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By using the operator Lr , we define the notions of rth order and rth type of a Euclidean
hypersurface. By the use of these notions, we are able to obtain some sharp estimates of the (r+1)th
mean curvature for a closed hypersurface of the Euclidean space in terms of rth order.

1. Introduction

The study of submanifolds of finite type began in 1970, with Chen’s attempts to find the
best possible estimate of the total mean curvature of a compact submanifold of the Euclidean
space and to find a notion of “degree” for Euclidean submanifolds [1, 2].

In algebraic geometry varieties are the main objects to study. Since an algebraic variety
is defined by using algebraic equations, one can define the degree of an algebraic variety by
its algebraic structure, and it is well known that the concept of degree plays a fundamental
role in algebraic geometry [3].

On the other hand, in differential geometry, the main objects to study are Riemannian
(sub) manifolds. According to Nash’s immersion Theorem, every Riemannian manifold can
be realized as a submanifold of the Euclidean space via an isometric immersion [4], but there
is no notion of degree for submanifolds of the Euclidean space in general.

So inspired by algebraic geometry, in 1970, Chen defined the notions of order and
type for submanifolds of the Euclidean space by the use of the Laplace operator. After that,
Chen was able to obtain some sharp estimates of the total mean curvature for compact
submanifolds of the Euclidean space in terms of their orders. Moreover, he could introduce
submanifolds and maps of finite type [1, 2].

On one hand finite-type submanifolds provides a natural way to exploit the spectral
theory to study the geometry of submanifolds and smooth maps, in particular the Gauss
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map. On the other hand the techniques of the submanifold theory can be used in the study of
spectral geometry via the study of finite-type submanifolds.

As is well known, the Laplace operator of a hypersurface M immersed into R
n+1 is

an (intrinsic) second-order linear elliptic differential operator which arises naturally as the
linearized operator of the first variation of the mean curvature for normal variations of the
hypersurface. From this point of view, the Laplace operator Δ can be seen as the first one of
a sequence of n operators L0 = Δ, L1, . . . , Ln−1, where Lr stands for the linearized operator
of the first variation of the (r + 1)th mean curvature arising from normal variations of the
hypersurface (see [5]). These operators are given by Lr(f) = tr(Pr ◦∇2f) for any f ∈ C∞(M),
where Pr denotes the rth Newton transformation associated to the second fundamental form
of the hypersurface, and ∇2f is the hessian of f (see the next section for details).

In contrast to the operator Δ, the operators Lr are not elliptic in general, but they
still share some nice properties with Laplacian of M; moreover, under appropriate natural
geometric hypotheses on the hypersurface, they are elliptic [6]. Therefore, from this point of
view, it seems natural and interesting to generalize the definition of finite-type hypersurface
by replacingΔ by the operator Lr . Having this idea, for the first time in [7], the second author,
inspired by a private communication with Alı́as, introduced such hypersurfaces and called
them “Lr-finite type” hypersurfaces.

In this paper, by using the operator Lr , we define the notions of rth order and rth type
of a Euclidean hypersurface. Then we are able to obtain some sharp estimates of the (r + 1)th
mean curvature for closed hypersurfaces of the Euclidean space in terms of their rth orders
when Lr is elliptic. The paper generalizes the results of [8, 9].

2. Preliminaries

In this section, we recall some prerequisites about Newton transformations Pr and their
associated second-order differential operators Lr from [10].

Consider an orientable isometrically immersed hypersurface x : Mn → R
n+1 in

the Euclidean space, with the Gauss map N. We denote by ∇0 and ∇ the Levi-Civita
connections on R

n+1 and M, respectively. Then, the basic Gauss and Weingarten formulae
of the hypersurface are written as

∇0
XY = ∇XY + 〈SX, Y〉N,

SX = −∇0
XN

(2.1)

for all tangent vector fields X,Y ∈ χ(M), where S : χ(M) → χ(M) is the shape operator of
Mwith respect to the Gauss mapN. As is well known, S defines a self-adjoint linear operator
on tangent space TpM, and its eigenvalues κ1(p), . . . , κn(p) are called the principal curvatures
of the hypersurface. Associated to the shape operator S, there are n algebraic invariants given
by

sr
(
p
)
= σr

(
κ1
(
p
)
, . . . , κn

(
p
))
, 1 ≤ r ≤ n, (2.2)

where σr : R
n → R is the elementary symmetric function in R

n given by

σr(x1, . . . , xn) =
∑

1≤i1<···<ir≤n
xi1 · · ·xir . (2.3)
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Observe that the characteristic polynomial of S can be written in terms of the sr , s as

