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ABSTRACT. Let f be a continuous map of the circle to itself. Necessary and sufficient
conditions are given for the family of iterates { "} .-, to be equicontinuous.
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1. INTRODUCTION.

Let C°(X,Y) denote the set of continuous maps from X to Y, I a closed unit interval and S the
circle. Let f € C°(I,I) and suppose that the family of iterates of f, i.e. {f"}5,, is equicontinuous. Let
F, and F; denote the fixed point set of f and > respectively. A. M. Bruckner and T. Hu [4] have shown
that {f"} is equicontinuous if and only if F; = N, f*(I). We show that for maps of the circle the
following result holds:

THEOREM. Let f € C°(S',S"). Then {f"}2, is equicontinuous if and only if one of the
following holds:

(1) f is conjugate to a rotation.

(2) F consists of exactly two distinct points and every other point on S! has period two.
(3) F; consists of single point and F; = N, f*(S1).

@ Fi=n2,"SY.

2. PRELIMINARIES.

Let f € C°(S!,S"). We think of the circle S! as R/Z and for z,y € S" with z # y we denote by
[z,] the closed interval from z counterclockwise to y. Let d(z,y) denote the min{|[z,¥}l, |y, z]|}
where |[z, ]| is the length of the interval [z,y]. For any nonnegative integer n define f* inductively by
f" = fo ", where f° is the identity map on S'. A point z € S' is a periodic point of f if there is a
positive integer n such that f"(z) = z. The least such n is called the period of z. A point of period one
is called a fixed point. Let F, denote the fixed point set of f",Vn > 1 and P(f) the set of periodic
points of f.

If z € S' then the trajectory of z is the sequence ¥(z, f) = {f"(%)},5o and the w-limit set of z,
W(Z, f) = Nm>0 Un>m/" (). Equivalently, y € w(z, f) if and only if y is a limit point of the trajectory
y(z, f), i.e. f*(z) — y for some sequence of integers n; — co. Let F = {f, f2, f°,...}. The family of
functions F is said to be equicontinuous if given € > 0 there exists a 6 > 0 such that d(f*(z), f'(y)) < €
whenever d(z,y) < é forall z,y € S* and all i > 1.

The following theorem is proved by J. Cano [5]:
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THEOREM A. Let f € C%(I, I) such that {f*}% is equicontinuous. Then F} is connected and
if it is non-degenerate then F; = P(f).

The next theorem which is given in [4] and is due to A. M. Bruckner and Thakyin Hu (only if) and
W. Boyce (if):

THEOREM B. Let f e C°(I,I). Then {f"}°, is equicontinuous if and only if

N2, (D) = F.

Combining these two theorems we get the following corollary:

COROLLARY. Let f € C°(I,I). If f has a periodic point of period n > 2, then {f"}°2, cannot
be equicontinuous.

3. RESULTS
Let f € C°(S?, S?) such that {f"}3, is equicontinuous. We consider three cases:
(I  f has a fixed point on St
() the smallest period of the periodic points of f on S* is n > 2.

(W) f has no periodic points on S!.

We start with case (I). The basic result of this case is Theorem 1. We first show the following four
lemmas:

LEMMA 1. Let f € C°(S*,S") such that {f*}2, is equicontinuous. Suppose that there is a
fixed point p on S, and let J be the component of F; containing p. If J is either {p} or a proper closed
interval containing p then there exists an open interval K containing J such that w(z, f) C J, for every z
inK.

PROOF. First suppose that J = {p}. Let e = |S'|/4 > 0. By equicontinuity of { "}, there is
an open interval K containing p such that for every z in K and for every n > 1, d(f"(z), p) < €. Define
L=ng, fI(K). Then L is a closed, proper, invariant interval. By previous results on the interval
(Theorems A and B), the fixed point set of f|L and f*|L is connected and therefore, it is {p}.
Moreover, by the above corollary all periodic points of f|; have period 1 or 2. But the fixed point p is
the only periodic point of f in L. Therefore P(f) = F; and by [2] the w-limit points coincide with the
fixed points. Hence p is the only w-limit point of f in L and thus w(z, f) = {p} = J, for every z in L.
Since K C L, w(z, f) = {p} = J, foreveryzin K.

