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ABSTRACT. In the paper, we define a notion of prereflexivity for subspaces, give several
equivalent conditions of this notion and prove that if S C L(H) is prereflexive, then every o-
weakly closed subspace of S is prereflexive if and only if S has the property WP(see definition
2.11). By our result, we construct a reflexive operator A such that A @ 0 is not prereflexive.
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1. INTRODUCTION

The concept of reflexivity for algebras of operators was introduced by Halmos [1]. There
is a natural generalization which was first formulated by Loginov and Sul’man [2]. Arveson (3]
introduced the concept of prereflexivity for algebras but nothing corresponding to this has been
studied in the generalized version. The concept of prereflexivity has already proved its worth.
In this paper, we define a notion of prereflexivity for subspaces of operators which extends
the concept of prereflexivity for algebras. In Section 2, we give several equivalent conditions of
prereflexivity for subspaces, prove that if S is a o-weakly closed subspace, then S has the property
WP if and only if S is hereditarily prereflexive in the sense that every o-weakly closed subspace
of § is prereflexive. In Section 3, using the results in Section 2, we construct a prereflexive but
not reflexive operator and prove that there exists a reflexive operator A such that A @ 0 is not
prereflexive.

Throughout the paper, let H denote a complex separable Hilbert space and let L(H) denote
the algebra of all bounded linear operators on H. We write T(H) for the ideal of trace class
operators in L(H), F for the finite rank operators in T(H) and F} for the subset of F' consisting
of operators of rank k or less. The trace norm is denoted by || - ||l;. If § C L(H), we denote
S, for its preannihilator, i.e., S; = {t € T(H) : tr(at) = 0 for all a € S}; dually, the notation
M- indicates the annihilator of a subset M of T(H), that is M+ = {a € L(H) : tr(at) =
0 for all @ € M}. For any A € L(H), the symbol A(™ denotes A®...® A. If S is a subset of

n times
L(H), S™ denotes {A™ : A € S}. For any z,y in H, let z ® y denote the rank-1 operator
u — (u,z)y. Let £ be a collection of (closed linear) subspaces of H, algL denotes the set of all
operators acting on H that leave every member of £ invariant. Dually, if ¢ is a set of operators
acting on H, laty denotes the collection of subspaces of H which are left invariant by every
member of ¢
2. SOME RESULTS OF PREREFLEXIVE SUBSPACES

In [3,4], Arveson introduced the following concept of prereflexivity for algebras.

DEFINITION 2.1. A o-weakly closed algebra A C L(H) is called prereflexive if AN A* =
alglat AN (alglat A)*.

DEFINITION 2.2. A o-weakly closed subspace of L(H) is called n-prereflexive if whenever
T € L(H'™) satisfies the condition that Tz € [S™z] and T*z € [§(™z] for all z in H then T
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is in S(™) (Here [ - ] denotes norm closed linear span.)

When reference to n is omitted, it is understood to be 1.

REMARKS. Since L(H) is n-prereflexive, to prove that S is n-prereflexive we need only
to prove that whenever T € L(H) satisfies T(™z € [§(z] and T(™ "z € [§™z] for all x in H(™
then T is in S.

By the definition 2.2, we easily prove that if U is a unitary operator in L(H) then USU" is
prereflexive if and only if S is prereflexive.

PROPOSITION 2.3. A unital o-weakly closed algebra A is prereflexive as a subspace if
and only if it is prereflexive as an algebra (i.e. AN A* = (alglatA)* NalglatA).

PROOF. Suppose that A is prereflexive as a subspace of operators. Let T € (alglatA)* N
alglatA. Then we have that for any M € latA,TM C M,T*M C M. For any z € H,
[Az] € latA and I € A, we have that T*z € [Az] and Tz € [Az]. By prereflexivity of A as a
subspace, we have that T € A4 and T* € A, thus AN A* D (alglatA)* Nalglat A. The reverse
inclusion always holds, hence A is prereflexive as an algebra.

Conversely, let Tz € [Az] and T*z € [Az]forallz € H. Then TM C M, T*M C M,VM €
latA. Since A is prereflexive as an algebra, we have that T € A. Hence A is prereflexive as a
subspace. Q.E.D.

If ¢ is an arbitrary subset of L( H), then we use prere f(y) to denote the closure of span{S,T :
SepTe L(H),Tz € [pz] and T*z € [pz] for all z € H} in o-weak operator topology. It
follows that preref(y) is the smallest prereflexive subspace containing ¢, and ¢ is prereflexive
if and only if ¢ = preref(p).

PROPOSITION 2.4. If S is a o-weakly closed subspace of L(H), then § is prereflexive
if and only if preref(S) N (preref(S))* = ref(S)N(ref(S))* =SNS*.

