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The existence and uniqueness of a variational solution are proved for the following nonau-
tonomous nonclassical diffusion equation ut − εΔut − Δu + f(u) = g(x, t), ε ∈ (0, 1], in a
noncylindrical domain with homogeneous Dirichlet boundary conditions, under the assumption
that the spatial domains are bounded and increase with time. Moreover, the nonautonomous
dynamical system generated by this class of solutions is shown to have a pullback attractor ̂Aε,
which is upper semicontinuous at ε = 0.

1. Introduction

In recent years, the evolution equations on noncylindrical domains, that is, spatial domains
which vary in time so their Cartesian products with the time variable are noncylindrical
sets, have been investigated extensively (see, e.g., [1–3]). Much of the progress has been
made for nested spatial domains which expand in time. However, the results focus mainly
on formulation of the problems and existence and uniqueness theory, while the existence
of attractors of such systems has been less considered, except some recent works for the
reaction-diffusion equation (or the heat equation) [4, 5]. This is not really surprising since
such systems are intrinsically nonautonomous even if the equations themselves contain no
time-dependent terms and require the concept of a nonautonomous attractor, which has only
been introduced in recent years.

In this paper, we consider a class of nonautonomous nonclassical diffusion equations
on bounded spatial domains which are expanding in time. First, we show how the first initial
boundary value problem for these equations can be formulated as a variational problem
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with appropriate function spaces, and then we establish the existence and uniqueness over a
finite time interval of variational solutions. Next, we show that the process of two parameter
generated by such solutions has a nonautonomous pullback attractor. Finally, we study the
upper semicontinuity of the obtained pullback attractor.

Let {Ωt}t∈R
be a family of nonempty bounded open subsets of R

N such that

s < t =⇒ Ωs ⊂ Ωt. (1.1)

From now on, we will frequently use the following notations:

Qτ,T :=
⋃

t∈(τ,T)
Ωt × {t},

Qτ :=
⋃

t∈(τ,∞)

Ωt × {t}, ∀τ ∈ R,

∑

τ,T

:=
⋃

t∈(τ,T)
∂Ωt × {t},

∑

τ

:=
⋃

t∈(τ,∞)

∂Ωt × {t}.

(1.2)

In this paper we consider the following nonautonomous equation:

(Pε)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut − εΔut −Δu + f(u) = g(x, t) in Qτ,

u = 0 on
∑

τ
,

u|t=τ = uτ(x), x ∈ Ωτ ,

(1.3)

where ε ∈ [0, 1], the nonlinear term f and the external force g satisfy some conditions
specified later on. This equation is called the nonclassical diffusion equation when ε > 0,
and when ε = 0, it turns to be the classical reaction-diffusion equation.

Nonclassical diffusion equation arises as a model to describe physical phenomena,
such as non-Newtonian flows, soil mechanics, and heat conduction (see, e.g., [6–9]). In the
last few years, the existence and long-time behavior of solutions to nonclassical diffusion
equations has attracted the attention of many mathematicians. However, to the best of
our knowledge, all existing results are devoted to the study of the equation in cylindrical
domains. For example, under a Sobolev growth rate of the nonlinearity f , problem (1.3)
in cylindrical domains has been studied [10–13] for the autonomous case, that is the case
g not depending on time t and in [14, 15] for the nonautonomous case. In this paper, we
will study the existence and long-time behavior of solutions to problem (1.3) in the case of
noncylindrical domains, the nonlinearity f of polynomial type satisfying some dissipativity
condition, and the external force g depending on time t. It is noticed that this question for
problem (1.3) in the case ε = 0, that is, for the reaction-diffusion equation, has only been
studied recently in [4, 5].
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In order to study problem (1.3), we make the following assumptions.

(H1) The function f ∈ C1(R,R) satisfies that

−β + α1|s|p ≤ f(s)s ≤ β + α2|s|p, (1.4)

f ′(s) ≥ −�, (1.5)

for some p ≥ 2, where α1, α2, β, � are nonnegative constants. By (1.4), there exist
nonnegative constants α̃1, α̃2, ˜β such that

−˜β + α̃1|s|p ≤ F(s) ≤ ˜β + α̃2|s|p, (1.6)

where F(u) =
∫u

0 f(s)ds is the primitive of f .

(H2) The external force g ∈ L2
loc(R

N+1).

(H3) The initial datum uτ ∈ H1
0(Ωτ) ∩ Lp(Ωτ) is given.

Since the open set Ωt changes with time t, problem (1.3) is nonautonomous even
when the external force g is independent of time. Thus, in order to study the long-time
behavior of solutions to (1.3), we use the theory of pullback attractors. This theory has been
developed for both the nonautonomous and random dynamical systems and has shown
to be very useful in the understanding of the dynamics of these dynamical systems (see
[16] and references therein). The existence of a pullback attractor for problem (1.3) in the
case ε = 0, that is, for the classical reaction-diffusion equation, has been derived recently
in [4]. In the case ε > 0, since (1.3) contains the term −εΔut, this is essentially different
from the classical reaction-diffusion equation. For example, the reaction-diffusion equation
has some kind of “regularity”; for example, although the initial datum only belongs to a
weaker topology space, the solution will belong to a stronger topology space with higher
regularity, and hence we can use the compact Sobolev embeddings to obtain the existence of
attractors easily. However, for problem (1.3)when ε > 0, because of −Δut, if the initial datum
uτ belongs toH1

0(Ωτ)∩Lp(Ωτ), the solution u(t)with the initial condition u(τ) = uτ is always
in H1

0(Ωt) ∩ Lp(Ωt) and has no higher regularity, which is similar to hyperbolic equations.
This brings some difficulty in establishing the existence of attractors for the nonclassical
diffusion equations. Other difficulty arises since the considered domain is not cylindrical,
so the standard techniques used for studying evolution equations in cylindrical domains
cannot be used directly. Therefore, up to now, although there are many results on attractors
for evolution equations in cylindrical domains (see, e.g., [17, 18]), little seems to be known
for the equations in noncylindrical domains.

In this paper, we first exploit the penaltymethod to prove the existence and uniqueness
of a variational solution satisfying the energy equality to problem (1.3). Next, we prove the
existence of a pullback attractor ̂Aε for the process associated to problem (1.3). Finally, we
study the continuous dependence on ε of the solutions to problem (1.3), in particular we
show that the solutions of the nonclassical diffusion equations converge to the solution of
the classical reaction-diffusion equation as ε → 0. Hence using an abstract result derived
recently by Carvalho et al. [19] and techniques similar to the ones used in [14], we prove the
upper semicontinuity of pullback attractors ̂Aε in L2(Ωt) at ε = 0. The last result means that
the pullback attractors ̂Aε of the nonclassical diffusion equations converge to the pullback
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attractor ̂A0 of the classical reaction-diffusion equations as ε → 0, in the sense of the
Hausdorff semidistance.

The paper is organized as follows. In Section 2, for the convenience of readers, we
recall some results on the penalty method and the theory of pullback attractors. After some
preliminary results in Section 2, we proceed by a penalty method to solve approximated
problem, and then we also prove the existence and uniqueness of the solution to problem
(1.3) in Section 3. In Section 4, a uniform estimate for the solutions is then obtained under an
additional assumption of the external force g, and this will lead to the proof of existence of
a pullback attractor ̂Aε in an appropriate framework. The upper semicontinuity of pullback
attractors ̂Aε at ε = 0 is investigated in Section 5. In the last section, we give some discussions
and related open problems.

Notations. In what follows, wewill introduce some notations which are frequently used
in the paper. Denote Hr := L2(Ωr) and Vr := H1

0(Ωr) for each r ∈ R, and denote by (·, ·)r and
| · |r the usual inner product and associated norm in Hr and by ((·, ·)) and ‖ · ‖r the usual
gradient inner product and associated norm in Vr . For each s < t, consider Vs as a closed
subspace of Vt with the functions belonging to Vs being trivially extended by zero. It follows
from (1.1) that {Vt}t∈[τ,T] can be considered as a family of closed subspaces of VT for each
T > τ with

s < t =⇒ Vs ⊂ Vt. (1.7)

In addition,Hr will be identified with its topological dualH∗
r by means of the Riesz theorem

and Vr will be considered as a subspace ofH∗
r with v ∈ Vr identified with the element fv ∈ H∗

r

defined by

fv(h) = (v, h)r , h ∈ Hr. (1.8)

The duality product between V ∗
r and Vr will be denoted by 〈·, ·〉.

