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The object of this paper is to study invariant submanifolds M of Sasakian manifolds M admitting
a semisymmetric nonmetric connection, and it is shown that M admits semisymmetric nonmetric
connection. Further it is proved that the second fundamental forms ¢ and ¢ with respect to
Levi-Civita connection and semi-symmetric nonmetric connection coincide. It is shown that if
the second fundamental form o is recurrent, 2-recurrent, generalized 2-recurrent, semiparallel,
pseudoparallel, and Ricci-generalized pseudoparallel and M has parallel third fundamental form
with respect to semisymmetric nonmetric connection, then M is totally geodesic with respect to
Levi-Civita connection.

1. Semisymmetric Nonmetric Connection

The geometry of invariant submanifolds M of Sasakian manifolds M is carried out from
1970’s by M. Kon [1], D. Chinea [2], K. Yano and M. Kon [3] and B.S. Anitha and C.S.
Bagewadi [4]. The aurthor [1] has proved that invariant submanifold of Sasakian structure
also carries Sasakian structure. In this paper we extend the results to invariant submanifolds
M of Sasakian manifolds admitting Semisymmetric Nonmetric connection.

We know that a connection V on a manifold M is called a metric connection if there
is a Riemannian metric g on M if Vg = 0; otherwise it is Nonmetric. Further it is said to be
Semisymmetric if its torsion tensor T(X,Y) = 0; thatis, T(X,Y) = w(Y) X —w(X)Y, where w is
a 1-form. A study of Semisymmetric connection on a Riemannian manifold was initiated by
Yano [5]. In 1992, Agashe and Chafle [6] introduced the notion of Semisymmetric Nonmetric
connection. If V denotes Semisymmetric Nonmetric connection on a contact metric manifold,
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then it is given by [6]
VxY = VxY +(Y)X, (1.1)

where 77(Y) = g(Y,¢).

The covariant differential of the pth order, p > 1 of a (0, k)-tensor field T, k > 1 denoted
by VPT, defined on a Riemannian manifold (M, g) with the Levi-Civita connection V. The
tensor T is said to be recurrent [7], if the following condition holds on M:

(VT)(X1,..., X X)T(Y, ..., Ye) = (VD)(Y4, ..., Y X)T(Xy, ..., Xe), (1.2)

respectively.
Consider

<V2T> Xi,..., XX, Y)T(Y:,...,Y) = (V2T> X, Yo X, VT(X, ..., Xe),  (1.3)

where X, Y, X1,Y1,..., Xk, Yi € TM. From (1.2) it follows that at a point x € M, if the tensor
T is nonzero, then there exists a unique 1-form ¢, respectively, a (0, 2)-tensor ¢, defined on a
neighborhood U of x such that

VI=Ta¢, ¢=d(log|Tl), (14)

respectively.
The following

VT=Toy (1.5)

holds on U, where ||T|| denotes the norm of T and ||T||> = g(T,T). The tensor T is said to be
generalized 2-recurrent if

((V2T>(X1,...,Xk;X,Y) - (VT®¢)(X1,...,Xk;X,Y)>T(Y1,...,Yk)
(1.6)
= <<V2T> Y1,..., Y X,Y) - (VT @ §) (Yl,...,Yk;X,Y)>T(X1,...,Xk)

holds on M, where ¢ is a 1-form on M. From this it follows that at a point x € M if the tensor



International Journal of Mathematics and Mathematical Sciences 3

T is nonzero, then there exists a unique (0,2)-tensor ¢, defined on a neighborhood U of x,
such that

VT=VTed+Toy (1.7)
holds on U.
2. Isometric Immersion
Let f : (M, g) — (M g) be an isometric immersion from an n-dimensional Riemannian

manifold (M, g) into (n + d)-dimensional Riemannian manifold (M g),n>2d>1 We
denote V and V as Levi-Civita connection of M" and M"™*, respectively. Then the formulas
of Gauss and Weingarten are given by

VxY = VxY +0(X,Y), (2.1)