PROOF. The necessity is trivial, so we have only to prove the sufficiency.

IfT € L(H),Tz € [Sz] and T*z € [Sz], so T € preref(S) N (preref(S))* =SNnS* C S.
Hence § is prereflexive. Q.E.D.

By the previous proposition, we get that S is prereflexive if and only if §* is prereflexive;
and if S is a unital algebra, Proposition 2.4 is the analogy of the definition of prereflexivity for
unital algebras that Arveson gives.

THEOREM 2.5. If S is a o-weakly closed subspace of L(H), then S is n-prereflexive if
and only if

S; Cspan{(S,US *)N F,,}H.““
PROOF. Ifrank f < n,wehavez,...,Za,y1,..,yn in H such that f = ;@y1+...+ZnB@Yn.
n
Let T € L(H), then tr(Tf) = 3 (Tyi,z:) = (T™¥,Z) where =2, @ ... 8 Zn, T =1 ® ... ®
i=1
Yn,Z and §in H™. Hence f € S, if and only if (S(™%,%) = 0 for all S € S if and only if
7 € [SMY]L. So tr(Tf) = 0,tr(T*f) = 0 = tr(Tf*) for all f in S, with rank f < n if and only
if Ty € [S™7] and T(M™F € [S(™)F), for all §in H™,
If § is n-prereflexive, the above paragraph shows

span{(SLUSL*)N F,.}J' cSs.

Hence

S. Cspan{(SLUSL*)N F,.}== H‘.

Conversely, if S1 C span{(S. USL ) NFa]' " let T € L(H) such that for any § € H(™, T™j ¢
™3], T G e [S™3F]. Then t+(Tf) = 0,tr(Tf*) =0, for any f € S, with rank f < n, so

It 1ty

T e (span{(SLUS " )NF,} ")t cCSs.

Hence S is prereflexive. Q.E.D.
By Theorem 2.5, we have that if S is self-adjoint, then S is reflexive if and only if S is
prereflexive.



PREREFLEXIVE SUBSPACES OF OPERATORS 567

COROLLARY 2.6. If a subspace S of L(H) is n-prereflexive, then it is m-prereflexive for
m 2> n.

PROPOSITION 2.7. For 7,5 = 1,...,n, let S,, be a o-weakly closed subspace of L(H)
and let S be the subspace of L(H (™)) defined by

S= {(tu)nxn :tz] € St]}"

Then S is prereflexive if and only if span{(S,,, US,,,*)N Fl}M‘ 28,
PROOF. For S1 = {(ay)nxn: a € S): }» by Theorem 2.5, we have that § is prereflexive
if and only if

> I
span{(8,,, US,, ,")NFA} ' 28,;,. QED.
COROLLARY 2.8. Let S;, (1 <i <j <n) be o-weakly closed subspace of L(H), define

apny a2 ... Qin
0 az; ... Q2

s={1 . T 77 T leyes,1<i<i<n
0 0 ... apn

Then S is prereflexive if and only if every S, is prereflexive.
PROPOSITION 2.9. Let § = S5, @ ... ® Sn, where S, is a o-weakly closed subspace of
L(H,). Then § is a prereflexive subspace of L(H; @...® H,) if and only if every S, is prereflexive.
The proof is easy, we leave the proof to the reader.
PROPOSITION 2.10. Let S be a o-weakly closed subspace of L(H), define below the

subalgebra of L(H & H)
Al s
A={<0 AI)I/\GC,sES}.

Then A is prereflexive if and only if S; N F} # 0.
PROOF. Suppose that A is prereflexive. If S| N F; = 0, we have that for all 2 € H,z #

0,{Sz] = H. For any n = (:) €H® ify =0,let b, = (g 3) ; if y # 0, take a, € S such that
) . In either case, we have that linezob,,n = (é g) n. Since A

belongs to A. This is a contradiction, hence §; N F} # 0.

0 an
0 0

is prereflexive, we have that

limanpy =z, let b, = (

n—oc

00
Conversely, by Corollary 2.8, we have that

- A s
A—{(O #I)QA,;LEC,SGS}

is prereflexive, so preref(.A) C A. In the following, we prove that 0

0 0) ¢ preref(A). By
§1 N Fy # 0, we get that there exist x and y in H satisfying that ||z]| = |jy|| = 1,z Q@ y € S4,
hence n =(_‘y)®(;) € A, . Since tr(n (é g)) # 0, we have that (I 0) ¢ preref(A). Hence

00
A is prereflexive. Q.E.D.
In [5], we prove that if S is a o-weakly closed subspace of L(H), and we let

M 0 ... 0 s
0 X ... 0 O
A= e |AeC,s€S
0 0 ... AT O
0 0 ... 0 M

nxn

where n > 3, then A is prereflexive.
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By Propositions 2.7, 2.10 and Proposition 3.10 (6], we know that the reflexivity is very
different to the prereﬁe).:vxty. Let S be a prereflexive subspace of L(H). Then § is said to be
hereditarily prere flezive if every o-weakly closed subspace of S is prereflexive. In the following
we discuss hereditary prereflexivity.

