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ABSTRACT. In this paper, We prove that every (e)-sasakian manifold is a hypersurface of

an indefinite kaehlerian manifold, and give a necessary and sufficient condition for a Riemannian

manifold to be an (e)- sasakian manifold.
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1. INTRODUCTION Let M be a real (2n+ 1)-dimensional differentiable manifold endowed

with an almost contact structure (, f,7). This means that is a tensor field of type (1,1), f is a

vector field and r/is a 1-form on M satisfying:

2 -I + r/(R) f; 7() 1 (1)

It follows that

r/o 0; () 0; rank 2n

If there exists a semi-Riemannian metric g on M that satisfies (see [1])

g(X, CY) g(X, Y) erI(X)(Y) VX,Y E F(TM)

(2)

(3)

Where +l,We call (,,v/,g) an (s)-almost contact metric structure and M an (e)-almost

contact metric manifold.

From (3), we have

(X) g(X,) VX e F(TM) (4)

(5)

We say that (, f, r/, g) is an (e)-contact metric structure if we have

g(X, CY) dq(X, Y) VX, Y e F(TM) (6)
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In this case, M is an (e)-contact metric manifold. An ()-contact metric structure which is normal

is called an ()-sasakian structure. A manifold endowed with an ()-sasakian structure is called

an ()- sasakian manifold.

In[1], A. Bejancu and K.L. Duggal give a theorem as following:

THEOREM A (see [1] theorem 6)
Let M be an orientable real hypersurface of an indefinite kaehlerian manifold , then the

following assertions with respect to the (e)-almost contact metric structure inherited by M are

equivalent:

(1) M is an (e)-sasakian manifold

(2) The (e)-characteristic vector field satisfies

Vx -X VX F(TM)

(3) The shape operator A satisfies

AX -X + ( + rI(A))v(X) VX F(TM)

This produces a problem whether an ()- sasakian manifold must be a real hypersurface of

some indefinite kaehlerian manifold. In sec.2, we prove that the answer to this problem is positive.

that is

THEOREM 1.1. Every ()-sasakian manifold must be a real hypersurface of some indefinite

kaehlerian manifold.

In [2], Hatakeyama, Ogewa and Tanno give the condition for a Riemannian manifold to be a

K-contact manifold, they prove

THEOREM B (see [2] or [4]) In order that a (2n + 1)-dimensional Riemannian manifold M is

K-contact, it is necessary and sufficient that the following two conditions are satisfied:

(1) M admits a unit killing vector field f;

(2) The sectional curvatures for plane sections containing f are equal to t every point of M.

In sec.3, we generalize Theorem B by giving the necessary and sufficient condition for a Rie-

mannian manifold to be an ()- sasakian manifold, that is

THEOREM 1.2. In order that a (2n + 1)-dimensional Riemannian manifold M is ()-sasakian

manifold, it is necessary and sufficient that the following three conditions are satisfied:

(1) M admits a unit killing vector field f;

(2) The sectional curvature for plane sections containing f are equal to or -1 at every point on

M.

(3) R(X, Y){ 0 VX, YJ_

2. THE PROOF OF THEOREM 1.1

Let M be a (2n + 1)-dimensional (e)-sasakian manifold with (e)-sasakian structure (, f, r/, g).
d Denote M x R by then vectorLet P be real line with coordinate and unit tangent vector .

fields on are given by X (X,f),’ (Y,h),...,
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Where X, Y are vector fields tangent to M and f, h,..., are function on M, we define a

linear map J on the tangent space of by [5]

d d
JX J(X,f-) (X- ff, ri(X)-) (7)

From (1) and (2), we have

d dJ-X J(X- f,(x)) (x- (x),-f) -x

It shows that J is almost complex structure on M, but M is an (e)-sasakian manifold, this means

N(J) O, then J is a complex structure on , thus -=M x R is a complex manifold.

Let r" M=M x R M be the projection map, we introduce a metric G on M by

G ea(r"g + edt (R) dt) (8)

As an induced metric of g, we have

((x, 0), (Y, 0)) (x, Y) ( 0) (9)

For any vector fields X= (X,f),7 (Y, h)on , we obtain from (7)(8)

G(X, 7) e"(g(X, y) + h) (10)

GCJX,) ea(gCCX, Y) efrl(Y) 4- ehrl(X)

G(-, J) eaCgCX, CY) ehrlCX 4- efrlCY))

(11)

(2)

d dG(J, J’) G((X f’,/(X)), (Y h,r(Y)))
eaCg(X, CY) 4- efh 4- (13)

From (10)-(13),we

G(X, J) -G(J,), GCJX, J) G(X,)

Thus G is a Hermitian metric on M.