VxN = —AnX + VLN, (2.2)

for any tangent vector fields X, Y and the normal vector field N on M, where o, A, and Vi are
the second fundamental form, the shape operator, and the normal connection, respectively.
If the second fundamental form o is identically zero, then the manifold is said to be totally
geodesic. The second fundamental form ¢ and Ay is related by

(‘:’(O'(Xr Y),N) = g(ANX/ Y), (2.3)

for tangent vector fields X, Y. The first and second covariant derivatives of the second
fundamental form ¢ are given by
(Vx0)(Y,2) = Vx(0(Y,2)) - 0(VxY, Z) - o(Y, Vx2), (24)
(ﬁzo) (Z,W,X,Y) = (€X§Ya>(z, W)
= v§((€yo)(z, W)) - (%yo>(vxz, W) (2.5)

- (6){0‘) (Z, VyW) - <6vxy0> (Z, W),

respectively, where V is called the van der Waerden-Bortolotti connection of M [8]. If Vo = 0,
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then M is said to have parallel second fundamental form [8]. We next define endomorphisms
R(X,Y) and XAgY of y(M) by

R(X,Y)Z = VxVyZ - VyVxZ - Vixy Z,
(2.6)
(XAsY)Z =B(Y,2)X - B(X,Z)Y,

respectively, where X, Y, Z € y(M) and B is a symmetric (0, 2)-tensor.
Now, for a (0, k)-tensor field T, k > 1 and a (0, 2)-tensor field B on (M, g), we define
the tensor Q(B, T') by

QB,T)(X1,..., XX, Y) = ~(T(XAsY)X4, ..., Xe) = = T(X4, ..., Xee1 (XABY) X).
(2.7)

Putting into consideration the previous formula “B = g,S and T = 0,” we obtain the tensors
Q(g,0) and Q(S, 0).

3. Sasakian Manifolds

An n-dimensional differential manifold M is said to have an almost contact structure (¢, ¢, 77)
if it carries a tensor field ¢ of type (1,1), a vector field ¢, and 1-form 7 on M, respectively,
such that

P*=-T+neé  n@)=1 nop=0,  ¢¢=0. (3.1)

Thus a manifold M equipped with this structure is called an almost contact manifold
and is denoted by (M, ¢,¢, 7). If g is a Riemannian metric on an almost contact manifold M
such that

(X, Y) =g(X, V) -n(X)n(Y),  g(X,é) =n(X), (3.2)

where X, Y are vector fields defined on M, then M is said to have an almost contact metric
structure (¢,¢,1,¢), and M with this structure is called an almost contact metric manifold
and is denoted by (M, ¢,¢,7, ).

If on (M, ¢, ¢, 1, g) the exterior derivative of 1-form 7 satisfies

D(X,Y) =dn(X,Y) = g(X,$Y), (3.3)

then (¢, ¢, 7, ) is said to be a contact metric structure and together with manifold M is called
contact metric manifold and @ is a 2-form. The contact metric structure (M, ¢, ¢, 1, g) is said
to be normal if

[$,9](X,Y) +2dn®¢ =0. (3.4)
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If the contact metric structure is normal, then it is called a Sasakian structure and M

is called a Sasakian manifold. Note that an almost contact metric manifold defines Sasakian
structure if and only if

(VxP)Y = g(X, )¢ -n(Y)X, (3.5)
Vxé=-¢X. (3.6)

Example of Sasakian Manifold

Consider the 3-dimensional manifold M = {(x,y,z) € R}, where (x,y, z) are the standard
coordinates in R%. Let {E;, E», E3) be linearly independent global frame field on M given by

0 0 0 0
E1 = a —2y$, E2 = @, E3 = E (37)

Let g be the Riemannian metric defined by

g(E1, Eo) = g(Ey1, E3) = g(Ez, E3) =0,

(3.8)
g(E1, E1) = g(Ey, E) = g(E3, E3) = 1.
The (¢,¢,1) is given by
1 =2ydx +dz ¢=E 0
= y = 3 = -
0z (3.9)
¢E1 = Es, ¢E, = -E;, ¢E; =0.
The linearity property of ¢ and g yields
n(Es) =1, U =-U+nU)Es, 610
g(PU W) = gU W) —n(U)n(W),  gU¢) = nU),
for any vector fields U, W on M. By definition of Lie bracket, we have
[E1, Eo] = 2Es. (3.11)

Let V be the Levi-Civita connection with respect to previously mentioned metric g and be
given by Koszula formula

2¢(VxY,Z2)=X(g(Y,2)) +Y(g(Z,X)) - Z(g(X,Y))
-8X, [V, Z]) -g(V, [X, Z]) + g(Z, [ X, Y]).