QS(t) = det(tI − S) =
n∑

r=0
(−1)rsrtn−r , (2.4)

where s0 = 1 by definition. The rth mean curvatureHr of the hypersurface is then defined by

(
n
k

)
Hr = sr , 0 ≤ r ≤ n. (2.5)

In particular, when r = 1,

H1 =
1
n

n∑

i=1

κi =
1
n
tr(S) = H (2.6)

is nothing but the mean curvature of M, which is the main extrinsic curvature of the
hypersurface. On the other hand, Hn = κ1 · · ·κn is called the Gauss-Kronecker curvature of
M. A hypersurface with zero (r + 1)th mean curvature in R

n+1 is called r-minimal.
The classical Newton transformations Pr : χ(M) → χ(M) are defined inductively by

P0 = I, Pr = srI − S ◦ Pr−1 =
(
n
r

)
HrI − S ◦ Pr−1 (2.7)

for r = 1, . . . , nwhere I denotes the identity of χ(M). Equivalently, we have

Pr =
r∑

j=0
(−1)jsr−jSj =

r∑

j=0
(−1)j

(
n

r − j

)
Hr−jSj . (2.8)

Note that, by the Cayley-Hamilton Theorem stating that any operator T is annihilated by its
characteristic polynomial, we have Pn = 0 from (2.4).

Each Pr(p) is also a self-adjoint linear operator on the tangent space TpM which
commutes with S(p). Indeed, S(p) and Pr(p) can be simultaneously diagonalized if
{e1, . . . , en} are the eigenvectors of S(p) corresponding to the eigenvalues κ1(p), . . . , κn(p),
respectively. Then they are also the eigenvectors of Pr(p) with corresponding eigenvalues
given by

μi,r

(
p
)
=

∑

1≤i1<···<ir≤n, ij /= i

κi1

(
p
) · · ·κir

(
p
)
, (2.9)
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for every r, 1 ≤ i ≤ n. We have the following formulas for the Newton transformation Pr [5]:

tr(Pr) = crHr, (2.10)

tr(S ◦ Pr) = crHr+1, (2.11)

tr
(
S2 ◦ Pr

)
=
(

n
r + 1

)
(nH1Hr+1 − (n − r − 1)Hr+2), (2.12)

where

cr = (n − r)
(
n
r

)
= (r + 1)

(
n

r + 1

)
. (2.13)

Associated to each Newton transformation Pr , we consider the second-order linear
differential operator Lr : C∞(M) → C∞(M) given by

Lr

(
f
)
= tr

(
Pr ◦ ∇2f

)
. (2.14)

∇2f : χ(M) → χ(M) denotes the self-adjoint linear operator metrically equivalent to the
Hessian of f and is given by

〈
∇2f(X), Y

〉
=
〈∇X

(∇f
)
, Y

〉
, ∀X,Y ∈ χ(M). (2.15)

Let {e1, . . . , en} be a local orthonormal frame on M and observe that

div
(
Pr

(∇f
))

=
n∑

i=1

〈
(∇eiPr)

(∇f
)
, ei

〉
+

n∑

i=1

〈
Pr

(∇ei∇f
)
, ei

〉

=
〈
divPr,∇f

〉
+ Lr

(
f
)
,

(2.16)

where div denotes the divergence operator onM.
Since divPr = 0 (see [10]), as a consequence, from (2.16), one gets that

Lr

(
f
)
= div

(
Pr

(∇f
))
. (2.17)

3. The rth Order and the rth Type of a Hypersurface

As mentioned in the introduction, there is no notion of degree for submanifolds of the
Euclidean space in general. However, Chen could use the induced Riemannian structure
on a submanifold to introduce a pair of well-defined numbers p and q associated with a
submanifold (see [1] for the precise definition). p is a natural number and q ≥ p or +∞. The
pair [p, q] is called the order of the submanifoldM; more precisely, p is the lower order, and q
is the upper order of the submanifold. The submanifold is said to be of finite type if its upper
order is finite, and it is of infinite type if its upper order is +∞ (see [1, 2] for details).
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Consider an isometrically immersed closed orientable hypersurface x : Mn → R
n+1 in

the Euclidean space, with the Gauss map N, and assume that, for a fixed r, 1 ≤ r ≤ n − 1, Lr

is an elliptic differential operator on C∞(M), the ring of all smooth real functions on M.
It is well known that the eigenvalues of −Lr when it is elliptic (see [1], chapter 3, for

properties of an elliptic operator) form a discrete infinite sequence

0 = λLr

0 < λLr

1 < λLr

2 < · · · ↗ ∞. (3.1)

