory
of finitely subadditive outer measures. First, a general method for constructing a finitely subadditive

outer measure and an associated finitely additive measure on any space is presented. This is followed by
a discussion ofthe theory ofinner measures, their construction, and the relationship oftheir properties to

those of an associated finitely subadditive outer measure. In particular, the interconnections between the
measurable sets determined by both the outer measure and its associated inner measure are examined.

Finally, several applications of the general theory are given, with special attention being paid to various

lattice related set functions.
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1. INTRODUCTION
For some time now countably subadditive outer measures have been studied from the vantage point

of a general theory (e.g. see [4], [6]), but until now this has not been true for finitely subadditive outer

measures. Although some effort has been made to explore the interconnections between certain specific

examples of finitely subadditive outer measures (see [3], [7], [8], [10]), there is still no unifying
framework for this subject analogous to the one for the countably subadditive case.

This paper is intended to be a first step toward the development of such a general theory for finitely

subadditive outer measures. If successful, such an abstract framework would unify the subject, making
further research into this area more efficient and thereby enhancing further progress. New examples of

finitely subadditive outer measures could be established at will in any space and their characteristics

readily inferred from a minimum ofinformation.
Section 3 contains a discussion of the general concept of a finitely subadditive outer measure.

Starting from a coveting class and an appropriate set function defined on that class, we show how to

construct a finitely subadditive outer measure in any space and how this leads to a finitely additive

measure in that space.
In Section 4 we explore the general concept of inner measure. Using a suitable finitely subadditive

outer measure, we show how to construct an inner measure in any space. We then characterize the

measurable sets determined by this inner measure and examine the interconnections between those sets

and the ones determined by the original outer measure. The property ofsubmodularity plays a key role in
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this investigation. The results obtained here make it clear that the study ofinner measure is essential to a
full understanding of finitely subadditive outer measures.

An example of the value of the general principles developed in Sections 3 and 4 is presented in

Section 5. We can use a given finite, finitely subadditive outer measure v and the collection S of its

measurable sets to define two new finite set functions v and uo. The results of Sections 3 and 4

immediately reveal not only that ’ is a finitely subadditive outer measure and that Vo is an inner measure,
but also their basic properties and their interconnections with one another.

The importance of a general theory of finitely subadditive outer measures begins to emerge in the
discussion of the set functions v and vo, for here we first see the marked contrasts between the new

theory and that for the countably subadditive case (see [6]). When v and ,o are constructed from a

given finite outer measure, certain important related concepts which coincide in the countably subadditive
case are actually distinct in the finitely subadditive case. For instance, if v is a countably subadditive

outer measure and q, ,.qo, and ,So denote the collections of measurable sets for v, v, and o,
respectively, then ,S q, ,So. However, if v is finitely subadditive, we can only say that

S C ,S, ,So. To obtain complete equality in the latter case, we must impose an additional condition

on ,. At the end of Section 5, we see other strong contrasts between the new theory and the old in the

concept ofregularity.
In Section 6 we apply all the general results of the previous sections to the important examples of

measures defined in terms of a lattice, thus obtaining in a systematic manner the fundamental properties of
the associated outer and inner measures. (In this connection, see also [3], [7], [8], [10]. For a more

detailed discussion ofthe general theory of finitely subadditive outer measures, see [5]).
In the next section we provide for the reader’s convenience a survey of some ofthe more specialized

notation and terminology that we shah use throughout this paper. In the case of lattice related measures
and outer measures, our notation and terminology are consistent with [1], [2], [9], [11], [12].

2. BACKGROUND AND NOTATION
Throughout this paper, X will denote an arbitrary set and 7:’(X) the collection of all subsets of X.

We shall always assume that X . A collection C 7(X) will be called a lattice if A, B impfies
that A tJ B and A B . Furthermore, we shall always assume that , X . The complement
of a set A C X will be denoted by A, and the collection ’ will be defined by ’ {L’ C
Note that is a lattice. 4() will denote the algebra generated by a lattice and 6() the lattice of

countable intersections of sets from . A lattice will be called a 6-lattice if6() .
We shall also need the following definition and theorem in Section 6.

DEFINITION 2.1. A lattice is said to be normal, if for all A, B such that A f3 B , there

exist C, D such that A C C,B c/’, and C’ f3 D’
THEOREM 2.2. A lattice is normal if and only if for all A, L], L2 such that A C L

there exist A1, A2 G such that A] C L, A2 C L, and A A] A2.
If the property of countable subadditivity is replaced by finite subadditivity in the definition of an

outer measure v, we shall say that v is a f’mitely subadditive outer measure.

We now list some of the less common terminology that we shall use repeatedly throughout this

work.

DEFINITION 2.3. An extended real valued set function A defined on a class of sets is

superadditive on , ifwhenever E, F , E t F , and E CI F ), then A(E F) >_ )(E)+A(F).
If {Ei}i C is any finite collection of pairwise disjoint sets for which E and

i=1

i’-I i’-I
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we shall say that A is finitely superadditive on . If this same statement holds for any countable
collection of pairwise disjoint sets in E whose union also belongs to ’, we say that A is countably
superadditive on ’.