2. Preliminaries

2.1. Penalty Method

To study problem (1.3), for each T > τ , we consider the following auxiliary problem:

ut − εΔut −Δu + f(u) = g(x, t) in Qτ,T ,

u = 0 on
∑

τ,T

,

u|t=τ = uτ(x), x ∈ Ωτ ,

(2.1)

where τ ∈ R, uτ : Ωτ → R and g : Qτ → R are given functions.
The method of penalization due to Lions (see [20])will be used to prove the existence

and uniqueness of a solution to problem (2.1) satisfying an energy equality a.e. in (τ, T) and,
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as a consequence, the existence and uniqueness of a solution to problem (1.3) satisfying the
energy equality a.e. in (τ,∞). To begin, fix T > τ and for each t ∈ [τ, T] denote by

V ⊥
t := {v ∈ VT : ((v,ω))T = 0, ∀ω ∈ Vt} (2.2)

the orthogonal subspace of Vt with respect the inner product in VT and by P(t) ∈ L(VT ) the
orthogonal projection operator from VT onto V ⊥

T , which is defined as

P(t)v ∈ V ⊥
t , v − P(t)v ∈ Vt, (2.3)

for each v ∈ VT . Finally, define P(t) = P(T) for all t > T and observe that P(T) is the zero of
L(VT ).

We will now approximate P(t) by operators which are more regular in time. Consider
the family p(t; ·, ·) of symmetric bilinear forms on VT defined by

p(t;v,ω) := ((P(t)v,ω))T , ∀v,ω ∈ VT , ∀t ≥ τ. (2.4)

It can be proved that the mapping [τ,∞) � t �→ p(t;v,ω) ∈ R is measurable for all v, ω ∈ VT .
Moreover, |p(t;v,ω)| ≤ ‖v‖T‖ω‖T . For each integer k ≥ 1 and each t ≥ τ , we define

pk(t;v,ω) := k

∫1/k

0
p(t + r;v,ω)dr, ∀v,ω ∈ VT , ∀t ≥ τ, (2.5)

and denote by Pk(t) ∈ L(VT ) the associated operator defined by

((Pk(t)v,ω))T := pk(t;v,ω), ∀v,ω ∈ VT , ∀t ≥ τ. (2.6)

Lemma 2.1 (see [2, 4]). For any integer 1 ≤ h ≤ k, any t ≥ τ and every v,ω ∈ VT ,

pk(t;v,ω) = pk(t;ω, v),
0 ≤ ph(t;v, v) ≤ pk(t;v, v) ≤ p(t;v, v) = ‖P(t)v‖2T ≤ ‖v‖2T ,

p′
k(t;v, v) :=

d

dt
pk(t;v, v) = k

(

p

(

t +
1
k
;v, v

)

− p(t;v, v)
)

≤ 0,

((Pk(t)v, z))T = 0, ∀z ∈ Vt.

(2.7)

Moreover, for every sequence {vk} ⊂ L2(τ, T ;VT ) weak convergent to v in L2(τ, T ;VT ),

lim inf
k→+∞

∫T

τ

pk(t;vk(t), vk(t))dt ≥
∫T

τ

p(t;v(t), v(t))dt. (2.8)

Let J : VT → V ∗
T be the Riesz isomorphism defined by

〈Jv,ω〉T := ((v,ω))T , ∀v,ω ∈ VT , (2.9)
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and for each integer k ≥ 1 and each t ∈ [τ, T], we denote

Ak(t) := −Δ + kJPk(t). (2.10)

Obviously, Ak(t) ∈ L(VT , V
∗
T ), t ∈ [τ, T], is a family of symmetric linear operators such that

the mapping t ∈ [τ, T] �→ Ak(t) ∈ L(VT , V
∗
T ) is measurable, bounded, and satisfies

〈Ak(t)v, v〉T ≥ ‖v‖2T , ∀v ∈ VT , ∀t ∈ [τ, T]. (2.11)

Let uτ ∈ VT be given and for each k ≥ 1 consider the following problem:

(

u′
k(t), v

)

T
+ 〈Ak(t)uk(t), v〉T

+ ε
〈

Ak(t)u′
k(t), v

〉

T
+
(

f(uk(t)), v
)

T =
(

g(t), v
)

T , ∀v ∈ VT ,

((uk(τ), v))T = ((uτ , v))T .

(2.12)

The idea of the penalty method is as follows: for each k ≥ 1 we first prove the existence
of a solution uk to problem (2.12) (a problem in a cylindrical domain) using standardmethods
such as the Galerkin method, and then show that uk converges to a solution to problem (2.1)
(a problem in a noncylindrical domain) in some suitable sense, and as a consequence, the
existence of a solution to problem (1.3) (see Section 3 for details).

2.2. Pullback Attractors

Since the open set Ωt changes with time t, problem (1.3) is nonautonomous even when the
external force g is independent of time. Thus, in order to study the long-time behavior of
solutions to (1.3), we use the theory of pullback D-attractors which is a modification of the
theory in [16].

Consider a processU(·, ·) on a family of metric spaces {(Xt, dt); t ∈ R}, that is, a family
{U(t, τ);−∞ < τ ≤ t < +∞} of mappings U(t, τ) : Xτ → Xt such that U(τ, τ)x = x for all
x ∈ Xτ and

U(t, τ) = U(t, r)U(r, τ) ∀τ ≤ r ≤ t. (2.13)

In addition, suppose D is a nonempty class of parameterized sets of the form ̂D =
{D(t);D(t) ⊂ Xt,D(t)/= ∅, t ∈ R}.

Definition 2.2 (see [4]). The process U(·, ·) is said to be pullback D-asymptotically compact
if the sequence {U(t, τn)xn} is relatively compact in Xt for any t ∈ R, any ̂D ∈ D, and any
sequences {τn} and {xn}with τn → −∞ and xn ∈ D(τn).

Definition 2.3 (see [4]). A family ̂B ∈ D is said to be pullback D-absorbing for the process
U(·, ·) if for any t ∈ R and any ̂D ∈ D, there exists τ0(t, ̂D) ≤ t such that

U(t, τ)D(τ) ⊂ B(t), (2.14)

for all τ ≤ τ0(t, ̂D).
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Remark 2.4. Note that if ̂B ∈ D is pullback D-absorbing for the process U(·, ·) and B(t) is
a compact subset of Xt for any t ∈ R, then the process U(·, ·) is pullback D-asymptotically
compact.

For each t ∈ R, let distt(D1, D2) be the Hausdorff semi-distance between nonempty
subsets D1 and D2 of Xt, which is defined as

distt(D1, D2) = sup
x∈D1

inf
y∈D2

dXt

(

x, y
)

for D1, D2 ⊂ Xt. (2.15)

Definition 2.5 (see [4]). The family ̂A = {A(t);A(t) ⊂ Xt,A(t)/= ∅, t ∈ R} is said to be a
pullback D-attractor for U(·, ·) if

(1) a(t) is a compact set of Xt for all t ∈ R,

(2) ̂A is pullback D-attracting, that is,

lim
τ →−∞

distt(U(t, τ)D(τ), A(t)) = 0 ∀ ̂D ∈ D, ∀t ∈ R, (2.16)

(3) ̂A is invariant, that is,

U(t, τ)A(τ) = A(t) for −∞ < τ ≤ t < +∞. (2.17)

Theorem 2.6 (see [4]). Suppose that the process U(·, ·) is pullback D-asymptotically compact and
that ̂B ∈ D is a family of pullback D-absorbing sets for U(·, ·). Then, the family ̂A = {A(t); t ∈ R}
defined by A(t) := Λ( ̂B, t), t ∈ R, where for each ̂D ∈ D and t ∈ R,

Λ
(

̂D, t
)

:=
⋂

s≤t

⋃

τ≤s
U(t, τ)D(τ)

Xt

(closure in Xt) (2.18)

is a pullback D-attractor for U(·, ·), which in addition satisfies

A(t) =
⋃

̂D∈D
Λ
(

̂D, t
)Xt

. (2.19)

Furthermore, ̂A is minimal in the sense that if ̂C = {C(t); t ∈ R} is a family of nonempty sets such
that C(t) is a closed subset of Xt and

lim
τ →−∞

distt(U(t, τ)B(τ), C(t)) = 0 for any t ∈ R, then A(t) ⊂ C(t) ∀t ∈ R. (2.20)

2.3. The Upper Semicontinuity of Pullback Attractors

We now state some results on upper semicontinuity of pullback attractors, which are slight
modifications of those in [19]. Because the proof is very similar to the one in [19], so we omit
it here.
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Definition 2.7. Let {Uε(·, ·) : ε ∈ [0, 1]} be a family of evolution processes in a family of Banach
spaces {Xt} with corresponding pullback D-attractors {Aε(t) : ε ∈ [0, 1], t ∈ R}. For any
bounded interval I ∈ R, we say that {Aε(·)} is upper semicontinuous at ε = 0 for t ∈ I if

lim sup
ε→ 0 t∈I

distt(Aε(t), A0(t)) = 0. (2.21)

Theorem 2.8. Let {Uε(·, ·) : ε ∈ [0, 1]} be a family of processes with corresponding pullback D-
attractors {Aε(·) : ε ∈ [0, 1]}. Then, for any bounded interval I ⊂ R, {Aε(·) : ε ∈ [0, 1]} is upper
semicontinuous at 0 for t ∈ I if for each t ∈ R, for each T > 0, and for each compact subset K of Xt−τ ,
the following conditions hold:

(i) supτ∈[0,T]supx∈K distt(Uε(t, t − τ)x,U0(t, t − τ)x) → 0 as ε → 0,

(ii)
⋃

ε∈[0,1]
⋃

t≤t0 Aε(t) is bounded for given t0,

(iii)
⋃

0<ε≤1 Aε(t) is compact for each t ∈ R.