Let V Lr

k
= {f ∈ C∞(M) : Lrf + λLr

k
f = 0} be the eigenspace of −Lr with eigenvalue λLr

k
. Then

V Lr

k
is finite dimensional. Define an inner product (, ) on C∞(M) by

(
f, h

)
=
∫

M

fhdM, (3.2)

where dM is the volume element of M. Then
∑∞

k=0 V
Lr

k
is dense in C∞(M) (in L2− sense). If

we denote by ⊕̂V Lr

k
the completion of

∑
V Lr

k
, we have

C∞(M) = ⊕̂kV
Lr

k
. (3.3)

For each function f ∈ C∞(M), let ft denote the projection of f onto the subspace
V Lr

t (t = 0, 1, 2, . . .). Then we have the following spectral decomposition:

f =
∞∑

t=0

ft
(
in L2 − sence

)
. (3.4)

Because V Lr

0 is 1-dimensional, for any nonconstant function f ∈ C∞(M), there is a positive
integer p ≥ 1 such that fp /= 0 and

f − f0 =
∑

t≥p
ft, (3.5)

where f0 ∈ V Lr

0 is a constant. If there are infinitely many ft’s which are nonzero, we put
q = +∞; otherwise, there is an integer q, q ≥ p, such that fq /= 0 and

f − f0 =
q∑

t=p
ft. (3.6)

Consider the set

TLr

f =
{
t ∈ N : ft /≡ 0

}
. (3.7)

The smallest element of TLr

f is called the lower rth order of f and is denoted by l.o.Lr (f),

and the supremum of TLr

f
is called the upper rth order of f and is denoted by u.o.Lr (f). A
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function f in C∞(M) is said to be of Lr-finite type if TLr

f is a finite set, that is, if its spectral
decomposition contains only finitely many nonzero terms. Otherwise, f is said to be of Lr-
infinite type. f is said to be of Lr-k type if TLr

f
contains exactly k elements.

For an isometrically immersed closed hypersurface x : Mn → R
n+1 in the Euclidean

space R
n+1, we put

x = (x1, . . . , xn+1), (3.8)

where xA is the A-th component of x. For each xA, we have

xA − (xA)0 =
qA∑

t=pA

(xA)t, A = 1, . . . , n + 1. (3.9)

For the isometric immersion x : M → R
n+1, we put

p = inf
A

{
pA

}
, q = sup

A

{
qA

}
. (3.10)

It is easy to see that p and q are independent of the choice of the Euclidean coordinate system
on R

n+1, and p is a positive integer and q is either +∞ or q ≥ p. Thus, p and q are well defined.
Consequently, for each closed hypersurface M in R

n+1 (or, more precisely, for each isometric
immersion x : Mn → R

n+1), we have a pair [p, q] associated with M. We call the pair [p, q]
the order of the hypersurface M.

By using the above notation, we have the following spectral decomposition of x in
vector form:

x = x0 +
q∑

t=p
xt. (3.11)

We define TLr (x) by

TLr
x = {t ∈ N : xt /≡ 0}. (3.12)

The immersion x or the hypersurface M is said to be of Lr-k type if TLr
x contains exactly

k elements. Similarly, we can define the lower rth order and the upper rth order of the
immersion.

The immersion x is said to be of Lr finite type if its upper rth order q is finite, and it is
said to be of Lr infinite type if its upper order is +∞.

The following Lemma states that for an isometrically immersed closed orientable
hypersurface x : Mn → R

n+1, the constant vector x0 in (3.11) is exactly the “center of mass”
ofM in R

n+1 (i.e.,
∫
M xdM/vol(M), where dM is a chosen volume form of M).

Lemma 3.1. Let x : Mn → R
n+1 be an isometric immersion of a closed orientable hypersurface M

into R
n+1. Assume that Lr is elliptic, for some 1 ≤ r ≤ n − 1. Then x0 in (3.11) is the center of mass

of M in R
n+1.