DEFINITION 2.4. Let A be an extended real valued nonnegative set function defined on a class of
sets . Iffor all E, F 6 with E t.J F and E F , the inequality

A(E t.J F) + A(E F)

_
A(E) + A(F)

holds, we shall say that A is submodular on . Ifthe geverse inequality holds fog any such pai ofsets in, we shall say that A is supermodular on . If strict equality holds under the same conditions, then A is

modular on . Obviously, a measure defined on an algebra .A is modular on

REMARK 2.. Since submodularity on a class implies finite subadditivity on , we shall refe to

a submodular, finitely subadditive outer measure moge simply as a submodular outer measure.

We close this section with a briefsurvey ofthe measure notation and terminology we shall be using.
For a lattice c (X), we denote by M() the collection of all finite, nonnegative, finitely

additive, nontrivial measures on 4(). The subset consisting of all the 0-1 valued measures in M() will

be denoted by I().
DEFINITION 2.6. (a) A measure p M() is E-regular if fog all A

sup{(L) A D L }.
(b) A measuge p M() is -smooth on , if fog all sequences {L,},__

then #(L) ---, 0.

() A measure # M() is or-smooth on .A(), if fo all sequences {A,}__ C t() fo which

A. l , then #(A,) 0. (This is equivalent to saying that/ is countably additive.)
(d) A measure/ M() is strongly -smooth on , iffo all sequences {L},__ C fog which

( )L, and L, e , then/ L --"mf/(L).
n=l n--1

Note: An alternative characterization of this property is: p is strongly or-smooth on , if for all

L’ , L’, sup/(L’,).sequences t ,,,=, C for which L, T and [J L, e ’. then
,,=1 -=1

We shall use the following notations to refer to these measures:

Ma(f.). the subset ofall/:-regular measures in

Mo(). the subset of all measures in M() which are ;-smooth on .
M (), the subset of all measures in M() which are ,-smooth on

Mo.(). th sub ofall maures in M() which are strongly ;-smooth on .
M(), the sub ofall -regular measures in M ().

The correspondin sub,s of I() are d,oted by I(),Io(),I(),Io.(), and I().
rspectively.

Note: Ceary, M(Z:) C/o.() C Mo().
DEFINITION 2.7. For any lattice/: C P(X) and any measure/ 6 M(/:). we define the set

function p’ for all E C X by

.’(E) f{.(L’)IE c L’,L e }.

DEFINITION 2.8. If C P(X) is a lattice and # 6 M(). we define the set function #" for all

EcXby

i--1 i--1

DIgFINITION 2.. If 12 C "P(X) is a lattice, M(), and ’ is the , function olD,fruition 2.7,

then we slll say tlt islyrglr iffor every/./ ,
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We denote the subset ofall weakly regular measures in M() by Mw().
Finally, the restriction ofa set function u to a certain class of sets will be denoted by

3. FINITELY SUBADDITIVE OUTER MEASURES
In this section we examine the general concept of a finitely subadditive outer measure along with its

related properties and its associated finitely additive measures. We begin with
DEFI/qITION 3.1. An extended real valued set function u defined on T’(X) is called a finitely

subadditive outer measure on 7:’(X), ifv satisfies the following conditions:

(a) /(0) 0 and z/(E) _> 0 for all E C X.
(b) IfE, F C X and E C F, then v(E) < v(F).

)(c) For any finite collection {E,}in__.l C 7:(X), v Ei <_ ,v(E).
i=1 i=1

If v(X) < oo, v is said to be finite.

DEFINITION 3.2. Let v be a finitely subaddifive outer measure on T’(X). A set E C X is

t,-measurable if for every A C X, t,(A) v(A f’l E) + v(A f’l E’). The class of all u-measurable sets

will be denoted by ,5.
Although one can show ,S is an algebra and that v is a fmitely additive measure, these results do

not demand that v be a finitely subadditive outer measure.

THEOREM 3.3. Let be a nonnegafive real valued set function on 7(X) such that A()) 0. If

{E cXIVG cX,(G)=(GE)+(GE’)},

then ,5 is an algebra and , ,[s is a finitely additive measure.

Theorem 3.3 shows how to construct a finitely additive measure from a finitely subadditive outer

measure. The construction of such an outer measure would naturally seem to be the next problem.
DEFINITION 3.4. Let C C T’(X) be nonempty. We say that C is a covering class if ) E C and for

every A C X, there is a finite collection {Ei }i"__1 C C such that A C
i=1

As in the standard theory of outer measures, we can now construct a finitely subadditive outer

measure.

THEOREM 3.5. For any covering class C C 7(X) and any finite, nonnegative set function

defined on C such that #() 0, the set function A defined for each A C X by

i=1 i---1

is a finite, finitely subadditive outer measure on (X).
By imposing certain conditions on C, we can improve upon Theorem 3.5.

THEOREM 3.6. Let C,/, and , be defined as in Theorem 3.5, and suppose t, is a set function

defined for each A c X by

(a) If is closed under finite unions and / is finitely subadditive on C, then A v. If/ is

monotone, then , extends/ to a finite, finitely subadditive outer measure on 7(X).
(b) IfC is a lattice and/ is submodular on C, then A v is a submodular outer measure on 7(X).
PROOF. (a) C is closed under finite unions, so for every A C X, there is a B C such that

A C B. Now A C BtgU...U$, so by the definition ofA, A(A) _</(B)-t-/(i)-t--..-I-/())---/(B).
Thus,

A(A) _< inf{/(B) A C B e t:} v(A). (3.1)
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On the other hand, for each finite collection {Ei }i"=l C ( for which A C t3 Ei, [3 E, E C, so the

definition ofv and the subadditivity ofp imply that
,-1 ,--1

It follows from (3.1) and (3.2) that A v on ’(X).
Let A E C. If# is monotone, then

#(A) < inf{(B) A C B C} A(A),

so # < A on C. The reverse inequality is clear, so A # on C.
Co) Suppose A1, A2 C X and let > 0 be given. C is closed under finite unions, so there exist

B, E C such that A, C Bi, 1,2, and we may choose the B, so that p(Bi) < v(Ai) +/2, 1,2.