3. Existence and Uniqueness of Variational Solutions

For each T > τ , denote

˜Qτ,T := ΩT × (τ, T),

Uτ,T :=
{

Φ ∈ L∞(τ, T ;VT ) ∩ Lp
(

˜Qτ,T

)

,Φ′ ∈ L2(τ, T ;VT ),

Φ(τ) = Φ(T) = 0,Φ(t) ∈ Vt a.e. in (τ, T)
}

.

(3.1)

Definition 3.1. A variational solution of (2.1) is a function u such that

(C1) u ∈ L∞(τ, T, VT ) ∩ Lp( ˜Qτ,T ), u′ ∈ L2(τ, T ;VT ),

(C2) for all Φ ∈ Uτ,T ,

∫T

τ

[−(u(t),Φ′(t)
)

T + ((u(t),Φ(t)))T + ε
((

u′(t),Φ(t)
))

T +
(

f(u),Φ(t)
)

T

]

dt

=
∫T

τ

(

g(t),Φ(t)
)

Tdt,

(3.2)

(C3) u(t) ∈ Vt a.e. in (τ, T),

(C4) limt↓τ(t − τ)−1
∫ t

τ |u(r) − uτ |2T dr = 0.

Remark 3.2. If T2 > T1 > τ and u is a variational solution of (2.1) with T = T2, then the
restriction of u to ˜Qτ,T1 is a variational solution of (2.1) with T = T1.

Denote ˜Qτ := UT>τ
˜Q(τ,T).

Definition 3.3. A variational solution of (1.3) is a function u : ˜Qτ → R such that for each
T > τ , its restriction to ˜Qτ,T is a variational solution of (2.1).
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To prove the uniqueness of variational solutions to problem (2.1), we need the
following lemmas.

Lemma 3.4 (see [4]). Assume that v ∈ L2(τ, T, VT ) ∩ Lp( ˜Qτ,T ) and there exist ξ ∈ L2(τ, T, V ∗
T ) and

η ∈ Lp/p−1( ˜Qτ,T ) such that

∫T

τ

(

v(t),Φ′(t)
)

Tdt = −
∫T

τ

〈ξ(t),Φ(t)〉Tdt −
∫T

τ

(

η(t),Φ(t)
)

Tdt, (3.3)

for every function Φ ∈ Uτ,T .
For each 0 < h < T − τ , define vh by

vh :=

{

h−1(v(t + h) − v(t)) a.e. in (τ, T − h),
0 a.e. in (T − h, T).

(3.4)

Then

lim
h↓0

∫T

τ

(vh(t), ω(t))Tdt =
∫T

τ

〈ξ(t), ω(t)〉Tdt +
∫T

τ

(

η(t), ω(t)
)

Tdt, (3.5)

for every function ω ∈ L2(τ, T ;VT ) ∩ Lp( ˜Qτ,T ) such that ω(t) ∈ Vt a.e. in (τ, T).

Remark 3.5. If τ < T ′ < T and Φ ∈ L2(τ, T ′;VT ) ∩ Lp(ΩT × (τ, T ′)), with Φ′ ∈ L2(τ, T ′;HT )
satisfies Φ(τ) = Φ(T ′) = 0 and Φ(t) ∈ Vt a.e. in (τ, T ′), then the trivial extension ˜Φ of Φ
satisfies ˜Φ ∈ Uτ,T , with ( ˜Φ)′ = ˜Φ′. Using the open sets ̂Ωt := Ωt+T−T ′ , τ ≤ t ≤ T ′, it is easy to see
that under the conditions of (3.5), one also has

lim
h↓0

∫T ′−h

τ

(vh(t), ω(t))Tdt =
∫T ′

τ

〈ξ(t), ω(t)〉Tdt +
∫T ′

τ

(

η(t), ω(t)
)

Tdt, (3.6)

for every τ ≤ T ′ ≤ T and every function ω ∈ L2(τ, T ;VT ) ∩ Lp( ˜Qτ,T ) such that ω(t) ∈ Vt a.e. in
(τ, T).

Lemma 3.6 (see [4]). Let vi ∈ L2(τ, T ;VT ) ∩ Lp( ˜Qτ,T ), i = 1, 2, be two functions such that vi(t) ∈
Vt a.e. in (τ, T) for i = 1, 2. Assume that there exist ξi ∈ L2(τ, T ;V ∗

T ), ηi ∈ Lp/p−1( ˜Qτ,T ), i = 1, 2
such that

∫T

τ

(

vi(t),Φ′(t)
)

Tdt = −
∫T

τ

〈ξi(t),Φ(t)〉Tdt −
∫T

τ

(

ηi(t),Φ(t)
)

Tdt, i = 1, 2, (3.7)

for every function Φ ∈ Uτ,T . Then, for every pair τ ≤ s < t ≤ T of Lebesgue points of the inner
product function (v1, v2)T it holds
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(v1(t), v2(t))T − (v1(s), v2(s))T =
∫ t

s

〈ξ1(r), v2(r)〉Tdr +
∫ t

s

〈ξ2(r), v1(r)〉Tdr

+
∫ t

s

(

η1(r), v2(r)
)

Tdr +
∫ t

s

(

η2(r), v1(r)
)

Tdr

+ lim
h↓0

h−1
∫ t−h

s

(v1(r + h) − v1(r), v2(r + h) − v2(r))Tdr.

(3.8)

If u is a variational solution of problem (2.1), then τ is the Lebesgue point of |u|2T since
the condition (C4) is satisfied. The next corollary gives an obvious consequence of (3.8).

Corollary 3.7. If u is a variational solution of (2.1), then for every Lebesgue point t ∈ (τ, T) of |u|2T
it holds

|u(t)|2T + ε‖u(t)‖2T + 2
∫ t

τ

‖u(r)‖2Tdr + 2
∫ t

τ

(

f(u(r)), u(r)
)

Tdr

= |uτ |2T + ε‖uτ‖2T + 2
∫ t

τ

(

g(r), u(r)
)

Tdr + lim
h↓0

h−1
∫ t−h

τ

|u(r + h) − u(r)|2Tdr.
(3.9)

Proof. If u is a variational solution of (2.1), then we have

∫T

τ

[

−(u(t),Φ′(t)
)

T + ε

((

∂u

∂t
,Φ(t)

))

T

+ ((u(t),Φ(t)))T +
(

f(u(t)),Φ(t)
)

T

]

dt

=
∫T

τ

(

g(t),Φ(t)
)

Tdt.

(3.10)

Applying Lemma 3.6 with v1 = v2 = u, we get

|u(t)|2T − |uτ |2T = −
∫ t

τ

((

ε
∂u

∂t
+ u(r), u(r)

))

T

dr −
∫ t

τ

((

ε
∂u

∂t
+ u(r), u(r)

))

T

dr

−
∫ t

τ

(

f(u(r)) − g(r), u(r)
)

Tdr −
∫ t

τ

(

f(u(r)) − g(r), u(r)
)

Tdr

+ lim
h→ 0

h−1
∫ t−h

τ

|u(r + h) − u(r)|2Tdr

= − 2
∫ t

τ

‖u(r)‖2Tdr − 2
∫ t

τ

(

f(u(r)), u(r)
)

Tdr + 2
∫ t

τ

(

g(r), u(r)
)

Tdr

− ε‖u(t)‖2T + ε‖uτ‖2T + lim
h→ 0

h−1
∫ t−h

τ

|u(r + h) − u(r)|2Tdr.

(3.11)

Hence, it implies the desired result.
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The aim of this section is to obtain a variational solution of (2.1) such that

|u(t)|2T + ε‖u(t)‖2T + 2
∫ t

τ

‖u(r)‖2Tdr + 2
∫ t

τ

(

f(u(r)), u(r)
)

Tdr

= |uτ |2T + ε‖uτ‖2T + 2
∫ t

τ

(

g(r), u(r)
)

Tdr.