Now suppose that J is a proper closed interval containing p. Let g, and g, be the endpoints of J,
which are fixed points under f2. Let € = |S! — J|/4 > 0. By equicontinuity of {f"}2,, there is an
openinterval Kjaround g, such that for every z in K; and for every n > 1,ld(f"(:c),f‘(q,)) <e.
Similarly there is an open interval K, around g, such that for every z in K, and for every n > 1,
d(f*(z), f*(@)) <e. Define L= U,f(KyUJUK,). Then L is a closed, proper, invariant
interval. By previous results on the interval (Theorems A and B), the fixed point set of f|L and f2|L is
connected and therefore it is J. Moreover, by the Corollary all periodic points of f|; have period 1 or 2,
which we know that lie in J. Since P(f) is closed, by [2], it coincides with the set of w-limit points.
Therefore w(z, f) C J, forevery zin L. Let K = K; UJUK,. Then K C L and w(z, f) C J, for
everyzin K. O

LEMMA 2. Let f € C%(S,S') such that {f"}%, is equicontinuous. Suppose that there
is a fixed point p on S!, and let J be the component of F, containing p. Define
$={z€S1 :w(z, f)C J}. ThenS = S'.

PROOF. There are three cases:

(i) J = {p}, (ii) J is a proper closed interval containing p and (iii) J = S".

If (iii) holds then obviously S = J = S!.

Therefore assume (i) and (ii) hold. Then by Lemma 1, there exists an open interval K containing J
such that w(z, f) C J, for every z in K. Note that S is nonempty since S O K. First we show that S is
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open: Let z € S. Then w(z, f) C J, by definition of S. Choose N large enough such that f" (z) € K.
By continuity of fV there is a neighborhood U of z such that if y € U then f"(y) € K. But then
Ww(f*(y), f) =w(y, f) € J andy € S. Therefore S is open.

Let T be the component of S containing J and therefore K, as well. Then T is open and connected.
We will show that T = S*. Suppose T # S'. Then S' — T is a closed interval or a point. Let
J = [q1, ¢;] where possibly ¢, = ¢, = p.

Suppose first that S — T is a closed interval. Let z; and z be the endpoints of this closed interval
such that (2, 1] N J = 0. Let € = ; min{d(qy, 21), d(g, 22)}. By equicontinuity of {f"} at z,, there is
an open interval V] around 2; such that for every z in V; and for every n > 1, d(f"(z), f"(21)) < €. Let
z € T such that d(z,2;) < €. Since w(z, f) C J and the orbit of 2 stays by definition out of T there
exists a positive integer k such that d(f*(z), f*(z)) > €, which is a contradiction.

Now suppose that S — 7' = {z}. Lete = 3 min{d(z,q;),d(g, 2)}. By equicontinuity of {f"} at
z there is an open interval V around z such that for every z in V and for every n>1,
d(f*(z), f"(z)) < e. Since w(z, f) C J for every z € T and f(z) = z is a fixed point of f, we get a
contradiction.

Hence T=S'. Thus S = {z € S' : w(z, f) c J} = S.. (|

LEMMA 3. Let f € C°(S',S?). If F; = S! then F; cannot consist of exactly one point.

PROOF. Suppose that there is an f € C°(S?,S!) such that F; = S and F; = {p}. Letzbea
point on S* — {p} of period two. Let K be the closed interval with endpoints = and f(z) which contains
p and let L be the closed interval with the same endpoints that does not contain p. Since f is a
homeomorphism, we have two cases:

@) f(K)=K and f(L) = Lor (i) f(K)=Land f(L)=K.