International Journal of Mathematics and Mathematical Sciences 7

Proof. Consider the decomposition

x =
∞∑

t=0

xt. (3.13)

We have Lrxt + λLr

t xt = 0. If t /= 0, then (2.17) and the Divergence Theorem imply that

∫

M

xtdM = − 1

λLr

t

LrxtdM = 0. (3.14)

Since x0 is a constant vector in R
n+1, we obtain from (3.13) and (3.14) that

x0 =
∫

M

xdM

vol(M)
. (3.15)

This shows that x0 is the center of mass ofM.

On the set of all R
n+1-valued functions onMwhich is a real vector space, we define an

inner product on such space by

(v,w) =
∫

M

〈v,w〉dM (3.16)

for any two R
n+1-valued functions v,w on M, where 〈v,w〉(x) denotes the Euclidean inner

product of v(x), w(x) for any x ∈ M. Then we have the following lemma.

Lemma 3.2. For an isometric immersion x : M → R
n+1 of a closed orientable hypersurface M into

R
n+1 the components of the spectral decomposition (3.11) are mutually orthogonal, for example,

(xt, xs) = 0, t /= s. (3.17)

Proof. Since Lr is self-adjoint with respect to the inner product (3.16), we have

λLr

t (xt, xs) = −(Lrxt, xs) = −(xt, Lrxs) = λLr
s (xt, xs). (3.18)

Since λLr

t /=λLr
s , we obtain (3.17).

Before we give our main result and to facilitate the reader, we quote Theorem 3.3 from
[11] and present Theorem 3.4 about Lr-finite-type Euclidean hypersurfaces.

Theorem 3.3 (see [11]). Let x : Mn → R
n+1 be an orientable connected hypersurface immersed

into the Euclidean space, and let Lr be the linearized operator of the (r + 1)-th mean curvature of M,
for some r = 0, . . . , n − 1. Then, one has

Lrx + λx = 0 (3.19)
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for a real constant λ if and only if either λ = 0 and M is r-minimal in R
n+1 (i.e., Hr+1 = 0 on M), or

λ/= 0 and M is an open piece of a round sphere Sn(�) ⊂ R
n+1 of radius � = (cr/‖λ|)(1/(r+2)) centered

at the origin of R
n+1, where cr = (n − r)( n

r ).

Theorem 3.4. There is no compact Euclidean hypersurface of Lr-2 type with constantHr+1, when Lr

is elliptic.

Proof. If M is of Lr-2 type, by using (3.11), the position vector field x of M in R
n+1 has the

following spectral decomposition:

x − x0 = xp + xq, Lrxp + λpxp = 0, Lrxq + λqxq = 0, for some x0 ∈ R
n+1, p, q ∈ N,

(3.20)

so

L2
rx = −(λp + λq

)
Lrx − λpλq(x − x0). (3.21)

From [10], we also have

Lrx = crHr+1N, (3.22)

L2
rx = −cr

(
n

r + 1

)
Hr+1(nH1Hr+1 − (n − r − 1)Hr+2)N. (3.23)

The formula (3.23) holds sinceHr+1 is a nonzero constant, see [10]. Therefore, by using
(3.21), (3.22), and (3.23), we obtain that

−cr
(

n
r + 1

)
Hr+1(nH1Hr+1 − (n − r − 1)Hr+2)N = cr

(
λp + λq

)
Hr+1N − λpλq(x − x0). (3.24)

Since λpλq /= 0, from (3.24), we have x − x0 that is normal toM at every point ofM. So
〈x − x0, x − x0〉 is a positive constant. In this case, M is an open piece of Sn centered at x0, by
Theorem 3.3,M is of Lr-1 type, which is not.

4. The rth Order and the (r + 1)th Mean Curvature

In this section, we will relate the notion of the rth order of a Euclidean hypersurface with the
(r + 1)th mean curvature. In particular, we will obtain some sharp estimates of the (r + 1)th
mean curvature for a closed hypersurface of the Euclidean space in terms of rth order of the
hypersurface when Lr is elliptic. In the following we will state several results from [11, 12]
which guarantee the ellipticity of Lr .