(3.12)

We will say that u satisfies the energy equality in (τ, T) if (3.12) is satisfied a.e. in (τ, T).
Analogously, if u is a variational solution of (1.3), we will say that u satisfies the energy
equality a.e. in (τ,+∞) if for each T > τ the restriction of u to ˜Qτ,T satisfies the energy equality
(3.12) a.e. in (τ, T).

For any function v ∈ L2(τ, T ;HT ) and any t ∈ (τ, T], we put

ηv,T (t) := lim sup
h↓0

h−1
∫ t−h

τ

|v(r + h) − v(r)|2Tdr. (3.13)

Then ηv,T is a nondecreasing function. By Corollary 3.7, a variational solution u of (1.3)
satisfies the energy equality a.e. in (τ, T) if and only if ηu,T (t) = 0 for a.e. t ∈ (τ, T). In fact,
using the continuity of the following mapping:

t ∈ [τ, T] �→ |uτ |2T + ε‖uτ‖2T + 2
∫ t

τ

[

(

g(r), u(r)
)

T − ‖u(r)‖2T − (f(u(r)), u(r))T
]

dr, (3.14)

one can see that a variational solution u of (1.3) satisfies the energy equality a.e. in (τ, T) if
and only if ηu,T (T) = 0.

The next lemma provides a sufficient condition for u to satisfy the energy equality a.e.
in (τ, T).

Lemma 3.8. Let u be a variational solution of (2.1) and suppose that there exists a sequence {tn} ⊂
(τ, T) of Lebesgue points of |u|2T such that tn → T and

lim sup
n−→+∞

(

|u(tn)|2T + ε‖u(tn)‖2T
)

≤ |uτ |2T + ε‖uτ‖2T + 2
∫T

τ

[

(

g(r), u(r)
)

T − ‖u(r)‖2T − (f(u(r)), u(r))T
]

dr.

(3.15)

Then, u satisfies the energy equality a.e. in (τ, T).
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Proof. It is sufficient to prove that ηu,T (T) = 0. Since tn → T and ηu,T is nondecreasing, by
Corollary 3.7, we have

ηu,T (T) ≤ lim sup
n↑+∞

ηu,T (tn) = lim sup
n→+∞

(

|u(tn)|2T + ε‖u(tn)‖2T − |uτ |2T − ε‖uτ‖2T

−2
∫ tn

τ

[

(

g(r), u(r)
)

T − ‖u(r)‖2T − (f(u(r)), u(r))T
]

dr

)

≤ lim sup
n→+∞

(

|u(tn)|2T + ε‖u(tn)‖2T
)

− |uτ |2T − ε‖uτ‖2T

− 2
∫T

τ

[

(

g(r), u(r)
)

T − ‖u(r)‖2T − (f(u(r)), u(r))T
]

dr

≤ 0.
(3.16)

This completes the proof.

Proposition 3.9. Let u, u be two variational solutions of (2.1) corresponding to the initial data
uτ , uτ ∈ Vτ ∩ Lp(Ωτ), respectively, which satisfy the energy equality a.e. in (τ, T). Then,

|u(t) − u(t)|2T + ε‖u(t) − u(t)‖2T + 2
∫ t

τ

‖u(r) − u(r)‖2Tdr

≤ e2�(t−τ)
(

|uτ − uτ |2T + ε‖uτ − uτ‖2T
)

a.e. t ∈ (τ, T).

(3.17)

Hence, it implies the uniqueness of variational solutions to (2.1) satisfying the energy equality in
(τ, T).

Proof. Since u, u satisfy the energy equation, ηu,T (t) = ηu,T (t) = 0 for all t ∈ (τ, T) and

|u(t) − u(t)|2T + ε‖u(t) − u(t)‖2T + 2
∫ t

τ

‖u(r) − u(r)‖2Tdr

+ 2
∫ t

τ

(

f(u(r)) − f(u(r)), u(r) − u(r)
)

Tdr

≤ |uτ − uτ |2T + ε‖uτ − uτ‖2T − 2 lim
h↓0

h−1
∫ t−h

τ

(u(r + h) − u(r), u(r + h) − u(r))Tdr.

(3.18)
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On the other hand,

∣

∣

∣

∣

∣

h−1
∫ t−h

τ

(u(r + h) − u(r), u(r + h) − u(r))Tdr

∣

∣

∣

∣

∣

2

≤
(

h−1
∫ t−h

τ

|u(r + h) − u(r)|2dr
)(

h−1
∫ t−h

τ

|u(r + h) − u(r)|2dr
)

,

(3.19)

so

lim
h↓0

h−1
∫ t−h

τ

(u(r + h) − u(r), u(r + h) − u(r))Tdr = 0. (3.20)

Using this and (1.5) in (3.12), one can conclude

|u(t) − u(t)|2T + ε‖u(t) − u(t)‖2T + 2
∫ t

τ

‖u(r) − u(r)‖2Tdr

≤ |uτ − uτ |2T + ε‖uτ − uτ‖2T − 2
∫ t

τ

(

f(u(r)) − f(u(r)), u(r) − u(r)
)

Tdr

≤ |uτ − uτ |2T + ε‖uτ − uτ‖2T + 2�
∫ t

τ

|u(r) − u(r)|2Tdr.

(3.21)

By an application of Gronwall’s inequality, we get (3.17).

The method of penalization will now be used to prove the existence and uniqueness
of a variational solution to problem (2.1) satisfying an energy equality a.e. in (τ, T) and,
as a consequence, the existence and uniqueness of a variational solution to problem (1.3)
satisfying the energy equality a.e. in (τ,∞).

Theorem 3.10. Let g ∈ L2(τ, T ;HT ), uτ ∈ Vτ ∩ Lp(Ωτ) be given. Then problem (2.1) has a unique
variational solution satisfying the energy equality a.e. in (τ, T).

Proof. We divide the proof into two steps.
Step 1. Existence of a weak solution to problem (2.12).
We will use the Galerkin method (see [20]). Take an orthonormal Hilbert basis {ej}

of HT formed by elements of VT ∩ Lp(ΩT ) such that the vector space generated by {ej} is
dense in VT and Lp(ΩT ). Then, one takes a sequence {uτm} converging to uτ in VT , with {uτm}
in the vector space spanned by the m first {ej}. For each integer m ≥ 1, one considers the
approximation ukm(t) =

∑m
j=1 γkm,j(t)ej , defined as a solution of

(

u′
km
(t), ej

)

T
+
〈

Ak(t)ukm(t), ej
〉

T
+ ε
〈

Ak(t)u′
km
(t), ej

〉

T
+
(

f(ukm(t)), ej
)

T
=
(

g(t), ej
)

T
,

((

ukm(τ), ej
))

T
=
((

uτm, ej
))

T
.

(3.22)
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Multiplying (3.22) by γ ′km,j(t) and summing from j = 1 tom, we obtain

(

u′
km
(t), u′

km
(t)
)

T
+
〈

Ak(t)ukm(t), u
′
km
(t)
〉

+ ε
〈

Ak(t)u′
km
(t), u′

km
(t)
〉

T
+
(

f(ukm(t)), u
′
km
(t)
)

T

=
(

g(t), u′
km
(t)
)

T
,

(3.23)

or

∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+
1
2
d

dt
‖ukm(t)‖2T + ε

∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+ k
((

Pk(t)ukm(t), u
′
km
(t)
))

T

+ εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+
(

f(ukm(t)), u
′
km
(t)
)

T
=
(

g(t), u′
km
(t)
)

T
.

(3.24)

Thus,

(

g(t), u′
km
(t)
)

T
≥
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+ ε
∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+
1
2
d

dt

[

‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T
]

+ εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+
(

f(ukm(t)), u
′
km
(t)
)

T

=
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+ ε
∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+ εk

((

Pk(t)u′
km
(t), u′

km
(t)
))

T

+
1
2
d

dt

[

‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T + 2
∫

ΩT

F(ukm(x, t))dx

]

.

(3.25)

We have

(

g(t), u′
km
(t)
)

T
≤ 1

2

(

∣

∣g(t)
∣

∣

2
T +
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T

)

, (3.26)

so

∣

∣g(t)
∣

∣

2
T ≥ 2ε

∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+

d

dt

[

‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T + 2
∫

ΩT

F(ukm(x, t))dx

]

+ 2εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
.

(3.27)
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Integrating (3.27) on [τ, t], τ ≤ t ≤ T , we obtain

2ε
∫ t

τ

∥

∥

∥u′
km
(r)
∥

∥

∥

2

T
dr + 2εk

∫ t

τ

((

Pk(r)u′
km
(r), u′

km
(r)
))

T
dr +

∫ t

τ

∣

∣

∣u′
km
(r)
∣

∣

∣

2

T
dr

+ ‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T + 2
∫

ΩT

F(ukm(x, t))dx

≤
∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖ukm(τ)‖2T + k((Pk(τ)ukm(τ), ukm(τ)))T + 2

∫

ΩT

F(ukm(x, τ))dx.