(3.12)
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Then, we have

Ve E1 =0, Vi E2 = E5, Vg Es = -E,
Ve,Ei=-E3,  VgEx=0,  VgEs=E, (3.13)
Ve, E1 = -E, VE,Er = Eq, Vi, E; =0.

The tangent vectors X and Y to M are expressed as linear combination of E;, E,, Es; that
is, X = a1E1 + a2E> + asE3 and Y = b1 Eq + byEs + b3E3, where a; and b; are scalars. Clearly
(¢,¢,1,8) and X, Y satisfy (3.1), (3.2), (3.5), and (3.6). Thus M is a Sasakian manifold. Further
the following relations hold:

R(X,Y)Z = {g(Y, 2)X - (X, Z)Y},

RX,Y)§ = {n()X -n(X)Y}, (3.14)
R X)Y = {g(X, V) -n(Y)X},
R X)¢ = {n(X)¢ - X}, (3.15)
S5(X,¢) = (n-1)n(X), (3.16)
Qé=(n-1), (3.17)

for all vector fields, X, Y, Z and where V denotes the operator of covariant differentiation
with respect to g, ¢ is a (1,1) tensor field, S is the Ricci tensor of type (0,2), and R is the
Riemannian curvature tensor of the manifold.

4. Invariant Submanifolds of Sasakian Manifolds Admitting
Semisymmetric Nonmetric Connection

If M is a Sasakian manifold with structure tensors (cj~>, 5, 7, 8), then we know that its invariant
submanifold M has the induced Sasakian structure (¢,¢,7, g).

A submanifold M of a Sasakian manifold M with a Semisymmetric Nonmetric
connection is called an invariant submanifold of M with a Semisymmetric Nonmetric
connection, if for each x € M, ¢(TxM) C T,M. As a consequence, ¢ becomes tangent to
M. For an invariant submanifold of a Sasakian manifold with a Semisymmetric Nonmetric
connection we have

o(X,$) =0, (4.1)

for any vector X tangent to M.
Let M be a Sasakian manifold admitting a Semisymmetric Nonmetric connection V.
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Lemma 4.1. Let M be an invariant submanifold of contact metric manifold M which admits

Semisymmetric Nonmetric connection V, and let o and G be the second fundamental forms with
respect to Levi-Civita connection and Semisymmetric Nonmetric connection; then (1) M admits

Semisymmetric Nonmetric connection and (2) the second fundamental forms with respect to Vand V
are equal.

Proof. We know that the contact metric structure ((}7, E, 1,3) on M induces (¢,¢,1m,8) on
invariant submanifold. By virtue of (1.1), we get

VxY = VxY + (V)X (4.2)

By using (2.1) in (4.2), we get
VY = Vi Y 4+ 0(X,Y) + (V)X (4.3)
Now Gauss formula (2.1) with respect to Semisymmetric Nonmetric connection is given by
TxY = VxY +5(X,Y). (4.4)

Equating (4.3) and (4.4), we get (1.1) and

X, Y) =o(X,Y). (4.5)
O

Now we introduce the definitions of semiparallel, pseudoparallel, and Ricci-
generalized pseudoparallel with respect to Semisymmetric Nonmetric connection.