DEFINITION 2.11. Let S be a o-weakly closed subspace of L(H). We say that S has
the property WP if it statisfies

(SL+F)U(S1+35pan{BLUS)NET ) = T(H).

REMARK. The property WP is a property which is weaker than the property P.

THEOREM 2.12. Let S be a prereflexive subspace of L(H). Then & is hereditarily
prereflexive if and only if S has the property WP.

PROOF. Suppose that S has the property WP. Let V be any o-weakly closed subspace
of S. For any t in V; C T(H), we consider below the two cases:

() I teSs+F, then t=f + g with f € S, and g € Fi,g =t~ f € V1 N Fy. Since S is
prereflexive, we have f € §; C span{(S, US, ")N F,}“'"1 Cspan{(VoL UV, ")N Fl}“‘"‘. Hence
t € span{(VLUVL")NF }“ .

() If t & S.+span{(SLUSLINE) ", for S1 € span{(SLUSLNEP ™ ¢
span{(VLUV_.") ﬂFl}" 1 , we have t € span{(V_L UV, )N Fl}" i

By the above two cases, we have that V; C span{(VLUV,.*)N Fl}"."‘. By Theorem 2.5,
we have that V is prereflexive.
Conversely, suppose that

IH 1

(SL+F)U(SL+5pan{BLUSI AR ) # T(H).

Let t ¢ (Si4+F1)U(SL+5pan{(8sUSL )N E T ") but t € T(H) and define ¥ = (Ct+S51)*,
we have that V is a o-weakly closed subspace of §. In the following we prove that V is not
prereflexive. Since V; N F} =8, N Fy, we have

(VLUVLOYNF =(SLUSLY)NF.
Suppose V is prereflexive. We have

V2 {(SLuSL)nF}t = {(VouVvit)n )4,

then ¥V, = Ct +5, C span{(SLUS.*)N F,}" T 1t s impossible since t ¢ (S + F)U(SL +
span{BLUS )N E] ). QED.
PROPOSITION 2.13. Let S be a weakly closed subspace of L(H) such that

(S

(Sl+Fk)Uspan{(S_,_USl‘)ﬂFn.H} =T(H).

Then S is (2k+1)-prereflexive.

PROOF. Since S is weakly closed, it follows that SN F" h S,. By Theorem 2.5 we
only need to prove that span{(SLUS.*)N F2k+1}" h D8).Since S, NF = U (SLNF,), it
suffices to prove for all | > 2k + 1,

il Il,

Slnﬂ Cspan{(S_L USJ_ )nF2L+1} (21)

If we can show

span{(SJ_ U SJ_‘) n F‘[_]}"."l = span{(S‘L U SJ.‘) n F‘l}"."l
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with [ > 2k + 1, we have that (2.1) is true. Let t € (S, USL*) N Fy with | > 2k + 1, we may
assume that t € S, N Fi(if t ¢ S, N F} we may consider t*), write t= f+g with f € Fi4; and
g € Fi_x_,. By hypothesis, we have

Il II,

frg € (SL+ Fy)Uspan{(SLUSL*)N Fak41}

If f € S, + Fi, we have that there exists an h in Fi such that f —~h€ S ,t=f—h+g+h.
Since f —h € §1 N Fok41, g+ h € F_; NSy, it follows that

t€span{(SLUS.")NFi- N .

Similarly, if g € §1 + Fk, we may prove that

t€span{(SLUSL")NFi_ 1}" )

If f¢ S1+Frandg ¢ Sy + Fy, we have that f,g € span{(SJ_USJ_ )ﬂFzm} . Hence
t=f+gespan{(SLUSL) N Frmi) " C span((SLUSL) A F1]' . QED.

PROPOSITION 2.14. Let S be a weakly closed subspace of L(H) satisfying that given
Z1,...,Zn € H, there exists z € H such that ||Tz,|| < ||Tz||, for all T € S. Then every weakly
closed subspace of S is prereflexive.

The proof is easy, we omit it.