A classical theorem of Hadamard [12] gives three equivalent conditions on a closed
connected hypersurface Mn immersed into the Euclidean space R

n+1 which imply that M is
a convex hypersurface (i.e.,M is embedded in R

n+1 and is the boundary of a convex body).
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Theorem 4.1 (Hadamard Theorem, see [12]). Let x : Mn → R
n+1 be a closed connected hyper-

surface immersed into the Euclidean space. The following assertions are equivalent.

(i) The second fundamental form is definite at every point of M.

(ii) M is orientable, and its Gauss map is a diffeomorphism onto Sn.

(iii) The Gauss-Kronecker curvature never vanishes onM.

Moreover, any of the above conditions implies that M is a convex hypersurface.

Here we observe that the convexity of a hypersurface in R
n+1 is closely related to its

Ricci curvature.

Theorem 4.2 (see [11]). Let x : Mn → R
n+1 be a closed connected hypersurface immersed into the

Euclidean space. The following assertion is equivalent to any of the assertions ((i)–(iii)) in Hadamard
theorem, and therefore it also implies that M is a convex hypersurface

(iv) The Ricci curvature of M is positive everywhere on M.

Corollary 4.3 (see [11]). Let x : Mn → R
n+1 be a closed connected hypersurface isometrically im-

mersed into the Euclidean space. If M has positive Ricci curvature, then each operator Lr on C∞(M)
is elliptic, and each r-th mean curvatures of M is positive.

In [8] by using the concept of order, Chen obtained the following best possible lower
bound of total mean curvature for a closed Euclidean hypersurface.

Theorem 4.4 (see [8]). Let x : M → R
n+1 be an orientable closed connected hypersurface

isometrically immersed into the Euclidean space. Then, one has

∫

M

H2 dM ≥ λp

n
vol(M), (4.1)

where p is the lower order of M, and vol (M) denotes the n-dimensional volume of M. Equality
holds if and only ifM is a round sphere in R

n+1.

Now we establish the corresponding result for the operator Lr (since L0 = Δ, taking
r = 0, we recover Theorem 4.4).

Theorem 4.5. Let x : M → R
n+1 be an orientable closed connected hypersurface isometrically

immersed into the Euclidean space. Assume that Lr is elliptic, for some 1 ≤ r ≤ n − 1. Then, one has

∫

M

H2
r+1 dM ≥ λLr

p

cr

∫

M

Hr dM, (4.2)
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and equality holds if and only ifM is a round sphere in R
n+1. In particular, ifM is embedded in R

n+1,
then

∫

M

H2
r+1 dM ≥ (n + 1)2

(
λLr

1

)2

(cr)2
vol(Ω)2

vol(M)
, (4.3)

where equality holds if and only if M is a round sphere in R
n+1. Here, vol (M) denotes the n-

dimensional volume of M, and Ω is the compact domain in R
n+1 bounded by M, and vol (Ω)

denotes its (n + 1)-dimensional volume of Ω.

Proof. We will follow the techniques introduced by Chen (Theorem 4.4) in our context, we
generalize some properties of Δ and H, respectively, to Lr and Hr+1. Since Lrx = crHr+1N
(see [10]), and

x = x0 +
q∑

t=p
xt, Lrxt + λLr

t xt = 0, (4.4)

by using the inner product on the set of all R
n+1-valued functions on M, defined by (3.16),

we have

(cr)2
∫

M

H2
r+1 dM = (cr)2(Hr+1N,Hr+1N) = (Lrx, Lrx) =

q∑

t=p

(
λLr

t

)2
‖xt‖2. (4.5)

Since, by Lemma 3.1, x0 is the center of mass of M, we have the well-known Minkowski
formula [13] as follows:

∫
(Hr +Hr+1〈x − x0,N〉)dM = 0, r = 0, . . . , n − 1, (4.6)

so we get that

(cr)
∫

M

Hr dM = −(cr)(x − x0,Hr+1N) = −(x − x0, Lrx) =
q∑

t=p
λLr

t ‖xt‖2. (4.7)

Thus, by (4.5) and (4.7), we find that

(cr)2
∫

M

H2
r+1 dM − (cr)λ

Lr
p

∫

M

Hr dM =
q∑

t=p+1

λLr

t

(
λLr

t − λLr
p

)
‖xt‖2 ≥ 0. (4.8)

Therefore, we obtain (4.2). Moreover, equality holds if and only if

Lrx + λLr
p x = 0, (4.9)
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Which, by Theorem 3.3, means that M is a round sphere. If M is embedded in R
n+1, by

formula (15) of [11], we have

λLr

1 ≤ cr

(n + 1)2
vol(M)

vol(Ω)2

∫

M

Hr dM, (4.10)

where vol(M) denotes the n-dimensional volume ofM, andΩ is the compact domain in R
n+1

bounded byM, and vol(Ω) denotes its (n + 1)-dimensional volume of Ω. So (4.3) is obtained
by (4.2) and (4.10) easily.