Furthermore, B1 LJ B2, B1 n B2 E C, so the defirfition ofv and the submodularity of/ on C imply that

v(A1 U A2) + v(A1 f3 A2) <_/(B1 t3 B2) + p(B1 f3

< (A) + (A) + .
Thus, v is submodular. Since pan (a) implies A v, the desired conclusion follows.

REMARK. Let/I and/2 be Inite, nonnegative set functions, each defined on a covering class
C C 7(X), vanishing at , and yielding, according to Theorem 3.5, finitely subadditive outer measures 1
and A2, respectively. IfI 2 on {, then ),I A2 on 7(X).

Since the concept of regularity for finitely subadditive outer measures will be important in later
sections ofthis paper, we list here for convenience the following theorems and definitions.

DEFINITION 3.7. If v is a finitely subadditive outer measure, A c X, and E /q, we shall say
that E is a measurable cover for A if A C E and (E) v(A), where vlsv. If there is a

measurable cover for every A C X, we shall say that v is regular.
THEOREM 3.8. If v is a finite, regular, finitely subadditive outer measure, then E ,S if and only

ifv(X) v(E) + v(E’) (see [6]).
With the machinery we have now set up, we can easily construct finitely subadditive outer measures

and their associated finitely additive measures in any space. We specify C and p and the finitely
subadditive outer measure and its associated finitely additive measure are automatically defined. To
determine the properties of these set functions, we need only examine the properties of C and #.

However, we can learn substantially more about finitely subadditive outer measures in general by
examining the related concept ofinner measure.

4. INNER MEASURES
We turn now to a discussion of the general notion of an inner measure defined on 7(X) and the

relationship ofits properties to those ofa finitely subadditive outer measure.

DEFINITION 4.1. An extended real valued set function p defined on 7(X) is an inner measure if

it satisfies the following properties:

(a) p(O) 0.

(b) For all E C X, p(E) > O.

(c) p is monotone.

(d) p is countably superadditive on ’(X).
We may state the problem of interest as follows: ifwe use a finite, finitely subadditive outer measure

v on 7(X) to define a new set function p on 7;’(X) by p(E) v(X) v(E’) for all E C X, then when

is p an inner measure? Under the stated conditions, p wig possess the first three properties of an inner
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measure, but to assure countable superadditivity, v must possess additional properties, as the next

theorem shows.
THEOREM 4.2. If , is a finite, finitely subadditive outer measure, and p is defined on ’(X) by

p(E) u(X) u(E’) for all E C X, then:

(a) p() 0.

(b) For all E C X, 0 _< p(E) < oo.

(c) p is monotone.

(d) p

_
u on 7(X).

(e) IfE 6 S, then p(E)
(f) If , is submodular, then p is a supermodular inner measure.
PROOF. The proofs of parts (a) through (e) are not difficult, so for the sake of brevity, we omit

them here and prove only part (f).
v is submodular, so ifE, F C X, then

u(E’ u

By the definition ofp and the finiteness ofp and v, statement (4.1) implies

(X) p(E F) + (X) p(E U F) < v(X) p(E) + (X) p(F).

Hence, p(E U F) + p(E f3 F) >_ p(E) + p(F), so p is supermodular.
IfE 63 F ), then p is superadditive on disjoint sets and by induction p is finitely superadditive also.

Now let {E,},=I C 7:’(X) be a countable collection ofpairwise disjoint sets. Since p is monotone, then

for all n,

i= i= i=1

Letting n oo, we have

p Ei >_ p(Ei) p(E).
=1 =1

Therefore, p is an inner measure.

REMARK 4.3. When v is a finite, submodular outer measure, the set function p defined in

Theorem 4.2 will be called the inner measure determined by v.

We note also that by an argument similar to the one used to show that p is superrnodular when v is

submodular in Theorem 4.2(0, we can also show that t, is submodular whenever p is supermodular.
DEFINITION 4.4. If A is an inner measure on 7:’(X), we shall say that a set E C X is

A-measurable iffor every A C X, we have

(A) (A n E) + (A n E’).

We denote the class of all A-measurable sets in 7(X) by ,.
The next theorem follows immediately from Theorem 3.3.

THEOREM 4.5. If A is a finite inner measure on (X), then ,54 is an algebra and AffiAls is a

finitely additive measure on q.
We now have the important
THEOREM 4.6. If , is a finite, submodular outer measure and p is the inner measure determined

by v, then ,Sa {E C X Ip(E) v(E)}.
PROOF. Let ,S {E C XIp(E) u(E)} and choose E e 8a. Letting A X in Definition 4.4,

we have p(X) p(E) + p(E’). Since X 6 ,$,, Theorem 4.2(e) implies that p(X) v(X), and by the

definition ofp, p(E’) ,(X) ,(E). Since all quantities are finite,
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p(E) p(X) p(E’) v(X) (v(X) v(E) v(E).