Definition 4.2. An immersion is said to be semiparallel, pseudoparallel, and Ricci-generalized
pseudoparallel with respect to Semisymmetric Nonmetric connection, respectively, if the
following conditions hold for all vector fields X, Y tangent to M:

=

-0=0,
R.o= LiQ(g,0), (4.6)
R-0=1,Q(5,0),

where R denotes the curvature tensor with respect to connection V. Here L, and L, are
functions depending on o.
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Lemma 4.3. Let M be an invariant submanifold of contact manifold M which admits Semisymmetric
Nonmetric connection. Then Gauss and Weingarten formulae with respect to Semisymmetric
Nonmetric connection are given by

tan(E(X, Y)Z) =RX,V)Z+n(VyZ)X +n(Z)VxY + n(Z)n(Y)X

= 1(Vx2)Y =n(Z)Vy X = n(Z)n(X)Y - n(Z)[X, Y]

+ tan{gx{o(Y, 2)) - Vy{o(X,2)} - Vyn(Z)X + @mzw},
4.7)

nor(E(X, Y)Z) =0(X,Vy2) +n(2)o(X,Y) -o(Y,VxZ) -n(Z)c(Y,X) -o([X, Y], Z)

+ nor{@{o(y, 2)) - Vy(o(X, 2)} - Vyn(Z)X + §Xq(2)y}.
4.8)

Proof. The Riemannian curvature tensor R on M with respect to Semisymmetric Nonmetric
connection is given by

R(X,Y)Z = VxVyZ - VyVxZ - Vixn Z. (4.9)
Using (1.1) and (2.1) in (4.9), we get

R(X,Y)Z = R(X,Y)Z + (X, VyZ) + (Vy Z)X + Vx [0 (Y, Z)} + Vxn(Z)Y

+(2)VxY +n(2)o(X,Y) + n(Z)n(Y)X - o(Y,VxZ) - n(Vx2)Y (410)

~Vyl0(X, 2)) - Vyn(Z)X - n(Z)VyX
-1n(Z2)o(Y,X) -n(Z)n(X)Y - o([X, Y], Z) -n(Z)[X,Y].

Comparing tangential and normal part of (4.10), we obtain Gauss and Weingarten formulae
(4.7) and (4.8). O

Lemma 4.4. Let M be an invariant submanifold of contact manifold M which admits Semisymmetric
Nonmetric connection. If o is semiparallel, pseudoparallel, and Ricci-generalized pseudoparallel with
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respect to Semisymmetric Nonmetric connection, then we have

(E(X, Y) - 0'> (U, V) = R*(X,Y)o(U, V) - o(R(X, Y)U, V) - o(U, R(X,Y)V)

~ VxAauw)Y + VyAeun)X — Avioun) X + Avioun)Y
+ Aeun)[X, Y] = (X, Asun)Y) + 0 (Y, Aoy X)

- (Acu)Y) X + 1(Acun)X)Y = (VyU)o(X, V)
U)o (VxY, V) = g Un()o(X, V) + n(Vx)o(Y, V)
+ (U)o (VyX, V) + n()n(X)o(Y, V) + nU)o([X, Y], V)

- a<§xq(unr, V> + a<§m(U)X, V> - o<§x{o(lf, u) },V>

N 0<€y{o(X, u)}, V) —o(0(X, Vyl), V) - n(U)o(0(X,Y),V)

+o(o(Y,VvxU), V) +nU)o(c(Y,X),V)+o(o([X, Y], U),V)
-n(VyV)o (U X) -n(V)o(UU, VxY) - n(V)n(Y)o (U, X)
+1n7(VxV)o(LY) +n(V)o(U, VyX) + n(V)n(X)o (U, Y)

+(V)oU, [X,Y]) - o<u, @mvw) + o<u, qu(V)X)

- o<u,§x{o(y, %) }> ; 0<U,€y{a(X, V)}> —o(U,0(X, Vy V)
- U(V)O.(u/ O(Xl Y)) + cr(ll, G(YI VX‘/))
+1n(V)oU,o(Y, X)) +o(U,o([X,Y],V)),
(4.11)
for all vector fields X, Y, U, and V tangent to M, where
RY(X,Y) = [VL, v#] -~ Vi (4.12)
Proof. We know, from tensor algebra, that

(E(X, Y).- a) U, V) = RX,Y)o(U,V) - O(E(X, Y, V> - o<u,§(x, Y)V). (4.13)

Replacing Z by o(U, V) in (4.9), we get

RX,Y)o(U, V) = VxVyo(U, V) - Yy Vxo(U, V) - Vixyo U, V). (4.14)
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In view of (1.1), (2.1), and (2.2), we have the following equalities:

VxVyo V) = Vx(-Aqun)Y + V3o, V),
= - VXAG(LLV)Y - TZ(AU(U,V)Y)X - O'(X, Ao(LI,V)Y) (4-15)

- Avioun X + VxVyo (U, V).