By applying Theorem 4.2, Corollary 4.3, and Theorem 4.5 to positively Ricci curved
hypersurfaces in R

n+1, we have the following Corollary.

Corollary 4.6. Let x : M → R
n+1 be a closed connected hypersurface of the Euclidean space with

positive Ricci curvature, and let Ω be the convex body in R
n+1 bounded by M. Then for every r =

1, . . . , n − 1, it follows that

∫

M

H2
r+1 dM ≥ λLr

p

cr

∫

M

Hr dM,

∫

M

H2
r+1 dM ≥

(
λLr

1

)2

(cr)2
(n + 1)2 vol(Ω)2

vol(M)
,

(4.11)

where equalities hold if and only if M is a round sphere in R
n+1. Here, vol (M) denotes the n-

dimensional volume of M, and vol (Ω) denotes its (n + 1)-dimensional volume of Ω.

By using the concept of order Chen in [9], we obtained the following best possible
upper bound of total mean curvature for closed Euclidean hypersurface.

Theorem 4.7 (see [9]). Let x : M → R
n+1 be an orientable closed connected isometrically immersed

hypersurface into the Euclidean space. Then, one has

∫

M

H2 dM ≤ λq

n
vol(M), (4.12)

where q is the upper order ofM, and vol (M) denotes the n-dimensional volume ofM. Equality holds
if and only ifM is a round sphere in R

n+1.

Now we establish the corresponding result for the operator Lr (since L0 = Δ, taking
r = 0, we recover Theorem 4.7).

Theorem 4.8. Let x : M → R
n+1 be an orientable closed connected isometrically immersed hyper-

surface of the Euclidean space. Assume that Lr is elliptic on M, for some 1 ≤ r ≤ n − 1. Then, one
has

∫

M

H2
r+1 dM ≤ λLr

q

cr

∫

M

Hr dM, (4.13)

and equality holds if and only ifM is a round sphere in R
n+1.
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Proof. We will follow the techniques introduced by Chen (Theorem 4.7) in our context, we
generalize some properties of Δ and H, respectively, to Lr and Hr+1. Let x : Mn → R

n+1 be
an orientable closed connected hypersurface in the Euclidean space with Gauss mapN. From
[10], we have

Lr(Hr+1N) = −
(

n
r + 1

)
Hr+1∇Hr+1 − 2(S ◦ Pr)(∇Hr+1) +

(
(LrHr+1)N −Hr+1tr

(
S2 ◦ Pr

)
N
)
.

(4.14)

Formula (4.14) implies that

〈Lr(Hr+1N),Hr+1N〉 = Hr+1LrHr+1 −H2
r+1tr

(
S2 ◦ Pr

)
. (4.15)

Furthermore, from (4.4), (4.5), and (4.7), we have

c2r

∫

M

H2
r+1 dM =

q∑

t=p

(
λLr

t

)2
‖xt‖2,

c2r

∫

M

〈Lr(Hr+1N),Hr+1N〉dM = −
q∑

t=p

(
λLr

t

)3
‖xt‖2,

cr

∫

M

Hr dM =
q∑

t=p
λLr

t ‖xt‖2.

(4.16)

Assume that q ≤ ∞. We put

Λ = −c2r
∫

M

〈Lr(Hr+1N),Hr+1N〉dM − c2r

(
λLr
p + λLr

q

)∫

M

H2
r+1 dM

+ crλ
Lr
p λLr

q

∫

M

Hr dM.