If (i) holds then, since f(L) = L, there would be another fixed point of f in L, which is a
contradiction since F; C K. '

If (i) holds then f(K') = L implies that p cannot be a fixed point which is again a contradiction. O

LEMMA 4. Let f € C°(S',S"). If F, = S" and F; consists of more than two distinct points then
£ is the identity on S,

PROOF. Assume that F; consists of exactly k > 2 distinct fixed points p;,ps,...,p,. Let
L; =[p;,piyy) fori=1,2,...,k — 1 and Ly = [p;,p,] so that the interior of each L; does not contain
any fixed points. Then we have two cases: (i) f(L;) = L; and (ii) f(L;) = S* — L.

If (i) holds then pick z in the interior of L;. Note that f(z) is a point in the interior of L; and denote
by M, the closed interval with endpoints = and f(z) which is free of fixed points. If f(M,) = M, then
there would be another fixed point in M, contradicting that the interior of L; contains no fixed points.
Thus the only choice is z = f(z) for every = € L; and f|L; is the identity map. The same argument
applied to every L; shows that f is the identity map on S*.

If (ii) holds then there are points in L; which map onto the other fixed points contradicting that
F=S. o

THEOREM 1. Let f € C°(S',S") such that {f"}2, is equicontinuous. Suppose that there is a
fixed point p on S*. Then f has periodic points of period at most two and F3 is'connected. Furthermore
F} is either connected or it consists of exactly two distinct points and every other point on S* has period
two. Moreover if F; is a nondegenerate interval then F; = P(f).

PROOF. Let J be the component of F; containing p. There are three cases:

@) J = {p}, (i) J is a proper closed interval containing p and (iii) J = S’.

Assume that (i) holds. Then, by Lemma 2, w(z, f) — {p} for every z € S*. Thus the fixed point p
is the only periodic point of f on S and hence P(f) = F; = F, = {p} is connected.

Assume that (ii) holds. Then, by Lemma 2, w(z, f) C J for every z € S’ and the periodic points of
fonS!liein J. By results on the interval applied to f|J, either p is the unique fixed point of f on S* or
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Fj is a nondegenerate interval and the fixed points are the only periodic points of f on S'. In particular,
both F; and F; are connected.

Assume that (iii) holds. Then all of the points of S'are periodic with period 1 or 2 and F; is
connected. By Lemma 3, F; cannot consist of one point and by Lemma 4 if F} consists of more than two
points then f is the identity map. Otherwise F; consists of exactly two distinct points and every other
point on S! has period two. ]

We now investigate case (II) where the smallest period of the periodic points of f on Stisn>2.
The main result here is Theorem 2. We use Lemma 5 in the proof of the main theorem.

THEOREM 2. Let f € C%(S',S?) such that {f"}3, is equicontinuous. Suppose that the
smallest period of the periodic points of f on S is n > 2. Then every point on S’ is periodic with
period 7.

PROOF. Let p be a periodic point of period 7 on S!. Then f(p) = p and therefore p is a fixed
point of f*. Applying Theorem 1 to f", we conclude that F,, is either connected or it consists of exactly
two distinct points and every other point on S* has period 2.

We claim that there is no continuous map of the circle having two points of period two and every
other point periodic of period four. Otherwise, if g is such a map, let p, g(p) be the two points of period
two and let K = [p,g(p)] and L = [g(p),p]. Since g is a homeomorphism, we have two cases: (i)
9(K) = K and g(L) = L or (ii) g(K) = L and g(L) = K. In both cases ¢*(K) = K. Henceifz € K
is a point of period four then ¢*(z) # z and ¢*(z) € K. If M is the closed interval with endpoints z and
&*(z) lying in K then g>(M) = M. Therefore M contains a periodic point of period two, contradicting
the assumption that p and g(p) are the only points of period two and every other point has period four.

Hence F, is connected. Suppose that F,, # S*. Then F,, is a proper closed interval containing the
orbit of p under f. Moreover f(F,) C F,. This implies that f has a fixed point on S?, contradicting the
hypothesis that the smallest possible period of the periodic points is n > 1. Hence F,, = st O

For a proof of the following see [7].