Similarly
VyVxo(U,V)
= —VyAg(u,v)X - Tl(Ag(u,v)X)Y — O'(Y, Aa(Ll,V)X> - AV§(U(U,V)Y + V#VJ)‘(O'(U, V),
(4.16)
Vixno V) = ~Aouw) [X, Y] + Vi y o U, V). (4.17)

Substituting (4.15), (4.16) and (4.17) into (4.14), we get

RX,Y)oU,V) = RY(X,Y)o(U,V) = Vx Asuw)Y + Vy Asun)X — AvsounX
+ AVJ)‘(O'(U,V)Y + Ag(urv) [X, Y] — O'(X, Ag(u,v)Y) + O'(Y, Ao(u,v)X) (4~18)

- (Aoun)Y)X + 1(Acun)X)Y.
By virtue of (4.10) in o(R(X, Y)U, V) and o(U, R(X, Y)V), we get

0<E(X, YU, V) =o(RX,YV)UV)+n(VyU)o(X, V) +n(U)c(VxY, V)
+n(U)n(Y)o(X, V) -n(VxU)o(Y, V) - (U)o (VyX, V)

—WnX)(Y, V) - U)o ([X, Y], V) + o(@muw, v)

- 0<€y11(lI)X, V) ; o<§x{o(Y, U)},V> - o<§y{a(x, LI)},V)

+0(0(X, VyU), V) + (U)o (o(X,Y), V) - o(o(Y, VxU), V)

- T’Z(U)O'(O'(Y, X)/ V) - 0(0([X/ Y]/ u)/V)/
(4.19)
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o (U R YIV) = o REYIV) + 1T VIO X) + n(V)a(U, T )
+n(V)n(Y)o(UU, X) -n(VxV)o(ULY) -n(V)o(U, VyX)

—(V)X)eU,Y) - n(V)oU, [X, Y]) + o(u,gme)Y)

- 0<U,§y11(V)X> + 0<LI,€X{G(Y, V)}> - G<U,€Y{G(X/ V)}>

+o(U,o(X,VyV))+n(V)oU,o(X,Y)) -olU,o(Y,VxV))
-n(V)oU, oY, X)) -oU,o([X, Y], V)).
(4.20)

Substituting (4.18), (4.19) and (4.20) into (4.13), we get (4.11). O

5. Recurrent Invariant Submanifolds of Sasakian Manifolds
Admitting Semisymmetric Nonmetric Connection

We consider invariant submanifolds of a Sasakian manifold when o is recurrent, 2-
recurrent, and generalized 2-recurrent and M has parallel third fundamental form with
respect to Semisymmetric Nonmetric connection. We write (2.4) and (2.5) with respect to
Semisymmetric Nonmetric connection, and they are given by

(Fx0) (1.2) = Fato(v,2)) - o(VxY, 2) - (¥, 952), 1)
(Fo)@wxn = (Fdv)zw
- v;((%;) 2 W)) - (§Yo) (Fxzw) (52)
- (Fx0) (27w) - (Fop0) 2 ).

We prove the following theorems.