Thus, E E ,.q, so ,S, C ,S.

To show the converse, let E e 8. Clearly p(E’)= v(X)- v(E)= p(X)- p(E), so by the
definition ofp,

p(X) p(E) + p(E’). (4.2)

Since p is supermodular, then for any A C X,

(A E) + (A E) > (A) + (E),
/,(A E’) + p(A E’) >/,(A) +/,(E’).

Adding and applying (4.2) gives

p(A 13 E) + p(A Ct E’) + p(A t.J E) + p(A U E’) _> 2p(A) + p(X).

Again, because p is supermodular, we obtain

p(A E) + p(A U E’) <_ p([A U E] U [A U E’]) + p([A U E] CI [A U E’])
p(X) +/,(A).

Now statements (4.4) and (4.5) imply

p(A Ct E) + p(A 13 E’) + p(X) + p(A) >_ 2p(A) + p(X).

(4.3)

(4.4)

(4.5)

Hence, E e %, and, therefore, ,Sp C 3. Combining this result with the reverse inclusion shown above,
we have 8.

COROLLARY 4.7. Under the hypotheses ofTheorem 4.6, ,S c 3.
PROOF. Immediate by Theorems 4.2 and 4.6.

DEFINITION 4.$. If a finite, finitely subadditive outer measure v satisfies the condition that

E ,.q if and only ifv(X) v(E) + v(E’), we shall say that v satisfies condition (M).
From this we obtain directly the important
THEOREM 4.9. If v is a finite, submodular outer measure on (X), and p is the finite inner

measure determined by v, then v satisfies condition (M) ifand only ifS =S, {E C XIp(E)=v(E)}.
PROOF. Since by Theorem 4.6 and Corollary 4.7 we always have ,S C ,S,, we need only show

the conclusion holds for ,Sp C
Assume that v satisfies condition (M) and let E E 8,. By the definition of p, we have

v(E) p(E) v(X) v(E’), and since v is finite, we obtain v(X) v(E) + v(E’). The hypothesis
now implies that E 6 ,Su, so that ,S, C

On the other hand, suppose ,.q, C ,Su. Clearly, if E 6 ,Su, then v(X) v(E) + v(E’), so it will

suffice to prove the converse implication. Assuming this latter equality holds for any E C X, the

finiteness of v and the definition of p imply that p(E) v(X) v(E’) v(E). Hence, E E ,S,, so by

hypothesis E %, and consequently v satisfies condition (M).
It now seems natural to inquire as to when a finitely subadditive outer measure is submodular. One

condition that ensures this is given by
THEOREM 4.10. If is a finite, regular, finitely subadditive outer measure, then v is submodular.

PROOF. Clar.

We conclude this section with a direct result ofthis theorem and Theorem 4.2.

Thus, for all A c X, p(A13E)+p(A13E’)>_ p(A). Combining this with the fact that p is

superadditive, we see that for all A C X,

,(A) (A E) +(A E’).
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COROLLARY 4.11. Let , be a finite, finitely subadditive outer measure and p the set function

defined for all E C X by p(E) (X) (E’). Ifu is regular, then p is an inner measure.

5. AN APPLICATION TO THE SET FUNCfIONS
Beginning with a finitely subadditive outer measure and the collection ,S ofu-measurable sets, we

can define two new set functions po and o on o(X). We shall then show how to derive their basic

properties using the general theory of Sections 3 and 4. We then follow this with a full discussion ofthe

interconnections between the properties of ’ and ’o and also of their relationship to the original outer

measure ,.
Throughout this section, , will always denote a finite, finitely subadditive outer measure on (X)

and ,.q, the set ofall ,-measurable sets.

DEFINITION 5.1. For all E C X, we define the set functions ,o and ’o as follows:

vo(E) sup{r,(M) E

TmOmM S.. (a) For evy
(b) v is a finite, submodular outer measure on )(X), and ifE 6 8, then v(E) r,(E).
()))o is a finite, supermodular inner measure on (X). For all E C X,

o() (x)- (’).

I)ROOF. (a) Clear.

(b) 8 is a lattice and ))]s is submodular on 8, so by Theorem 3.6(b), is a submodular

outer measure on (X). Since by Theorem 3.6(a), vJ8 r,, then v(E) v(E) for any E (f 8.
Clearly, v is finite.

() Since u[8, is a finitely additive measure on 8, then for E C X, Definition 5. implies

supI(x)
v(x)
v(x) v(’).

Part (b) above and Theorem 4.2(0 now imply that ),o is a supermodular inner measure. Clearly, Vo is also

finite.

REMARK 5.;. We define a v=measurable set rdin8 to Definition 3.2 and denote the collection

of all these sets by 8,0. By Theorem 3.3, 8,0 is an algebra and iv’ v ]s, i a finitely additive measure.

Similarly, we define a vo=meamwable set according to Definition 4.4 and denote the class of all such sets

by 8o. This leads directly to

THEOREM 5.4. (a) 8o is an algebra and o VolS,, is a finitely additive measure on 8.
(b) E 6 8 ifand only ifvo(A) _< r,o(ACE)+vo(AnE’),forallA C X.

(d)
(e) I a 8 (or 8,), thn o() v()
(f) v satisfies condition (M) ifand only ifS, 8o.
I)ROOF. (a) Clear, by Theorem 4.5.