LEMMA 5. Let f € C°(S',S"). Suppose that there exists a positive integer n > 2 such that
every point on S' is periodic with period n. Then f is conjugate to a rational rotation.

Now we consider case (II) where f e C°(S!,S') has no periodic points and {f"} is
equicontinuous. The main result here is listed in Theorem 3.

Note that f must be onto, since otherwise f(S") = I is homeomorphic to a closed interval and
f(I) C I, so f has a fixed point. We shall adapt the techniques and use results due to J. Auslander and
Y. Katznelson [1].

Let z€S'. In [1], J, is defined to be the largest interval containing x such that
f™(z) ¢ Jr,¥m > 1. Denote by z; and 2 the endpoints of J., where possibly z; = zp =z. The
following are showed in [1]: J; is closed and z;, 2y # f*(z) for k > 1. If z,y € S” then y € u(z, f) if
and only if y is an endpoint of J,. If z; and 2, are the endpoints of J, then f(21) and f(2) are the
endpoints of f(J;). Also f(J;)NJ; =0 and f™(J:) = Jpmz), Ym>1. The intervals Jpm;)
(m=0,1,2,...) are pairwise disjoint and if f(z) = f(z’), then J, = J». The sets {J.} form a partition
of S! (that is, if 7,y € S" then J, = Jy or J, N J, = 0 and U1 J. = S*). Finally, at most countably
many of the sets J, are non-degenerate (J, # {z}).

Before we show our result, we state the following theorem proved in [6] which concerns
homeomorphisms.

THEOREM C. Let f be an orientation preserving homeomorphism of S! to itself. For z € S7, let
R,(z) = = + a (mod 1) denote irrational rotation by a. Then f is conjugate to some R, if and only if
some (all) orbits of f are dense on 5.
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We are now ready to show the following:

THEOREM 3. Let feC°S',S') without periodic points and such that {f"}., is
equicontinuous. Then f is conjugate to an irrational rotation R,,.

PROOF. We first show that w(z, f) = S” for all z € S*. Since y € w(z, f) if and only if y is an
endpoint of J,,, it suffices to show that ¥y € S*, J, = {y}. By the way of contradiction assume that Jo
is a non-degenerate interval. Since f is onto, there exists y; € S” such that f(J;1) = Jyo. Continuing in
this way, we obtain a sequence of intervals {J,,} such that f(Jyn) = Jyn—1V¥n > 1. Since there are
countably many non-degenerate such intervals on S, lim .| f*(Jy0)| = 0. Hence f* maps arbitrarily
small intervals onto Jy (as k — 00) which contradicts equicontinuity. Therefore w(z, f) = S? for all
zeSh

This is equivalent to saying that all orbits of f are dense in S*. If f(y) = f(/), then J, = J,, and
hence f is a homeomorphism. By Theorem C it follows immediately that f is conjugate to an irrational
rotation R,,.

4. PROOF OF THEOREM

We first state the following three lemmas which can be shown to hold on any compact metric space.

LEMMA 6. Let f, g€ C°(X,X), where X is a compact metric space. Suppose that f is
conjugate in X to g and that {g"}>, is equicontinuous. Then {f"}.2, is equicontinuous.

LEMMA 7. Let f € C°(X, X), where X is a compact metric space. Let k be a positive integer
and g = f*. Then {f"}2, is equicontinuous if and only if {g"}°, is equicontinuous.

LEMMA 8. Let f € C°(X,X), where X is a compact metric space. If {(fl;x))"}ne1 is
equicontinuous then { "}, is equicontinuous.

Finally, we summarize the results to the following theorem.

THEOREM. Let f € C%(S',S!). Then {f"}2,is equicontinuous if and only if one of the
following holds:

(1) fisconjugate to a rotation.

(2) F; consists of exactly two distinct points and every other point on S’ has period two.
(3) F consists of a single point and F; = N, f*(S?).

@ Fi=n2, Y.