(3.28)

Since

∫

ΩT

F(ukm(x, t))dx ≥ −˜β|ΩT | + α̃1‖ukm(t)‖pLp(ΩT )
,

∫

ΩT

F(ukm(x, τ))dx ≤ ˜β|ΩT | + α̃2‖uτm‖pLp(ΩT )
,

(3.29)

we have

2ε
∫ t

τ

∥

∥

∥u′
km
(r)
∥

∥

∥

2

T
dr + 2εk

∫ t

τ

((

Pk(r)u′
km
(r), u′

km
(r)
))

T
dr +

∫ t

τ

∣

∣

∣u′
km
(r)
∣

∣

∣

2

T
dr

+ ‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T + 2α̃1‖ukm(t)‖pLp(ΩT )

≤
∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖ukm(τ)‖2T + k((Pk(τ)ukm(τ), ukm(τ)))T + 4˜β|ΩT | + 2α̃2‖uτm‖pLp(ΩT )

.

(3.30)

From (3.30), we deduce that

{ukm} is bounded in L∞(τ, T ;VT ) ∩ Lp( ˜Qτ,T ),

{ukm} ⇀ uk weakly in L∞(τ, T ;VT ) ∩ Lp( ˜Qτ,T ),

{u′
km
} is bounded in L2(τ, T ;VT ),

{u′
km
} ⇀ u′

k weakly in L2(τ, T ;VT ).

Since {ukm} is bounded in L∞(τ, T ;VT ) ∩ Lp( ˜Qτ,T ), one can check that {f(ukm)} is bounded in
Lq(τ, T ;Lq(ΩT ))with q = p/(p − 1), hence f(ukm) ⇀ η in Lq(τ, T ;Lq(ΩT )). We now prove that
η = f(uk).

Indeed, we have

VT ⊂⊂ HT ⊂ V ∗
T ,

{ukm} is bounded in L∞(τ, T ;VT ),

{u′
km
} is bounded in L2(τ, T ;V ∗

T ).
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By the Aubin-Lions lemma [20, Chapter 1], {ukm} is relatively compact in L2(τ, T ;HT ).
Therefore, one can assume that ukm → uk strongly in L2(τ, T ;HT ), so ukm → uk a.e. in ˜Qτ,T .
Since f is continuous, f(ukm) → f(uk) a.e. in ˜Qτ,T . Applying Lemma 1.3 in [20], we have

f(ukm) ⇀ f(uk) weakly in Lq(τ, T ;Lq(ΩT )). (3.31)

This implies that uk is a weak solution of problem (2.12).
Step 2. Existence of a variational solution to (2.1) satisfying the energy equality.

From (3.30), we have

k

∫T

τ

((Pk(r)ukm(r), ukm(r)))Tdr

≤ (T − τ)

(

∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖ukm(τ)‖2T + k((Pk(τ)ukm(τ), ukm(τ)))T

+ 4˜β|ΩT | + 2α̃2‖uτm‖pLp(ΩT )

)

.

(3.32)

Consider the function Φ : L2(τ, T ;VT ) → R defined by

Φ(v) =
∫T

τ

((Pk(t)v(t), v(t)))Tdt, v ∈ L2(τ, T ;VT ). (3.33)

It is easy to see that Φ is a continuous and convex function. It follows that
∫T

τ ((Pk(t)ukm(t), ukm(t)))Tdt is weakly lower semicontinuous in L2(τ, T ;VT ). Moreover,
{ukm} ⇀ uk weakly in L2(τ, T ;VT ), hence

k

∫T

τ

((Pk(t)uk(t), uk(t)))Tdt

≤ k lim inf
m→∞

∫T

τ

((Pk(t)ukm(t), ukm(t)))Tdt

≤ (T − τ)

(

∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖uτ‖2T + k((Pk(τ)uτ , uτ))T + 4˜β|ΩT | + 2α̃2‖uτ‖pLp(ΩT )

)

.

(3.34)
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Since {u′
km
} ⇀ u′

k weakly in L2(τ, T ;VT ), then, reasoning as above,

2εk
∫T

τ

((

Pk(t)u′
k(t), u

′
k(t)
))

T
dt

≤ 2εk lim inf
m→∞

∫T

τ

((Pk(t)ukm(t), ukm(t)))Tdt

≤
(

∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖uτ‖2T + k((Pk(τ)uτ , uτ))T + 4˜β|ΩT | + 2α̃2‖uτ‖pLp(ΩT )

)

.

(3.35)

From the facts that ukm ⇀ uk weakly in L∞(τ, T ;VT ), u′
km

⇀ u′
k
weakly in L2(τ, T ;VT ) and the

weak lower semicontinuity of the norm, we deduce that

2ε
∫ t

τ

∥

∥u′
k(r)
∥

∥

2
T
dr + 2εk

∫ t

τ

((

Pk(r)u′
k(r), u

′
k(r)
))

T
dr +

∫ t

τ

∣

∣u′
k(r)
∣

∣

2
T
dr

+ ‖uk(t)‖2T + k

∫T

τ

((Pk(t)uk(t), uk(t)))T + 2α̃1‖uk(t)‖pLp(ΩT )

≤ (5 + T − τ)

(

∫ t

τ

∣

∣g(r)
∣

∣

2
Tdr + ‖uτ‖2T + k((Pk(τ)uτ , uτ))T + 4˜β|ΩT | + 2α̃2‖uτ‖pLp(ΩT )

)

= C.

(3.36)

Since uτ ∈ Vτ ∩ Lp(Ωτ), ((Pk(τ)uτ , uτ))T = 0 for all k ≥ 1, (3.36) gives

{uk} is bounded in L∞(τ, T ;VT ) ∩ Lp(τ, T ;Lp(ΩT )),

{u′
k
} is bounded in L2(τ, T ;VT ),

{uk} ⇀ u weakly in L∞(τ, T ;VT ) ∩ Lp(τ, T ;Lp(ΩT )),

{u′
k} ⇀ u′ weakly in L2(τ, T ;VT ).

From Lemma 2.1, we have

∫T

τ

‖P(t)u(t)‖2Tdt ≤ lim inf
k→∞

∫T

τ

((Pk(t)uk(t), uk(t)))Tdt ≤ lim inf
k→∞

C

k
= 0,

that is, P(t)u(t) = 0 a.e. in (τ, T) or u(t) ∈ Vt a.e. in (τ, T),
∫T

τ

∥

∥P(t)u′(t)
∥

∥

2
Tdt ≤ lim inf

k→∞

∫T

τ

((

Pk(t)u′
k(t), u′

k(t)
))

Tdt ≤ lim inf
k→∞

C

k
= 0,

that is, P(t)u′(t) = 0 a.e. in (τ, T).

(3.37)

Moreover, (3.36) and the equality

uk(t) − uk(s) =
∫ t

s

u′
k(r)dr, ∀s, t ∈ [τ, T], ∀k ≥ 1, (3.38)
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give

|uk(t) − uk(s)|T ≤ C1/2|t − s|1/2 ∀s, t ∈ [τ, T], ∀k ≥ 1. (3.39)

It follows from (3.36) that ‖uk(t)‖T ≤ C for all t ∈ [τ, T] and each k ≥ 1. Since the injection
of VT into HT is compact, the set {v ∈ VT : ‖v‖2T ≤ C} is compact in HT . By (3.39) and the
Arzela-Ascoli theorem, there exists a subsequence, that will be still denoted by {uk}, such
that

uk → u in C([τ, T];HT ) as k −→ +∞. (3.40)

So, the condition (C4) is satisfied.
On the other hand, {uk} is bounded in L∞(τ, T ;VT ) and {u′

k}is bounded in L2(τ, T ;VT ),
applying the Aubin-Lions lemma and Lemma 1.3 in [20, Chapter 1], one has

f(uk) ⇀ f(u) weakly in Lq(τ, T, Lq(ΩT )). (3.41)

Since uk is the weak solution of the problem

(

u′
k(t), v

)

T
+ 〈Ak(t)uk(t), v〉T

+ ε
〈

Ak(t)u′
k(t), v

〉

T
+
(

f(uk(t)), v
)

T =
(

g(t), v
)

T , ∀v ∈ VT ,

((uk(τ), v))T = ((uτ , v))T ,

(3.42)

taking to the limit as k → +∞ and using the fact that P(t)u(t) = 0, P(t)u′(t) = 0 a.e. in (τ, T),
we can conclude that u is the solution of (2.1).