(b) This follows by the superadditivity ofo.
() An immediate consequence ofTheorems 4.6 and 5.2(b,c).
(d) Let E 6 8 and choose any A C X. Given a > 0, there exists an M 6 8 such that A c M

and v(M) < v(A) + a. Since A
implies



REILKS CONCERNING FINITELY SUBADDITIVE OUTER MEASURES 661

m(A) + > re(M) m(M n E) + ,( n E’)
> ,o4 n E) + ,(A n E’),

and therefore (A) _> t(A n E) + t(A n E’). Hence E E 80, and thus 8 c 80. Corollary 4 7

gives ,S,,o C ,S,,o.
(e) A clear consequence ofparts (c) and (d) above and Theorem 5.2(a).
(f) Follows from Theorems 4.9 and 5.2Co,c).
The following inequalities are not difficult to show and are frequently useful.
LEMMA 5.5. IfE and F are disjoint sets in (X), then

to(E) + to(F) < to(E 0 F) < to(E) + t(F) < t(E U F) < t(E) + t(F).

With this lemma we can show

THEOREM S.6. (a) IfE E 8, then for all A C X, to(A n E) + (A’ n E) t(E).
Co) fig c E ( S,,, then to(G) t(E)- f(E- C).
The following important characterization theorem reveals the relationships between ,5, 8o, and

when t satisfies condition (M).
THEOREM 5.7. If t satisfies condition (M), then:

(a) For any E C X, if to(E) t(E), then E
(b) E ,q ifand only if to(E) f(E).
(c)
PROOF. (a) Suppose to(E) t(E) for some E C X. By Theorem 5.2(a,c),

But t is subadditive, so t(X) t(E) + t(Et), and since t satisfies condition (M), E
Co) Clear.

(c) By Theorem 5.4(c), if E E 8o, then to(E) ’(E). By part (b) above, E ,5 so 80 C 8.
Theorem 5.4(d) now implies ,5 ,q,

REMARK 5.8. By Theorems 5.7(c) and 5.4(f), t satisfies condition (M) whenever t does

However, we shall soon obtain a far stronger result.

THEOREM 5.9. to satisfies condition (M).
PROOF. By Definition 4.4, ffE 0, then to(X) to(E) + to(E’).
To show the converse, suppose to(X) to(E) + to(E’) for some E C X. Since t is finite,

Theorem 5.2(c) implies to(E’) + ’(E) t(X). Therefore,

,o(E’) + ,(E) ,(x) ,o(x) ,o(E) + ,o(E’).

All terms are finite, so v(E) to(E). By Theorem 5.4(c), it follows that E e ,o.
We now see that E ,5 if and only ifto(X) to(E) + to(E’), so to satisfies condition (1.
We now wish to examine the concept of regularity for finitely subadditive outer measures. To

facilitate this discussion, we define a closely associated property.

DEFINITION 5.10. A finite, finitely subadditive outer measure t on P(X) will be called

approximately regular fft ’ on P(X).
The concepts of regular and approximately regular coincide in the standard theory of countably

subaddifive outer measures, but this need not be the case in the theory of finitely subadditive outer

measures. Nevertheless, a finite, finitely subadditive outer measure which is regular will also be

approximately regular. This latter concept provides us with a condition on t weaker than full regularity

but which still guarantees that t satisfies condition

THEOREM 5.11. ff t is approximately regular, then t satisfies condition (lVl).
PROOF. Since it is clear that t(X) t(E) + t(E’) ifE E ,5, we need only show the converse.
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Suppose t(X) t(E) + t(E’) for some E C X. If A 6 8, then using E and E’ as test sets in

Definition 3.2, we have

t(E) t(E A) / t(E A’),
,(E’) (E’ n A) + t(E’ n i’).

Adding these equations and using the subadditivity oft, we obtain

,(x) [(E n A) + (E’ n A)] + [,(E n A’) + ,(E’ n A’)]
> (A) + (A’) (X).

Hence,

,(E n A) + ,,(E’ n A) + ,(E n A’) + ,,(E’ n A’) t(A)+t(A’).

Since all quantities are finite, we can subtract the inequality t(A’) < t(E n A’) + t(E’ Iq A’) from (5.1)
to obtain t(A) >_ t(E f3 A) + t(E’ f’l A). Since t is subadditive and t v, we actually have

,,(A) ,(A n E) + ,,(an E’).

We have shown that this equality holds for all A 8, but we can readily show that it also holds for all

A C X. Thus, E E 80 8, and the proof is complete.
In an effort to shed more light on the set function v, we make the following definition.

DEFINITION 5.12. If t is a finite, finitely subadditive outer measure on P(X), then we can define

a new set function z/’ for all E C X by

t(E) inf{t(M) E c M 6

Recalling that when t is a fmite, finitely subadditive outer measure, then v is a finite, submodular

outer measure and 8f is an algebra, we can readily apply the general theory of Sections 3 and 4 to this

definition to establish the next lemma.

LEMMA 5.13. The set function is a fmite, submodular outer measure on 7(X) and possesses
the following properties:

(a) IfE 2,,0, then t’(E) (E).
(b) (x) v(x) (x) <
(c) For every E C X, v(E) _< too(E).
(d) 8 is an algebra and Yoo vools is a finitely additive measure on 8.
This new set function reveals important new information about the outer measure t and enables us

to strengthen significantly the conclusions ofTheorem 5.4(d,f).
THEOREM 5.14. (a) v is approximately regular.