PROOF. We suppose that {f"} is equicontinuous. First assume that F; = 0. If f has no periodic
points on S, then by Theorem 3, f is conjugate to an irrational rotation, so that (1) holds.

If the smallest period of the periodic points of f on S! is n > 2, then By Theorem 2, every point on
S is periodic with period n. It follows by Lemma 5 that £ is conjugate to a rational rotation, so that (1)
holds again.

Now assume that Fy # 0. Then by Theorem 1, f has periodic points of period at most two. If F} is
not connected, then by Theorem 1 it consists of exactly two distinct points and every other point of S!
has period two, so that (2) holds.

If F, is connected then it consists of (i) a single point, (ii) a proper interval or (iii) the whole circle.

(i) First assume that F) consists of a single point p. Note that by Theoreml, F; is a connected
proper interval of S*. Moreover by Lemma 2, we have that for every z € S*, w(z, f) C F;. Asin the
proof of Lemma 1, there exists an open interval K containing F> such that if L = U;';of"(K) then L is
a proper interval. Of course L is also closed and invariant. For z € S?, since w(z,f) C F, C K C L,
there exists a positive integer N such that f¥(z) € K. Then f™(z) € L for every m > N. By
continuity of fV there exists an open neighborhood V, of z such that fY(V;) € K and hence
™ (Vi) € L for every m > N. Note that for each z € S the collection {V;} s forms an open cover
of S'. By compactness of S' there exists a finite subcover, which we denote by {Viticra
Consequently, for every V; there exists a positive integer IN; such that fN‘(V.-) CK, fori=12,..1
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and f™(V;) C L, for every m; > N; and for i=1,2,..l. Choose N = maz{Ny,..., N;}. Then
fM(V;)C L, for every m>N and i=1,2,..I. Thus f™(S!)C L for every m> N. By
Theorem B, N2, f"(L)=F,.  Since f™(S!)c L, for every m > N, it follows that
NE, (L) = NZ,f*(S") = F,. Hence (3) holds.

(i) Now assume that F; is a proper interval of S'. We know by Theorem 1, that F; coincides with
the set of periodic points of f. By an argument similar to the above applied to Fj, we can see that
Fi = N, f*(S") and hence (4) holds.

(iii) If F; = S” then obviously (4) holds again.

This concludes one direction of the proof, namely that if { /" }n , is equicontinuous then one of (1),
(2), (3) or (4) holds. Now we will show that all of these four cases imply that { f"}n-, is equicontinuous.

Suppose that (1) holds i.e. f is conjugate to a rotation R. Then R" is an isometry for every n > 1
and therefore { R"} is equicontinuous. It follows by Lemma 6 that { "} is equicontinuous as well.

Suppose that (2) holds i.e. F} consists of exactly two distinct points and every other point on S! has
period two. Then £ is the identity on S'. Therefore { "} is equicontinuous. It follows by Lemma 7
that { f*} is equicontinuous as well.

Suppose that (3) holds i.e. F; consists of a single point and F; = N, f*(S"). Then f(S') # S,
since otherwise F = S' and we have seen in Lemma 3 that there is no continuous map of the circle with
one fixed point and every other point of period two. Hence f(S) is a proper interval of S! and
flysty : £(S') — £(S) is a continuous map of the interval with fixed point set of (flf(sn)f equal to
Fp.  Since Ny (flysy)"(f(SY) =F, it follows by Theorem B, that {(flss))"}or, is
equicontinuous. By Lemma 8 we get that { "}, is equicontinuous.

Finally suppose that (4) holdsi.e. F; = N, f*(S"). IfS! = f(S') then F; = S" and the identity
map is equicontinuous. If f(S") is a proper interval of S then F; is a point or a proper interval of S'.
It follows that f|; q1, : f(S') — £(S) is a continuous map of the interval such that its fixed point set
equals the fixed point set of f on S*. Since N, (f|;s1))"(f(S")) = F, it follows by Theorem B, that
{(f14(s1))" }az1 is equicontinuous. By Lemma 8 we get that { "}, is equicontinuous. ]
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