Now, we will show that u satisfies the energy equality in (τ, T). Multiplying (3.22) by
γkm,j and summing from j = 1 tom, we obtain

(

u′
km
(t), ukm(t)

)

T
+ 〈Ak(t)ukm(t), ukm(t)〉T

+ ε
〈

Ak(t)u′
km
(t), ukm(t)

〉

T
+
(

f(ukm(t)), ukm(t)
)

T =
(

g(t), ukm(t)
)

T .

(3.43)

Hence, we get

1
2
d

dt
|ukm(t)|2T + ‖ukm(t)‖2T + k((Pk(t)ukm(t), ukm(t)))T

+
ε

2
d

dt
‖ukm(t)‖2T + εk

((

Pk(t)u′
km
(t), ukm(t)

))

T
+
(

f(ukm(t)), ukm(t)
)

T =
(

g(t), ukm(t)
)

T ,

(3.44)
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or

|ukm(t)|2T + 2
∫ t

τ

‖ukm(r)‖2Tdr + 2k
∫T

τ

((Pk(r)ukm(r), ukm(r)))Tdr

+ ε‖ukm(t)‖2T + 2kε
∫ t

τ

((

Pk(r)u′
km
(r), ukm(r)

))

T
dr + 2

∫ t

τ

(

f(ukm(r)), ukm(r)
)

Tdr

= 2
∫ t

τ

(

g(r), ukm(r)
)

Tdr + |uτm |2T + ε‖uτm‖2T .

(3.45)

Since

((

Pk(t)u′
km
(t), ukm(t)

))

T
≥ 1

2
d

dt
((Pk(t)ukm(t), ukm(t)))T ,

((Pk(t)ukm(t), ukm(t)))T ≥ 0,

|ukm(t)|2T + 2
∫ t

τ

‖ukm(r)‖2Tdr + ε‖ukm(t)‖2T + 2
∫ t

τ

(

f(ukm(r)), ukm(r)
)

Tdr

≤ 2
∫ t

τ

(

g(r), ukm(r)
)

Tdr + |uτm |2T + ε‖uτm‖2T + εk((Pk(t)uτm, uτm))T ,

(3.46)

letting m → ∞, we obtain

|uk(T)|2T + 2
∫T

τ

‖uk(r)‖2Tdr + ε‖uk(T)‖2T + 2
∫T

τ

(

f(uk(r)), uk(r)
)

Tdr

≤ 2
∫T

τ

(

g(r), uk(r)
)

Tdr + |uτ |2T + ε‖uτ‖2T .
(3.47)

Now

∫T

τ

(

f(uk(r)), uk(r)
)

Tdr

=
∫T

τ

(

f(uk(r)) − f(u(r)), uk(r) − u(r)
)

Tdr +
∫T

τ

(

f(uk(r)), u(r)
)

Tdr

+
∫T

τ

(

f(u(r)), uk(r)
)

Tdr −
∫T

τ

(

f(u(r)), u(r)
)

Tdr

≥ −�
∫T

τ

|uk(r) − u(r)|2Tdr +
∫T

τ

(

f(uk(r)), u(r)
)

Tdr

+
∫T

τ

(

f(u(r)), uk(r)
)

Tdr −
∫T

τ

(

f(u(r)), u(r)
)

Tdr.

(3.48)
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This inequality and (3.47) give

|uk(T)|2T + 2
∫T

τ

‖uk(r)‖2Tdr + ε‖uk(T)‖2T

≤ 2
∫T

τ

(

g(r), uk(r)
)

Tdr + |uτ |2T + ε‖uτ‖2T + 2l
∫T

τ

|uk(r) − u(r)|2Tdr

−
∫T

τ

(

f(uk(r)), u(r)
)

Tdr −
∫T

τ

(

f(u(r)), uk(r)
)

Tdr +
∫T

τ

(

f(u(r)), u(r)
)

Tdr.

(3.49)

Since uk ⇀ u weakly in L2(τ, T ;VT ), we get

|u(T)|2T + ε‖u(T)‖2T ≤ |uτ |2T + ε‖uτ‖2T − 2
∫T

τ

(

f(u(r)), u(r)
)

Tdr

− 2
∫T

τ

‖u(r)‖2Tdr + 2
∫T

τ

(

g(r), u(r)
)

Tdr.

(3.50)

Applying Lemma 3.8 with tn = T for all n, one concludes that u satisfies the energy equality
on (τ, T), and the desired uniqueness follows from Proposition 3.9.

4. Existence of Pullback D-Attractors

The aim of this section is to establish the existence of a pullback attractor for problem (1.3).
Suppose that g ∈ L2

loc(R
N+1). Then, according to Theorem 3.10, for each τ ∈ R and each

uτ ∈ Vτ ∩ Lp(Ωτ) given, there exists a unique variational solution u(·; τ, uτ) of problem (1.3)
satisfying the energy equality a.e. in (τ, T) for all T > τ .

Define

U(t, τ)uτ := u(t; τ, uτ), −∞ < τ ≤ t < +∞, uτ ∈ Vτ ∩ Lp(Ωτ). (4.1)

It is easy to check that the family of mappings {U(t, τ);−∞ < τ ≤ t < +∞} is a process U(·, ·).
A uniform estimate in VT ∩ Lp(ΩT ) will be obtained now for the variational solutions

of (1.3) satisfying the energy equality, and since the compactness of the embedding VT ∩
Lp(ΩT ) ↪→ HT , this will immediately imply the existence of a pullback attractor for the
process U(·, ·). The proof requires the following lemma.

Lemma 4.1 (see [21]). Let X ⊂ Y be Banach spaces such that X is reflexive and the injection of X in
Y is compact. Suppose that {vn} is a bounded sequence in L∞(t0, T ;X) such that vn ⇀ v weakly in
Lp(t0, T ;X) for some p ∈ [1,+∞) and v ∈ C0([t0, T];Y ). Then, v(t) ∈ X for all t ∈ [t0, T] and

‖v(t)‖X ≤ lim inf
n→+∞

‖vn‖L∞(t0,T ;X), ∀t ∈ [t0, T]. (4.2)
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Proposition 4.2. Suppose that the assumptions in Theorem 3.10 hold and g ∈ L2
loc(R

N+1) satisfies

Cg,T = sup
t≤T

∫ t

t−1

∣

∣g(r)
∣

∣

2
Tdr < +∞. (4.3)

Then, for any uτ ∈ Vτ ∩ Lp(Ωτ) given, the corresponding variational solution u of (1.3) satisfying
the energy equality in (τ, T) also satisfies

‖u(t)‖pLp(ΩT )
+ ‖u(t)‖2T

≤ C

(

e−σT (t−τ)
(

‖uτ‖2τ + ‖uτ‖pLp(Ωτ )

)

+ 1 +
1

1 − e−σT
Cg,T

)

, ∀t ∈ [τ + 1, T],
(4.4)

where σT = min{λ1,T/2, 1/(ε + 1), α1/α̃2}, λ1,T > 0 is the first eigenvalue of the operator −Δ in ΩT

with the homogeneous Dirichlet condition, α1, α̃2 are the constants in (H1), and the constant C is
independent of t, τ, ε.

Proof. Assume that ukm are the Galerkin approximations of uk defined by (3.22). From (3.44)
and (3.24), we have

1
2
d

dt

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T
)

+
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+ ‖ukm(t)‖2T

+ ε
∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+ (ε + 1)k

((

Pk(t)u′
km
(t), ukm(t)

))

T
+ k((Pk(t)ukm(t), ukm(t)))T

+ εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+
(

f(ukm(t)), u
′
km
(t) + ukm(t)

)

T

=
(

g(t), ukm(t)
)

T +
(

g(t), u′
km
(t)
)

T
.

(4.5)

Moreover,

((

Pk(t)u′
km
(t), ukm(t)

))

T
≥ 1

2
d

dt
((Pk(t)ukm(t), ukm(t)))T ,

(

f(ukm(t)), u
′
km
(t)
)

T
=

d

dt

∫

ΩT

F(ukm(x, t))dx,

(

g(t), ukm(t)
)

T ≤ 1
4η1

∣

∣g(t)
∣

∣

2
T + η1|ukm(t)|2T , ∀η1 > 0,

(

g(t), u′
km
(t)
)

T
≤ 1

4η2

∣

∣g(t)
∣

∣

2
T + η2

∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
, ∀η2 > 0,

(4.6)
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so

1
2
d

dt

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+2
∫

ΩT

F(ukm(x, t))dx

)

+
∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+ ‖ukm(t)‖2T + ε

∥

∥

∥u′
km
(t)
∥

∥

∥

2

T

+ εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+ k((Pk(t)ukm(t), ukm(t)))T +

(

f(ukm(t)), ukm(t)
)

T

≤ 1
4η1

∣

∣g(t)
∣

∣

2
T + η1|ukm(t)|2T +

1
4η2

∣

∣g(t)
∣

∣

2
T + η2

∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
, ∀η1, η2 > 0.