(b) satisfies condition (M).
() S. 8o.
PROOF. (a) For any A C X, Theorem 5.4(d,e) implies

(A) inf{(M)IA c M e
_< f{(M) A C M e
=(A).

It follows immediately from Lemma 5.13() that t(A) (A) for all A C X, so v is approximately

regular.
(b) Clear, by Theorem 5.11 and part (a).
(c) A direct consequence ofpa.et (b) and Theorem 5.4(0.
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6. FURTHER EXAMPLES AND APPLICATIONS
In this section we show the efficiency of the general theory discussed above in Sections 3, 4, and 5

when applied to some familiar lattice related set functions. We shall soon see that the nature and special

properties of these set functions are revealed almost instantly. No longer will we need to examine each

function individually to ascertain its nature or to labor tediously in an effort to uncover its special

properties. Most ofthese facts will be virtually self-evident once the function is defined.

Throughout this section, X will denote an arbitrary set and a lattice of subsets of X. We shall

always assume that 0, X 6 . All other notation and terminology in this section will conform to that

introduced in Section 2. Beginning with the set function #’ defined in that section we have

THEOREM 6.1. The set function/’ as given by Definition 2.7 is a submodular outer measure

possessing the following properties:

(a) ,’(x) <
(%) /’ =/ on ’.
(c) < #’ on A().
PROOF. ’ is a lattice, so it is a covering class which is closed under finite unions. Since

/ e M(), it is finite and nonnegative on ’, and p(0) 0. Furthermore,/ is necessarily submodular

(hence, finitely subadditive) on ’, and monotone. Consequently, Theorems 3.5 and 3.6 imply that #’ is a

submodular outer measure on 7;’(X) such that/’(X) < oo and/’ # on ’. Property (c) follows easily

as a consequence ofthe definition of/’ and the monotonicity ofp.

REMARK 6.2. Obviously, ’ #’ls is a finitely additive measure on ,S,,, the #’-measurable sets.

In the special case for p e I(), p’ is also regular and therefore satisfies condition (M).
We turn our attention now to the familiar set function/ to see how the theory reveals not only its

familiar characteristics, but also its strong connection to #’.
DEFINITION 6.3. Let C 7(X) be a lattice and p 6 M(). For all E C X, we define the set

function # on 7(X) by

(E) sup{,(L) L (2 E, L e }.

From this definition and Theorems 6.1 and 4.2, we see that/i is the inner measure determined by/’.
Furthermore, Theorem 4.2 also reveals that/i is supermodular, and if E ,.q, then/i(E) I’(E).
Combining this result with Theorem 4.6 and Corollary 4.7 shows that S,C%, {E c XII(E)=/’(E) }.
This result opens the door to an even stronger and more interesting result, namely

THEOREM 6.4. ,,, {E C X [/(E) =/’(E)}.
PROOF. In view ofthe comments preceding this theorem, we need only show that ,S,, C .,,.
Let E 6 ,S,,. Given > 0, there exists an L 6 such that L C E and

.() < .(L) + /2. (6.)

Also, there is an 6 such that E C and

/(’) </’(E) +/2. (6.2)

Combining (6.1) and (6.2) with the fact that E 6,9,,, we see that there exist L e and ’ 6 ’ such

that L C E C and

< ,’() +/ ,() +/ < ,() + . (.

To show that E is #-measurable, let W . Then A Cl E’ (2 W Cl/./, so by the monotoNcity of

and Theorem 6. l(b), we have
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On the other hand, A’ N E C A’ f’l ,’, so

Now/ is modular on/:’, so

(6.6)

Combining this result with (6.3) and the monotonicity of/z yields

(A’ L) +, (6.7)

where the equality follows by modularity. It now follows from (6.4), (6.5), (6.7), Theorem 6.103), and

the finite additivitiy of that

nm)+ i/(A’ nm’) _< (n’ nL’) +#’(A’ NL’)
_</(A’ n L) + (A’ n L’) +
(’ +

=/(A’) + .
Clearly this holds for all > 0, so

’(A’ E) + ,’(A’ E’) < ’(A’),

for any A’ E :’. It now follows easily that (6.8) holds for any A C X, and therefore E E 8,.
This leads immediately to two important results concerning
COROLLARY 6.5. If/z 6 M(.), then Iz’ satisfies condition (M).
PROOF. This follows immediately by Theorems 6.4 and 4.9.

COMMENT. We see now that/z’ is an important example of a finitely subadditive outer measure

which satisfies condition (M) but is not necessarily regular.
THEOREM 6.6. Ifp M(), then

8, n {L e I/(L) (L)}.

PROOF. Clear from Theorem 6.4.