Theorem 5.1. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then o is recurrent with respect to Semisymmetric Nonmetric
connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let o be recurrent with respect to Semisymmetric Nonmetric connection; from (1.4)
we get

(%a) (Y,2) = p(X)o(Y, Z), (5.3)
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where ¢ is a 1-form on M; in view of (5.1) and putting Z = ¢ in the above equation, we have
Vyo(¥,9) - o(VxY8) - o(¥, V&) = $(X)a(¥,¢). 54)
By virtue of (4.1) in (5.4), we get
~o(VxY,¢) - o(Y,Vx¢) = 0. (5.5)
Using (1.1), (3.1), (3.6), and (4.1) in (5.5), we get
o(Y,¢X) - o(¥,X) =0. (5.6)
Replacing X by ¢$X and by virtue of (3.1) and (4.1) in (5.6), we get
~o(Y,X) - o(Y,$X) =0. (5.7)

Adding (5.6) and (5.7), we obtain o(X,Y) = 0. Thus M is totally geodesic. The converse
statement is trivial. This proves the theorem. O

Theorem 5.2. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then M has parallel third fundamental form with respect to
Semisymmetric Nonmetric connection if and only if it is totally geodesic with respect to Levi-Civita
connection.

Proof. Let M have parallel third fundamental form with respect to Semisymmetric Nonmetric
connection. Then we have

<§X§w> (Z, W) =0. (5.8)

Taking W = ¢ and using (5.2) in the above equation, we have

Vj(((?yo) (z,g)) - <§Yo> (Vxz.¢) - (§Xo> AZHE (%XYo) (Z,8)=0.  (59)

In view of (4.1) and by virtue of (5.1) in (5.9), we get

0= - €§{o<€yz, §) +0(2,5v¢)} - ﬁa(@z, £) +o(VVxZ¢)

+20 (ﬁxz, ?Yr;) - ?J)_(O'<Z, §Y§> + O'<Z/ ngysf) + O'<v§XYZ, ‘§> + G<Z/ vVﬂ/‘:ﬁ) .
(5.10)
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Using (1.1), (3.1), (3.6), and (4.1) in (5.10), we get

0= 2Vy0(Z, ¢Y) - 2Vxo(Z,Y) - 20(2)o(X, $Y) +20(Vx Z, Y)
+21(2)0(X,Y) - 0(Z,VxpY) = 0(Z,¢VxY) - n(Y)o(Z,$X) (5.11)
+20(Z,VxY) +2n(Y)o(Z,X) -20(VxZ, §Y).

Putting Y = ¢ and using (3.1), (3.6), and (4.1) in (5.11), we get
0=0(ZX)-30(Z ¢X). (5.12)
Replacing X by ¢$X and by virtue of (3.1) and (4.1) in (5.12), we get

0=0(Z ¢X) +30(Z X). (5.13)

Multiplying (5.12) by 1 and (5.13) by 3 and adding these two equations, we obtain o (X, Z) =
0. Thus M is totally geodesic. The converse statement is trivial. This proves the theorem. [

Corollary 5.3. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then o is 2-recurrent with respect to Semisymmetric
Nonmetric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let o be 2-recurrent with respect to Semisymmetric Nonmetric connection; from (1.5),
we have

<§X§Ya) (Z,W) = 0(Z, W)P(X, ). (5.14)

Taking W = ¢ and using (5.2) in the above equation, we have
—1 = = — = — =
T((Fr0)20) - (Fro) (Fuz.8) - (Fuo ) (2.908) - (Fewro ) 2.0 515
=0(Z,8)$(X, Y).
In view of (4.1) and by virtue of (5.1) in (5.15), we get

0= - €§{o<€yz, §) +0(2,5v¢)} - ﬁa(@z, £) +o(VVxZ¢)

+20 (ﬁxz, ?Yr;) - ?J)_(O'<Z, §Y§> + O'<Z/ ngysf) + O'<v§XYZ, ‘§> + G<Z/ vVﬂ/‘:ﬁ) .
(5.16)
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Using (1.1), (3.1), (3.6), and (4.1) in (5.16), we get

0= 2Vxo(Z, ¢Y) - 2Vxo(Z,Y) - 20(Z)o(X, $Y) +20(Vx Z, Y)
+21(2)0(X,Y) - 0(Z,Vx¢Y) - 0(Z,¢VxY) - n(Y)o(Z,$X) (5.17)
+20(Z, VxY) +21(Y)o(Z, X) - 20 (Vx Z, $Y).