(4.7)

Since

(

f(ukm(t)), ukm(t)
)

T =
∫

ΩT

f(ukm(t))ukm(t)dx

≥
∫

ΩT

(−β + α1|ukm(t)|pdx
)

= −β|ΩT | + α1‖ukm(t)‖pLp(ΩT )
,

(4.8)

we have

1
2
d

dt

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+ 2
∫

ΩT
F(ukm(x, t))dx

)

+
(

1 − η2
)

∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+
1
2
‖ukm(t)‖2T +

(

λ1,T
2

− η1

)

|ukm(t)|2T

+ ε
∥

∥

∥u′
km
(t)
∥

∥

∥

2

T
+ εk

((

Pk(t)u′
km
(t), u′

km
(t)
))

T

+ k((Pk(t)ukm(t), ukm(t)))T + α1‖ukm(t)‖pLp(ΩT )

≤ β|ΩT | +
(

1
4η1

+
1
4η2

)

∣

∣g(t)
∣

∣

2
T .

(4.9)

Denote

ykm(t) := |ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+ 2
∫

ΩT

F(ukm(x, t))dx.
(4.10)
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Choose η2 < 1 and η1 small enough such that σT < min{1/(ε + 1), α1/α̃2, λ1,T − 2η1}, we have

σTykm(t) = σT

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+2
∫

ΩT

F(ukm(x, t))dx

)

≤ σT

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+2
∫

ΩT

(

˜β + α̃2|ukm(t)|p
)

dx + 2˜β|ΩT |
)

≤ σT

(

|ukm(t)|2T + (ε + 1)‖ukm(t)‖2T + (ε + 1)k((Pk(t)ukm(t), ukm(t)))T

+2α̃2‖ukm(t)‖pLp(ΩT )
dx
)

≤ 2
(

1 − η2
)

∣

∣

∣u′
km
(t)
∣

∣

∣

2

T
+ 2

1
2
‖ukm(t)‖2T + 2

(

λ1,T
2

− η1

)

|ukm(t)|2T + 2ε
∥

∥

∥u′
km
(t)
∥

∥

∥

2

T

+ 2εk
((

Pk(t)u′
km
(t), u′

km
(t)
))

T
+ 2k((Pk(t)ukm(t), ukm(t)))T + 2α1‖ukm(t)‖pLp(ΩT )

.

(4.11)

Hence, we have

d

dt
ykm(t) + σTykm(t) ≤ C

(

1 +
∣

∣g(t)
∣

∣

2
T

)

. (4.12)

By Gronwall’s lemma, we get

ykm(t) ≤ e−σT (t−τ)ykm(τ) + C

(

1 + e−σT t

∫ t

τ

eσTs
∣

∣g(s)
∣

∣

2
Tds

)

. (4.13)

Now, observe that

ykm(τ) = |uτm |2T + (ε + 1)‖uτm‖2T + (ε + 1)k((Pk(τ)uτm, uτm))T

+ 2
∫

ΩT

F(uτm)dx + 2˜β|ΩT |

≤
(

1
λ1,T

+ ε + 1
)

‖uτm‖2T + (ε + 1)k((Pk(τ)uτm, uτm))T



24 International Journal of Mathematics and Mathematical Sciences

+ 2
∫

ΩT

(

˜β + α̃2|uτm |p
)

dx + 2˜β|ΩT |

= CT‖uτm‖2T + (ε + 1)k((Pk(τ)uτm, uτm))T + 2α̃2‖uτm‖pLp(ΩT )
+ 4˜β|ΩT |

≤ CT

(

1 + ‖uτm‖2T + ‖uτm‖pLp(ΩT )

)

+ (ε + 1)k((Pk(τ)uτm, uτm))T .

(4.14)

Since

2
∫

ΩT

F(ukm(x, t))dx + 2˜β|ΩT | ≥ 2α̃1‖ukm‖pLp(ΩT )
, (4.15)

so combining with (4.13) and (4.14), we have

2α̃1‖ukm‖pLp(ΩT )
+ ‖ukm(t)‖2T

≤ C

(

e−σT (t−τ)
(

1 + ‖uτm‖2T + ‖uτm‖pLp(ΩT )

)

+ 1 + e−σT t

∫ t

τ

eσTs
∣

∣g(s)
∣

∣

2
Tds

)

+ e−σT (t−τ)(ε + 1)k((Pk(τ)uτm, uτm))T ,

(4.16)

where C is independent of t, τ, ε, and k.
Now, it is known that ukm ⇀ u∗

k
-weakly in L∞(τ, T ;VT ) as m → +∞. Hence, by (4.16)

and Lemma 4.1, we can conclude that

2α̃1‖uk‖pLp(ΩT )
+ ‖uk(t)‖2T

≤ C

(

e−σT (t−τ)
(

1 + ‖uτ‖2τ + ‖uτ‖pLp(Ωτ )

)

+ 1 + e−σT t

∫ t

τ

eσTs
∣

∣g(s)
∣

∣

2
Tds

)

+ e−σT (t−τ)(ε + 1)k((Pk(τ)uτ , uτ))τ

= C

(

e−σT (t−τ)
(

1 + ‖uτ‖2τ + ‖uτ‖pLp(Ωτ )

)

+ 1 + e−σT t

∫ t

τ

eσTs
∣

∣g(s)
∣

∣

2
Tds

)

.

(4.17)

Finally, since uk ⇀ u in L2(τ, T ;VT ) as k → +∞, we get

2α̃1‖u(t)‖pLp(ΩT )
+ ‖u(t)‖2T

≤ C

(

e−σT (t−τ)
(

1 + ‖uτ‖2τ + ‖uτ‖pLp(Ωτ )

)

+ 1 + e−σT t

∫ t

τ

eσTs
∣

∣g(s)
∣

∣

2
Tds

)

≤ C

(

e−σT (t−τ)
(

‖uτ‖2τ + ‖uτ‖pLp(Ωτ )

)

+ 1 +
1

1 − eσT
Cg,T

)

,

(4.18)
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where we have used the fact that

∫ t

τ

e−σT (t−s)∣∣g(s)
∣

∣

2
Tds ≤

∫ t

t−1
e−σT (t−s)∣∣g(s)

∣

∣

2
Tds +

∫ t−1

t−2
e−σT (t−s)∣∣g(s)

∣

∣

2
Tds + · · ·

≤
(

1 + e−σT + e−2σT + · · ·
)

Cg,T =
1

1 − e−σT
Cg,T .

(4.19)

Let R be the set of all r(t) such that

lim
t→−∞

etσt

(

‖r(t)‖2t + ‖r(t)‖pLp(Ωt)

)

= 0. (4.20)

Denote by D the class of all families ̂D = {D(t);D(t) ∈ Vt ∩ Lp(Ωt)), D(t)/= ∅, t ∈ R} such that
D(t) ⊂ B(r(t)) for some r(t) ∈ R.

For each t ∈ R define

r20(t) = 2C
(

1 +
1

1 − e−σt
Cg,t

)

, (4.21)

and consider the family of closed balls ̂B = {B(t); t ∈ R}, where

B(t) = {v ∈ Vt : ‖v‖t ≤ r0(t)}, t ∈ R. (4.22)

Then using (4.4), it is not difficult to check that ̂B is pullback D-absorbing for the process
U(·, ·). Moreover, by the compactness of the injection of Vt into Ht, it is clear that B(t) is a
compact set ofHt for any t ∈ R. Then, it follows from Theorem 2.6 that the processU(·, ·) has
a pullback D-attractor ̂Aε = {Aε(t) : t ∈ R} in a family of spaces {Ht}.

5. The Upper Semicontinuity of Pullback D-Attractors at ε = 0

It is proved in [4], when ε = 0, the existence of a pullback D-attractor ̂A0 = {A0(t) : t ∈ R}
in a family of spaces {Ht} for problem (P0). The aim of this section is to prove the upper
semicontinuity of pullback attractors ̂Aε at ε = 0 in {Ht}, that is,

lim
ε→ 0

sup
t∈I

distt(Aε(t), A0(t)) = 0, (5.1)

where I is an arbitrary bounded interval in R.
The following lemma is the key of this section.