REMARK 6.7. Some simple but important consequences of this theorem are: (a) p MR() if

and only if/z =/z’ on , and Co) p e M(/:) if and only if,4(/:) C 8,.
This latter result is the key that finally reveals conditions under which/z’ is regular: namely, / is

regular irE’ is 6 and p

We turn our attention now to the well known countably subadditive outer measure/z" defined earlier

in Section 2. Some important facts to recall about /’ are that/" <_ p on ’, p _</’ on :, and

#"(X) Iz(X) < oo, where/z Ma(:). Also, ,5, is a a-algebra and/"[s, is a countably additive

measure. In the special case for p I,,(:),/’ is always regular.
While we require that /z Mo() in order to ensure that /z" is not trivial, we can improve

significantly upon the above-mentioned results for #" by imposing a stronger condition on p, namely that

/ e Mo,(E).
THEOREM 6.$. If# e Mo, (), then #" #’ =/z on ’.
PROOF. From the introductory remarks above about/z" and by Theorem 6.1, we always have

"<=/ on ’. (6.9)
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To show the reverse inequality, let L’ 6 ’, and choose any e > 0. By the definition of #", there

exists a sequence {L,} c such that L’ C [3 L: andn--1

E#(L:) < #"(L’) + e. (6.10)

It is clear that L’ L’ N L’ [.J (L’ CI L,), and ifN is a positive integer, then
n=l n=l

N

U (L’ f L’) T U (L’ L) L’ 6 ’. (6.1 l)
n=l n=l

The monotonicity and the finite subadditivity of# imply that, for any N,

. (L’ L’) < .(L’ L’) _< .(L’)
n=l n=l n=l

<_ _.,(L) < ,"(L’) +.
n=l

Consequently, applying the hypothesis to (6.11) and (6.12) yields

< "(L’) + .

(6.12)

Since was arbitrary, this implies that #(L’) _< #"(L’), and consequently that # <_ #" on ’. Combining
this with (6.9) completes the proof.

An immediate consequence ofthis result is

COROLLARY 6.9. Ifp 6 M (), then #" p’ on ’.
PROOF. Clear, since M() C Mo,(,).
If# Mo() and #" is regular, then the converse ofTheorem 6.8 holds.
THEOREM 6.10. Let # 6 Mo(). If#" is regular and #" #’ # on ’, then # 6 Mo,().

L’ ’PROOF. Let { ,,,=1 C be any sequence such that L: T and [3 L’ e ’. Let L’ [J L’.
n=l n=l

Then L T L’ 6 ’. By hypothesis, " is ru|af and " # on ’, so it follows that

(L’) "(L’) " L’ n"(L’.)
,m,(L’.).

Hence,

This means that # e Mo. ().
Since #" is always regular for # 6 Io.(), the following corollary is an immediate consequence of

Theorems 6.8 and 6.10.

COROLLARY 6.11. If# 6 Io(), then # I,,. () ifand only if#" #’ # on’.
REMARK. Before we conclude our discussion of the outer measure #", we note two additional

results of interest concerning regularity for #". First, in a spirit paralleling Theorem 6.10, if# Mo()
and #" is regular with #" # on , then # M(). On the other hand, if # M,(), then #" is

regular and submodular.

(6.13)
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(E) i{p(L’) E C L’, L e
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(c) c A() c &.
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S ,(L) +,(Q) + .

Ts holds for l > 0, we

,,(L L) S ,,(L) + ,,(L).
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(c) LdA,dcomidyE,FEmchtECALdFCAE.
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(A’) (A’) (E F) (E) +,(f).
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(A’) (E) + p{(F) F C A’ E’, F 6 }
.(E) +.(A’ E’)
.(E) + (A’ ).

Clly L C E’, A’ n L C A’ E’, d moaotoid of pfies at

(A’) a .(E) +(A’ n).
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(6.16)
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(A’) > sup{p(E) E C A’ A L’, E 6 } + (A’ n L)
,,(A’ L’) + (A’ L)
(A’ L’) + (A’ L).

This statement holds for all A’ 6 ’, but it is not hard to show that it also holds for all A C X.
Consequently, L 6 ,St, which means that

(d) Let L . Then by part (c), L , and since S is an algebra, we also have L’ ,.q. Since

l& is a finitely additive measure, it follows that (X)= (L)+ (L’), and from Theorem 4.2,

/(X) =/,(L’) +/’(L). Consequently,

(z) + (z’) ,(z’) + ,’().

Since #i on ’ and all quantifies are finite, we conclude that (L) =/’(L). Thus, =/’ on .
(e) By part (c), we have ’ C ,9, therefore [s satisfies the modular law on ’. From the remarks

preceding Theorem 6.13, =/i on ’, so #i is also modular and, hence, submodular on ’. Theorem

3.6(b) now implies that is submodular on ’(X).
The second new set function we wish to define and examine in the light of the general principles set

forth in Sections 3 and 4 is the set function, which has a strong relationship to .
DEFINrHON 6.14. If/ M() and/’ is the outer measure of Definition 2.7, then for all

E C X, we define the set function/ on ’(X) by

/(E) sup{/’(L) E D L 6

From this we can readily show that if is a lattice and # e M(), then for all E C X,
#j(E)+-(E’)=I(X). Furthermore,/j is finite, nonnegative, monotone,/(8) =0, and/j(X) =/(X).
We shall define a/j-measurable set in the standard manner and denote the class ofall/-mle sets

by ,5,,. As one might expect, Theorem 3.3 assures us that ,5,, is an algebra and that/jl&, is a finitely

additive measure. The relationship of/ to the other set functions we have discussed is summarized in

THEOREM 6.15. If# e M(), then:

(a) < < ’ on ’(X).
(b) < < ,’ on .
(c) , g < , < ;,’ on ’.
(a) ,f e &, men ,(E) ().
The proofs ofthese statements are straightforward and will be omitted here.
Just as fails to be an outer measure unless is normal, so/ similarl); fails to be an inner measure

without this same additional condition on . However, if is normal, then not only does become
countably superadditive and, hence, an inner measure, but other useful information is revealed also.