(4.17)

Then we have

Λ =
q−1∑

t=p+1

(
λLr

t − λLr
p

)(
λLr

t − λLr
q

)
‖xt‖2 ≤ 0, (4.18)

where equality holds if and only ifM is either of Lr-1 type or of Lr-2 type.
Combining (4.15), (4.17), and (4.18), we find that

− c2r

∫

M

Hr+1LrHr+1 dM + c2r

∫

M

H2
r+1tr

(
S2 ◦ Pr

)
dM − c2r

(
λLr
p + λLr

q

)∫

M

H2
r+1 dM

+ crλ
Lr
p λLr

q

∫

M

Hr dM ≤ 0.

(4.19)
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By Proposition 3.1 of [14], we have the following equation:

−
∫

M

Hr+1LrHr+1 dM =
∫

M

〈Pr∇Hr+1,∇Hr+1〉dM. (4.20)

Since Lr is elliptic, it follows from (2.16) that the Newton transformation Pr is positive
definite, so (4.20) implies that − ∫

M Hr+1LrHr+1 dM ≥ 0. On the other hand, by using (2.12),
we have

H2
r+1tr

(
S2 ◦ Pr

)
=

H4
r+1

Hr
+

{
n( n

r+1 )H1H
3
r+1Hr − (n − r − 1)( n

r+1 )Hr+2H
2
r+1Hr −H4

r+1

}

Hr
. (4.21)

We suppose that B = {n( n
r+1 )H1H

3
r+1Hr − (n − r − 1)n( n

r+1 )Hr+2H
2
r+1Hr −H4

r+1}/Hr , and we
show that B is positive.

For every 1 ≤ j ≤ n, one has the following inequalities (see, for instance, [15, Theorems
51 and 144]):

Hj−1Hj+1 ≤ H2
j . (4.22)

Since each Hj > 0 for j = 1, . . . , r, this is equivalent to

Hr+1

Hr
≤ Hr

Hr−1
≤ · · · H2

H1
≤ H1. (4.23)

And these inequalities imply that

H1Hr ≥ Hr+1. (4.24)

So by using (4.22) and (4.24), we get that B is positive.
Combining (4.19), (4.20), and (4.21) and Schwartz’s inequality, we get that

0 ≥ c2r

∫

M

〈Pr∇Hr+1,∇Hr+1〉dM + c3r

∫

M

H4
r+1

Hr dM
+ c3r

∫

M

B dM

− c2r

(
λLr
p + λLr

q

)∫

M

H2
r+1 dM + crλ

Lr
p λLr

q

∫

M

Hr dM

≥ c2r

∫

M

〈Pr∇Hr+1,∇Hr+1〉dM +
c3r
(∫

M H2
r+1 dM

)2
∫
M Hr dM

+ c3r

∫

M

B dM − c2r

(
λLr
p + λLr

q

)∫

M

H2
r+1 dM + crλ

Lr
p λLr

q

∫

M

Hr dM.

(4.25)
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Hence, we obtain that

0 ≥ cr

∫

M

Hr dM

∫

M

〈Pr∇Hr+1,∇Hr+1〉dM +
∫

M

Hr dM

∫

M

BdM

+
(
cr

∫

M

H2
r+1 dM − λLr

p

∫

M

Hr dM

)(
cr

∫

M

H2
r+1 dM − λLr

q

∫

M

Hr dM

) (4.26)

By inequalities (4.2) and (4.26), we obtain (4.13). If in (4.13) the equality holds, then all the
inequalities in (4.17) through (4.26) have to be equalities. Thus, we find that M is either of
Lr-1 type or of Lr-2 type, and Hr+1 is constant. So, by Theorems 3.3 and 3.4, M is a round
sphere.

By applying Theorem 4.2, Corollary 4.3, and Theorem 4.8 to positively Ricci curved
hypersurfaces in R

n+1, we have the following Corollary.

Corollary 4.9. Let x : M → R
n+1 be a closed connected hypersurface of the Euclidean space with

positive Ricci curvature. Then for every r = 1, . . . , n − 1 the following inequality holds:

∫

M

H2
r+1 dM ≤ λLr

q

cr

∫

M

Hr dM, (4.27)

where equality holds if and only if M is a round sphere in R
n+1.

An immediate consequence of Corollaries 4.6 and 4.9 is the following.

Corollary 4.10. Let x : M → R
n+1 be a closed connected hypersurface of the Euclidean space R

n+1

with positive Ricci curvature. IfHr+1 is constant, then

λLr
p ≤ crH

2
r+1

Hr
≤ λLr

q , (4.28)

and equality holds if and only ifM is a round sphere in R
n+1.
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