Putting Y = ¢ and using (3.1), (3.6), (4.1) in (5.17), we get

0=0(ZX)-30(Z ¢X). (5.18)
Replacing X by ¢X and by virtue of (3.1) and (4.1) in (5.18), we get

0=0(Z ¢X) +30(Z X). (5.19)

Multiplying (5.18) by 1 and (5.19) by 3 and adding these two equations, we obtain ¢(X, Z) =
0. Thus M is totally geodesic. The converse statement is trivial. This proves the theorem. [
Theorem 5.4. Let M be an invariant submanifold of a Sasakian manifold M admitting a Semisym-

metric Nonmetric connection. Then o is generalized 2-recurrent with respect to Semisymmetric
Nonmetric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Letting o be generalized 2-recurrent with respect to Semisymmetric Nonmetric
connection, from (1.7), we have

<§X§Yo) (Z,W) = ¢(X, Y)o(Z, W) + $(X) <§Yo) (Z, W), (5.20)

where ¢ and ¢ are 2-recurrent and 1-form, respectively. Taking W = ¢ in (5.20) and using
(4.1), we get

(iﬁyo) (2,8) = $(X) (%a) (Z,9). (5.21)

Using (4.1) and (5.2) in above equation, we get

T ((Fr0)@0) - (Fr0) (Txz.8) - (a0 ) (2.90) - (Frpo ) 2.0

=-900{o(Wrz,8) +o(2,xt) ).

(5.22)
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In view of (4.1) and by virtue of (5.1) in (5.22), we get

- 6; { 0<§yz, cj) + 0<Z, vy(;) } - gio (VXZ, cj) + 0<Vy§XZ, §>
+20(VxZ, V) - Vxo(Z,Vv¢) + 0(Z.5xVx2) + 0(V5,, Z,8) +0(Z,V5,4¢) (5:23)
= —¢(X){G(Vyz,g> + o(zﬁyg) }

Using (1.1), (3.1), (3.6), and (4.1) in (5.23), we get

0 = 2Vx0(Z, ¢Y) - 2Vxo(Z,Y) - 21(Z)o(X, $Y) +20(VxZ, Y) +20(Z)5(X, Y)
-0(Z,Vx9Y) -0(Z,¢VxY) —n(Y)o(Z $pX)

(5.24)
+20(Z,VxY) +2n(Y)o(Z,X) -20(VxZ,$Y)
= - 9p(X){-0(Z,¢Y) +0(Z,Y)}.
Putting Y = ¢ and using (3.1), (3.6), (4.1) in (5.24), we get
0=0(ZX)-30(Z ¢X). (5.25)
Replacing X by ¢$X and by virtue of (3.1) and (4.1) in (5.25), we get
0=0(Z ¢X) +30(Z X). (5.26)

Multiplying (5.25) by 1 and (5.26) by 3 and adding these two equations, we obtain o (X, Z) =
0. Thus M is totally geodesic. The converse statement is trivial. This proves the theorem. O

6. Semiparallel, Pseudoparallel, and Ricci-Generalized Pseudoparallel
Invariant Submanifolds of Sasakian Manifolds Admitting
Semisymmetric Nonmetric Connection

We consider invariant submanifolds of Sasakian manifolds admitting Semisymmetric

Nonmetric connection satisfying the conditions R0c=0, Ro= LiQ(g,0), Ro= L,Q(S,0).

Theorem 6.1. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then we prove that M is semiparallel with respect to

Semisymmetric Nonmetric connection if and only if 6 = 2¢ + ¢.
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Proof. Let M be semiparallel R-o=0. Putting X = V = ¢ and by virtue of (3.1), (3.6), and
(4.1) in (4.11), we get

0= oW RENH - o(TaW,¢) + o (Frnte ) - o(Teor ), )

_ _ (6.1)
~o(U,V:Y) +o(U, VyE) + o(U, [¢,Y]) - o<u, ﬁgy) + o(ll, %g) +o(U,Y).
Using (1.1), (2.1), (3.6), (3.15), (4.1), and (5.1) in (6.1), we get
0=30(UY)- o<§§q(unf,g> —o(U,$Y) - o (U, V,Y). (6.2)