THEOREM 6.16. If is a normal lattice and/ 6 M(), then:

(a) /j is a supermodular inner measure on ’(X).
0,) & { c x ,() g()}.

PROOF. (a) By Theorem 6.13, is a submodular outer measure, so from the observations

following Definition 6.14 and the finiteness of B, it follows that/(E) =/(X)- B(E’) -(X)-’(E’),
for all E C X. Theorem 4.2 now implies that/j is an inner measure, and since it is not hard to show that

is also supermodular, the proofis complete.
(b) Immediate by Theorem 4.6.

(c) A consequence ofTheorem 6.13 and Corollary 4.7.

In addition to these results, we can also improve upon the conclusion of Theorem 6.15 if is

normal.
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THEOREM 6.17. If/; is a normal lattice and/ M(), then:

(a) < <_ _< on ’(X).
(b) p =/i _</ p’ on .
(c) p----pj----_</’----pon
As in Theorem 6.15, the proofs ofthese statements are straightforward and will b omitted.

Because weakly regular measures are defined in terms of the values of the outer measure p on the

lattice , where p M() (see Section 2), it is now possible to simplifT the study of these measures by

treating them as a natural application ofthe set function pj. For example, we have

THEOREM 6.18. If is a lattice and/ M(), thenp Mw() ifand only if/ on’.
PROOF. If# Mw(), then bythe definition ofj, we have for all L’

(L’) ,p{’(2,) L’ /, } (L’).

Hence, j p on

Conversely, ifp ffi/ on *, then it follows that for all L ,
(L’) (L’) ,p(’(/,) L’ ).

This implies that p Mw().
Using this theorem, it follows easily that MR() C Mw(), but we can strengthen this result if is

normal.
THEOREM 6.19. If is a normal lattice, then MR() Mw(f.).
PROOF. It will suffice to show that Mw() C M(), so let Mw(f.) and L’ ’. Clearly,

(L’) + (L) (X) (L’) + (L),

so by Theorem 6. $ and the finiteness of all terms, we deduce that (L) p(L). Hence, p on .
Since is normal, Theorem 6.17(b) implies that #’ on , so p p’ on . Iecalling Remark 6.7(a),
we see that p M().

As a final illustration of how our general principles may be applied to specific set functions in order
to simplify their study, we apply the results of Section 5 to the well known set functions

discussed earlier. We shall see that this application also reveals new and unexpected information about

the set functions and
P,ecall from our earlier results that p is a finite, submodular outer measure which satisfies condition

(M), ,5,, is an algebra, and ,.q,, ,S (E C XII,(E) l’(E)}. Letg u l’ in Definition 5.1,
we have for all E C X,

uo(E) sup{’(M) E D M ,S,,}.

The following results are immediate consequences ofthe general principles derived in Section 5.

PROPOSITION 6.20. (a) u is a finite, submodular outer meamre.

(b) Uo is a finite, supermodular inner meamre such that uo(E) l’(X) u(E’), for all E c X.
(c) or dl c x, Uo(E) <_ ,(E) <_ ,’(E) <_ :().
PROOF. (a) and (b) are obvious consequences of Theorem 5.2(b,c). To prove part (c),

we note that by Theorems 5.2(a) and 4.2(d), if E C X, then uo(E) < p’(E) <_ u(E) and

p(E) < p’(E) _< u(E). It remains onlyto show that uo(E) <_ #(E).
Consider any M ,.q,, such that M C E. By Theorem 6.4 and the monotonicity of

.’(M) ,(M) <_ ,(). Hnc,

o() ,up{.’(M)IE V e S} _< .().

Because satisfies condition (M), we also have
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PROPOSITION 6.21. (a) IfE 6 S,, then to(E) p,(E) tz’(E) u(E).
(b) If ECX and either /zi(E)=/z’(E) or Vo(E)=v(E), then ESu, and

to(E) =/i(E) =/’(E) v(E).
PROOF. Because /’ satisfies condition (M), Theorems 5.7(c) and 6.4 imply that

,Svo ,Sm ,S, . In particular, this means that

{E c XIp,,(E) ---/’(E)} {E C Xlto(E t(E)},

so that/i(E) =/’(E) if and only ifto(E) v(E).
Clearly then, if E d, both equalities hold and by Proposition 6.20, to(E)=/i(E)

/’(E)=v(E). Conversely, if /,(E)=/’(E), then E ,.q,, so by the above argument,

to(E) p,i(E) t’(E) v(E). Similarly, if to(E) v(E), then by Theorem 5.7(b), E q,, and
then the same equalities hold.

NOTE. Similar conclusions hold for any E in ,.q, ,.qo, or ,.q,, since these collections coincide.
Also, we note that in addition to the properties discussed above, it follows from Theorems 5.9 and 5.14

that v is approximately regular and that both to and v satisfy condition (M).
Because ’-qd ,S, we can give alternate definitions for v and to when t =/’:

t(E) inf{/zi(M) E C M
to(E) sup{/i(M) E

These alternative definitions lead to some unexpected results about and /j: namely, if

/ MR(l:), then =/’ f and/j =/i to. Consequently, when p Ms(l:), then is a finitely
subadditive outer measure and pj is an inner measure, even if is not normal.
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