Define a 2-fore on M by

(14)

using r* o d d o r’, we get

de eeadt A (r’dr + edt A r’rl)) +

eet[Tr’d2rl + edt ^ (r’rl) edt ^ r’dl] 0 (15)

therefore, is a closed 2-form on M, by a direct computation, we get

d
h
d

(-X,Y) ((X,f-),(Y, dr))
ea(dri(X, Y) + e(dt ^ ’ri)(-X, 7))

eaCdri(X, Y) + lrlCY) hl(X)) (16)
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From (12) and (16) we see that

(Y, 7) c(X, J7) (7)

Then from (15) and (17), we know,the (I) defined by (14) is the closed fundamental 2-form, thus

the G defined by (8) is an indefinite kaehlerian metric on and hence M M x R is an

indefinite kaehlerian manifold.

3. THE PROOF OF THEOREM 1.2

First of all, we state some results which we shall need later.

LEMMA 3.1. (see [1] p. 548). An (e)-almost contact metric structure (,,v/,g) is ()-sasakian

if and only if

(Vx)Y g(X, Y), rI(Y)X, gX, Y e F(TM) (18)

Where is the Levi-civita connection with respect to g.

If we replace Y by in (18) and from (1) (2) we get

Vx5 -eCX vX e F(TM) (19)

Because

(Lg)(X, Y) g(X, Y) g([, X], Y) g(X, [, Y])

g(X, Y) g(X x,Y) g(X,Y VY)

(fg(X, Y) g(vX, Y) g(X, vY + g(Vx,, Y) + g(X,

(Vg)(X, Y) + g(Vx, Y) + g(X,

g(-eCX, Y) + g(X,

-(g(X, Y) + g(X, CY)) 0 VX, Y E F(T/)

Then we get

PROPOSITION 3.1. The characteristic vector field f on an ()-sasakian manifold is a killing

vector field.

LEMMA 3.2.([6] p.265) Let M be a contact metric manifold with contact metric structure

(, , r/, g). Then N(3) --- (L)X vanishes if and only if is a killing vector field with respect to g.

PROPOSITION 3.2. Let M be an (e)-sasakian manifold, then the sectional curvature for

plane sections containing are equal to 1 or -1 at every point on M.

PROOF. Let X be an unit vector field on M and X _L , then from (19) we have

-v (x) + ([, x])

-(v(x) (vx Vx))

-((v)x + (Vx))

From Lemma 3.1, we get

(v)x a(,x) (x) o
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thus we have

R(,X) -(x) -X -X then

g(R(,X)X,) -g(R(,X),X) +/-1

From (18) and (19), let any X,Y 6 F(TM) and X,Y 2- we have

R(X,Y) xY-Yx-Vx(-eCY) Vy(-eCX) + e[X, YI
e((Vy)X-

(9(X, Y) e’q(X)Y g(X, Y) + e’q(Y)X)

rl(Y)X rl(X)Y o

Then, by Proposition 3.1; 3.2, we get the necessary condition of Theorem 2.

Conversely, first, we define a 1-form r and a tensor field of type (1.1) by

(x) (x,o CX vx

We know from [4] (, ,/,g) be an almost contact metric structure, satisfying

2 -I+ (R), (x, CY) d,(X, Y)

g(X, CY) g(X, Y) rI(X)i(Y)

Let , er/, . Cg, then

,(x) (x,), cx - Vx

2= _i +/(R), .(X, CY) d(X, Y)

(X, CY) #(X, Y) e(X)O(Y)

Thus (, , #, 9) be an (e)--contact metric structure.

Now we show that N(1) 0, from condition (3) of Theorem 2, we obtain

(Vx)Y (rye)X, VX, Y 2. , thus

N(X, Y) [, el(X, Y)

(Vcx)Y- (Vy)X + [(Vy)X-

(Vx)Y- (Vy)X VX, Y 2-

By using Lemma 3.1, we get

N,(X,Y) -29(X, CY)

then

NO) (X, Y) No(X, Y) + 20(X, CY) 0
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If X _k , we have by Lemma 3.2

N(1)(X, ) N(X,) e(L)X 0

Thus, for any vector field X, Y on M N(1)(X, Y) 0

Hence, the (e)-contact metric structure (, , }, .) is normal, that is, M is an ()- sasakian manifold

with an (e)-sasakian structure (, , /, ).

Theorem 2 can be improved.

THEOREM 2’. In order that a (2n + 1)-dimensional Riemannian manifold M is (e)-sasakian

manifold, it is necessary and sufficient that the following two conditions are satisfied

(1) M admits a unit killing vector field

(2) R(X, Y) rI(Y)X 7(X)Y VX, Y
_
F(T/)
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