3. AN APPLICATION.

If A€ L(H), let w(A) denote the closure in the weak operator topology of L(H) of the set
of polynomials in A and I, let wy(A) denote the weakly closed principal ideal generated by A.
An operator A is called prereflexive if w(A) is prereflexive. In [7], Larson and Wogen construct
a reflexive operator A such that A @ 0 is not reflexive. In the section, as an application of the
results in Section 2, we prove that there exists a reflexive operator A such that A @ 0 is not
prereflexive. By the idea in [8], we first construct a prereflexive but not reflexive operator.

Let H be a separable Hilbert space of dimension j and let K = é H. Consider the Hilbert

n=1
space K@ H. If 1 < k < oo, let Py be the orthogonal projection of K @ H onto the k** summand
of H in K and let P,, be the projection of K & H onto 0@ H. For any T € L(K & H), T admits
a matrix representation T = (T}j)1<:,;<00, With Ti; € L(H).

If AC L(K®H)let A,; = P, AP, we may choose to view A,, either as a subset of L(K®H)
or as a subset of L(H). For any ¢ C L(H) let [¢]),, = {S€ L(K®H): S5, € pand Sy =
0if (k1) # (3,7)}. Let £ = {A— A1, 00 : A € A}. Let ¢ be a weakly closed subspace of
L(H) such that ¢ is prereflexive but not reflexive. By Proposition 3 (8], we may construct an
operator T such that

W(TP) = o(TD) + [p®]s o

By Lemma 6 [8], we have w(T(z)S is reflexive. Since ¢(?) is not reflexive, it follows w(T(?) is not
reflexive. In the following we prove that w(T(?)) is prereflexive. Since preref(w(T®) C w(T®)+
[preref(9®))1 00 we have that if A € L(K® @ H®) such that for all z in K® @ H®, Az €
[W(T®)z], A"z € [W(T@)z], then A = A, + A,, where A; € w(T?), and A2 = (g A2)°°>
satisfying that for any y € H®, A0y € [p®Py], Aty € [¢1Py]. Since p? is prereflexive, we
have A1 € @), 50 A € W(TP) 4 [p?)]; . Hence w(T?) is prereflexive.

PROPOSITION 3.1. Suppose that H and H are Hilbert spaces with dimH > 1. Let
A€ L(H)andlet 0 € L(H).

(1) A®0 is prereflexive if and only if wo(A) is prereflexive.

(2) If A is prereflexive, then A @ 0 is not prereflexive if and only if I ¢ wo(A) but I €
preref(wo(A)).
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PROOF. (1) Let Be L(H @ H) such that forany z®yc HO H
B(zoy) € [w(400)(z oY), (3.1)

B'(z@y) € [w(A00)(z @), (3:2)

we have that B € preref(w(A®0)). For preref(w(A))®CI is prereflexive and contains w(A®0),
it follows that B = By @ A, where B; € preref(w(A)). It suffices to prove that By — Al €
wo(A), since W(AB0) = wy(AB0)+ CIBI) = wo(A)B 0+ C(I@I). For a fixed nonzero
vector y in K and for any z in H, by (3.1), we have a sequence of polynomials {p,} such that
nli‘ngop,.(A B0)zdy)=(B1®A)(z®y) =Bz ® \y. Since pa(A & 0) = pa(A) @ pn(0)I, thus

p"(o) - A;Pn(A)z nd BIJ:.

Let gn = pn — pa(0), then go(0) = 0,g.(A)z — (By — Al)z, that is (B; — Al)z € [wo(A)z].
By (3.2), we may prove that (Bf — M)z € [wo(A)z]. Since wo(A) is prereflexive, we have
By — Al € wo(A).

Conversely, suppose that w(A @ 0) is prereflexive. Let T € preref(wo(4)). For

T @O0 epreref(wo(A)) B0 = preref(wo(A @ 0)) C preref(w(A @ 0))
=w(A®0) =w(AB0)+CIBI)=wi(A)B0+C(IDI),

it follows that T € wo(A). Hence wo(A) is prereflexive.
(2) Suppose that A is prereflexive. For

wo(A) C preref(wo(A)) C preref(w(A)) = w(A4) = wp(4) + CI. (3.3)

By (1), we have that A @ 0 is not prereflexive if and only if wo(A) is not prereflexive. By (3.3),
it follows that wo(A) is not prereflexive if and only if I ¢ wo(A) but I € preref(wo(A)). Q.E.D.
By Proposition 2.1 and Theorem 3.7 [7] as well as the the above proposition we have the
following results.
COROLLARY 3.2. If Aisreflexive, then ADO is reflexive if and only if A®0 is prereflexive.
COROLLARY 3.3. There exists a reflexive operator A such that A@®0 is not prereflexive.
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