Lemma 5.1. For each t ∈ R, each T > 0, and each compact subset K of Vt−T , we have

|Uε(t, τ)uτ −U0(t, τ)uτ |2t ≤ C
√
ε, ∀τ ∈ [t − T, t], ∀uτ ∈ K, (5.2)

where the constant C is independent of τ and uτ .
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Proof. Denote Uε(t, τ)uτ by u(t), and U0(t, τ)uτ by v(t). Let w(t) = u(t) − v(t), we have

wt − εΔut −Δw + f(u) − f(v) = 0. (5.3)

Multiplying this equation by w and integrating over Ωt, we get

1
2
d

dt
|w|2t − ε(Δut,w)t + ‖w‖2t +

(

f(u) − f(v), w
)

t = 0. (5.4)

We have

(

f(u) − f(v), w
)

t =
∫

Ωt

(

f(u) − f(v)
)

(u − v) ≥ −�|u − v|2t ,

ε(Δut,w)t = −ε(∇ut,∇w)t ≤ ε‖ut‖t · ‖w‖t.
(5.5)

Applying (5.5) in (5.4), we have

d

dt
|w|2t ≤ 2�|w|2t + 2ε‖ut‖t · ‖w‖t. (5.6)

Hence

|w(t)|2t ≤ 2ε
∫ t

τ

e2�(t−s)‖ut(s)‖t · ‖w(s)‖t ≤ 2εe2�T
⎛

⎝

∫ t

τ

‖ut(s)‖2t

⎞

⎠

1/2⎛

⎝

∫ t

τ

‖w(s)‖2t

⎞

⎠

1/2

. (5.7)

Now, we estimate the term on the right-hand side of (5.7). Multiplying the first equation in
(1.3) by ut and integrating over Ωt, we obtain

|ut|2t + ε‖ut‖2t +
1
2
d

dt
‖u‖2t +

d

dt

∫

Ωt

F(u) ≤
∫

Ωt

g(t)ut. (5.8)

Using Cauchy’s inequality, we conclude that

d

dt

(

‖u(t)‖2t + 2
∫

Ωt

F(u(t))

)

+ 2ε‖ut(t)‖2t ≤
1
2
∣

∣g(t)
∣

∣

2
t . (5.9)

Integrating (5.9) from τ to t, τ ∈ [t − T, t], we find that

‖u‖2t + 2
∫

Ωt

F(u(t)) + 2ε
∫ t

τ

‖ut(s)‖2t ≤ ‖uτ‖2t + 2
∫

Ωt

F(uτ) +
1
2

∫ t

τ

∣

∣g(s)
∣

∣

2
t . (5.10)



International Journal of Mathematics and Mathematical Sciences 27

Since
∫

Ωt
F(u(t)) ≥ −˜β|Ωt| + α̃1‖u(t)‖pLp(Ωt)

, we have

2ε
∫ t

τ

‖ut(s)‖2t ≤ ‖uτ‖2t + 2
∫

Ωt

F(uτ) +
1
2

∫ t

τ

∣

∣g(s)
∣

∣

2
t + C. (5.11)

From (3.29), we obtain

‖uτ‖2t + 2
∫

Ωt

F(uτ) ≤ C‖uτ‖2t + C‖uτ‖pLp(Ωt)
+ C. (5.12)

Combining (5.10) and (5.12), we see that

∫ t

τ

‖ut(s)‖2t ≤
C

ε

(

1 + ‖uτ‖2t + ‖uτ‖pLp(Ωt)
+
∫ t

τ

∣

∣g(s)
∣

∣

2
t

)

≤ C

ε

(

1 + ‖uτ‖2t + ‖uτ‖pLp(Ωt)
+
∫ t

t−T

∣

∣g(s)
∣

∣

2
t

)

≤ C
(

K, T, g, t
)

ε
,

(5.13)

because of uτ ∈ K and g ∈ L2
loc(R

n+1). Now, using (5.13) in (5.7), we get

|w(t)|2t ≤ C
(

K, T, g, t
)√

ε

(

∫ t

τ

‖w(s)‖2t
)1/2

. (5.14)

Using (4.4) and noting that τ ∈ [t − T, t], we have

‖w(t)‖2t ≤ ‖u(t)‖2t + ‖v(t)‖2t

≤ 2C

(

e−σt(t−τ)
(

‖uτ‖2t + ‖uτ‖pLp(Ωt)
+ 1
)

+ 1 + e−σtt

∫ t

τ

eσts
∣

∣g(s)
∣

∣

2
t

)

≤ 2C

(

‖uτ‖2t + ‖uτ‖pLp(Ωt)
+ 2 + e−σtt

∫ t

τ

eσts
∣

∣g(s)
∣

∣

2
t

)

≤ C(K)

(

1 +
∫ t

τ

∣

∣g(s)
∣

∣

2
t

)

≤ C(K)

(

1 +
∫ t

t−T

∣

∣g(s)
∣

∣

2
t

)

.

(5.15)
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Thus,

∫ t

τ

‖w(t)‖2t ≤ C(K)

(

t − τ +
∫ t

τ

∫ t

t−T

∣

∣g(s)
∣

∣

2
t

)

≤ C(K)

(

T +
∫∫ t

t−T

∣

∣g(s)
∣

∣

2
t

)

≤ C
(

K, T, g, t
)

.

(5.16)

Combining (5.14) and (5.16)we get

|w(t)|2t ≤ C
(

K, T, g, t
)√

ε. (5.17)

The proof is complete.

Theorem 5.2. If g ∈ L2
loc(R

N+1) satisfies (4.3), then for any bounded interval I ∈ R, the family of
pullback D-attractors {Aε(·) : ε ∈ [0, 1]} is upper semicontinuous in L2(Ωt) at 0 for any t ∈ I, that
is,

lim
ε→ 0

sup
t∈I

distL2(Ωt)(Aε(t), A0(t)) = 0. (5.18)

Proof. We will verify the conditions (i)–(iii) in Theorem 2.8. First, condition (i) follows
directly from Lemma 5.1.

Let B(·) = B(r0(·)) be the corresponding family of pullback D-absorbing sets of (1.3),
which is uniform with respect to ε. By the definition of pullback D-absorbing sets, for any
t ∈ R, there exists τ0 = τ0(t) ≤ t such that

⋃

τ≤τ0
Uε(t, τ)B(τ) ⊂ B(t) = B(r0(t)). (5.19)

By Theorem 2.6, we see that

Aε(t) =
⋂

s≤t

⋃

τ≤s
Uε(t, τ)B(τ). (5.20)

From (5.19) and (5.20), we get

Aε(t) ⊂ B(r0(t)). (5.21)

Now, for given t0 ∈ R, we can write

⋃

ε∈[0,1]

⋃

t≤t0
Aε(t) ⊂

⋃

t≤t0
B(r0(t)). (5.22)
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Because limt→−∞ sup r0(t) < +∞ due to (4.4), from (5.22) we have

⋃

ε∈[0,1]

⋃

t≤t0
Aε(t) is bounded in L2(Ωt0) for given t0, (5.23)

that is, condition (ii) is satisfied. From (5.21), we can find that, for each t ∈ R,

⋃

0<ε≤1
Aε(t) ⊂ B(r0(t)), (5.24)

thus
⋃

0<ε≤1 Aε(t) is bounded inH1
0(Ωt), hence

⋃

0<ε≤1
Aε(t) is compact in L2(Ωt), (5.25)

since H1
0(Ωt) ⊂ L2(Ωt) compactly. Then condition (iii) holds.

6. Conclusion

In this paper we have proved the existence and uniqueness of variational solutions
satisfying the energy equality to a class of nonautonomous nonclassical diffusion equations
in noncylindrical domains. We have also proved the existence of pullback attractors ̂Aε of the
process generated by this class of solutions and the upper semicontinuity of { ̂Aε : ε ∈ [0, 1]}
at ε = 0, which means that the pullback attractors ̂Aε of the nonclassical diffusion equations
converge to the pullback attractor ̂A0 of the reaction-diffusion equation in the sense of the
Hausdorff semidistance. As far as we know, this is the first result on the existence and long-
time behavior of solutions to the nonclassical diffusion equations in noncylindrical domains.
The result is obtained under the assumption (1.1) of spatial domains which are expanding in
time. This assumption may be replaced by the assumption that the spatial domains Ωt in R

N

are obtained from a bounded base domainΩ by a C2-diffeomorphism, which is continuously
differentiable in the time variable and are contained, in the past, in a common bounded
domain (see [5] for the related results in the case ε = 0).

It is noticed that the obtained results seem to be not very satisfying because although
the process U(·, ·) associated to problem (1.3) is constructed in the family of spaces H1

0(Ωt) ∩
Lp(Ωt), we are only able to prove the existence and upper semicontinuity of the pullback
attractor in L2(Ωt). It would be very interesting if one can show the existence and upper
semicontinuity of the pullback attractor in the space H1

0(Ωt) ∩ Lp(Ωt). For nonclassical
diffusion equations in cylindrical domains, this question has been solved very recently in
[15, 22] by using the so-called asymptotic a priori estimate method. However, in the case of
non-cylindrical domains, this question seems to be more difficult and is still completely open.
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