By definition o is a vector-valued covariant tensor, and so o(U,Y) is a vector. Therefore

ﬁgo(Y, U) is a vector, and hence by (4.1), we have
o<§§o(y, u), g) - 0. 6.3)

Then from (6.2), we get

30(U,Y) = po(U,Y) +o(U, V;Y). (6.4)
Interchanging Y and U in (6.4), we get

30(Y,U) = ¢o(Y,U) + o (U, V;Y). (6.5)
Adding these tow equations, (6.4) and (6.5), we get

6=2¢+¢. (6.6)
O

Theorem 6.2. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then we prove that M is pseudoparallel with respect to
Semisymmetric Nonmetric connection if and only if L1 = ¢ +¢/2 - 3.

Proof. Let M be pseudoparallel R.o= L1Q(g,0). Putting X = V = ¢ and by virtue of (3.1),
(3.6),and (4.1) in (2.7), (4.11), we get

— (U, RE, Y)E) — o<§§q(umg> N a<§m(wg,g> - o<§§o(Y, u>,g> —o(U,V,Y)

L o(U, Vyé) + o [¢,Y]) - o<u,§§1r> + a<u,§yg) oY) = -Lio(U,Y).
6.7)
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Using (1.1), (2.1), (3.6), (3.15), (4.1), and (5.1) in (6.7), we get

30(U,Y) - 0<€§rz(ll)Y,§) —o(U,§Y) - o(U, VsY) = ~Lio(U, ). 6.8)

Now by using (6.3) in (6.8), we get

B+L)oUY) = ¢po(U,Y) + o (U, VsY). (6.9)
Interchanging Y and U in (6.9), we get

G+ Ly)o(Y,U) = po(Y,U) + o (Y, V:U). (6.10)

Adding (6.9) and (6.10), we get

Ly =$+§—3. (6.11)
O

Theorem 6.3. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then we prove that M is Ricci-generalized pseudoparallel with
respect to Semisymmetric Nonmetric connection if and only if L, = (1/(n—1))[¢ + &/2 - 3].

Proof. Let M be Ricci-generalized pseudoparallel E o =L,Q(S,0). Putting X = V = ¢ and by
virtue of (3.1), (3.6), (3.16), and (4.1) in (2.7), (4.11), we get

~oWREY - o(Tar.e) +o(Trnwi ) -o(Teow),¢) - o vay)

+o(U, Vyé) + o(U [¢,Y]) - o<u,€§y> + a<u,§yg> + oY) = ~Loy(n - D)o(U,Y).

(6.12)
Using (1.1), (2.1), (3.6), (3.15), (4.1), and (5.1) in (6.12), we get
30(U,Y) - o<§§q(umg) —o(U,$Y) - (U, V;Y) = ~Ly(n - 1)o (U Y). (6.13)
Now by using (6.3) in (6.13), we get
B+ Ly(n-1)o(U,Y) = go(U,Y) + o (U, VY). (6.14)

Interchanging Y and U in (6.14), we get

B+ Ly(n-1)o(Y,U) = ¢o(Y,U) + o (Y, V). (6.15)
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Adding (6.14) and (6.15), we get
2B+ Ly(n-1))o(U,Y) =2¢c(U,Y) + V;o (UL, Y). (6.16)

Writting the above equation, we have

R S o
Lz—(n_l)[¢+2 3]. (6.17E)]

Remark 6.4. Let M be an invariant submanifold of a Sasakian manifold which admits
Semisymmetric Nonmetric connection. If M is semiparallel, pseudoparallel, and Ricci-
generalized pseudoparallel, then we have obtained conditions connecting ¢, ¢, L1, and L,.
These conditions need further investigation and are to be interpreted geometrically.

Using Theorems 5.1 to 5.4 and corollary 5.3, we have the following result.

Corollary 6.5. Let M be an invariant submanifold of a Sasakian manifold M admitting a
Semisymmetric Nonmetric connection. Then the following statements are equivalent:
(1) ois recurrent,
)
®)
(4) M has parallel third fundamental form.

o is 2-recurrent,

o is generalized 2-recurrent,
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