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The boundary value problem for the Laplace equation outside several cracks in a plane is studied.
The jump of the solution of the Laplace equation and the boundary condition containing the jump
of its normal derivative are specified on the cracks. The problem has unique classical solution
under certain conditions. The new integral representation for the unique solution of this problem
is obtained. The problem is reduced to the uniquely solvable Fredholm equation of the second
kind and index zero. The integral representation and integral equation are essentially simpler than
those derived for this problem earlier. The singularities at the ends of the cracks are investigated.

1. Introduction

The Dirichlet and Neumann problems outside cracks in a plane for Laplace and Helmholtz
equations were treated in [1–10]. The jump problem for the Laplace equation outside cracks
in a plane has been studied in [11]. Two boundary conditions of jump type, namely, the jump
of the unknown function and the jump of its normal derivative were specified at the cracks in
[11]. The so-called modified jump problem has been studied in [12]. In this problem the jump
of the normal derivative of the unknown function was not given exactly, but was expressed
through limit values of this function on the cracks. The problem in [12] was reduced to the
uniquely solvable Fredholm integral equation and the integral representation for a solution
of the problem was obtained. However, both integral representation and integral equation
derived in [12] were rather complicated. In the present paper we reduce the problem to
the simpler integral equation and derive new integral representation for the solution of the
problem. The explicit formulas for singularities of the solution gradient at the ends of cracks
are presented.
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2. Formulation of the Problem

By a simple open curve we mean a nonclosed smooth arc of finite length without self-inter-
sections [10]. In the plane x = (x1, x2) ∈ R2 we consider simple open curves Γ1, . . . ,ΓN ∈ C2,λ,
λ ∈ (0, 1], so that they do not have common points. We put Γ =

⋃N
n=1 Γn. We assume that each

curve Γn is parametrized by the are length s:

Γn = {x : x = x(s) = (x1(s), x2(s)), s ∈ [an, bn]}, n = 1, . . . ,N, (2.1)

so that a1 < b1 < · · · < aN < bN . Therefore points x ∈ Γ and values of the parameter s are in
one-to-one correspondence. Below the set of the intervals on the Os axis

⋃N
n=1[an, bn] will be

denoted by Γ also.
The tangent vector to Γ at the point x(s) we denote by τx = (cosα(s), sinα(s)), where

cosα(s) = x′
1(s), sinα(s) = x′

2(s). Let nx = (sinα(s),− cosα(s)) be a normal vector to Γ at x(s).
The direction of nx is chosen such that it will coincide with the direction of τx if nx is rotated
anticlockwise through an angle of π/2. We consider Γ as a set of cracks. The side of Γ which
is on the left when the parameter s increases will be denoted by Γ+ and the opposite side will
be denoted by Γ−.

We say that the function u(x) belongs to the smoothness class K if the following
conditions are satisfied:

(1) u(x) ∈ C0(R2 \ Γ) ∩ C2(R2 \ Γ) and u(x) is continuous at the ends of Γ;

(2) ∇u ∈ C0(R2 \ Γ \ X), where X is a point set, consisting of the endpoints of Γ :
X =

⋃N
n=1(x(an) ∪ x(bn));

(3) in the neighbourhood of any point x(d) ∈ X, for some constants C > 0 and ε > −1,
the inequality

|∇u| < C|x − x(d)|ε (2.2)

holds, where x → x(d) and d = an or d = bn for n = 1, . . . ,N.

Remark 2.1. In the definition of the class K we consider Γ as a set of cracks in a plane.
In particular, the notation C0(R2 \ Γ) denotes a class of functions, which are continuously
extended on Γ from the left and right, but their values on Γ from the left and right can be
different, so that the functions may have a jump across Γ.

Let us formulate the jump problem for the harmonic functions in R2 \ Γ.

Problem U

To find a function u(x) of class K, so that u(x) obeys the Laplace equation in R2 \ Γ

Δu = 0, Δ = ∂2x1
+ ∂2x2

, (2.3)
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satisfies the jump boundary conditions

u(x)|x(s)∈Γ+ − u(x)|x(s)∈Γ− = f1(s), (2.4a)

∂u

∂n

∣
∣
∣
∣
x(s)∈Γ+

− ∂u

∂n

∣
∣
∣
∣
x(s)∈Γ−

= β(s)u(x)
∣
∣
x(s)∈Γ+ + f2(s),

β(s) ∈ C0,λ(Γ), λ ∈ (0, 1]; β(s)
∣
∣
s∈Γ /≡ 0, β(s)

∣
∣
s∈Γ ≤ 0,

(2.4b)

and satisfies the following conditions at infinity:

|u(x)| < C1, |∇u(x)| < C2|x|−2, (2.5)

where C1, C2 are some constants and |x| =
√
x2
1 + x2

2 → ∞. Functions f1(s), f2(s) are given
on Γ.

All conditions of the problemmust be fulfiled in a classical sense. The case β(s) ≡ 0 has
been studied in [11]. Gradient inequality in (2.5) is not necessary and follows from estimates
for harmonic functions. We write this inequality for convenience only.

The problem U has been formulated in [12]. The goal of the present paper is to obtain
new integral representation for the solution of the problem U and to reduce problem U to the
new integral equation.

Conditions (2.2) at the ends of Γ in the formulation of the class K ensure the absence
of point sources at the ends of Γ. If β(s) ≡ f1(s) ≡ f2(s) ≡ 0 on γ ⊂ Γ, then (2.3) holds on γ and
u(x) is analytic on γ .

Remark 2.2. Instead of the boundary condition (2.4b) we may consider another boundary
condition:

∂u

∂n

∣
∣
∣
∣
x(s)∈Γ+

− ∂u

∂n

∣
∣
∣
∣
x(s)∈Γ−

= β(s)u(x)
∣
∣
x(s)∈Γ− + f0(s),

β(s) ∈ C0,λ(Γ), λ ∈ (0, 1]; β(s)
∣
∣
s∈Γ /≡ 0, β(s)

∣
∣
s∈Γ ≤ 0.

(2.6)

However, this boundary condition can be easily reduced to (2.4b). Indeed, we substitute
u(x)|x(s)∈Γ− from (2.4a) to (2.6), then we arrive at (2.4b), where

f2(s) = f0(s) − β(s)f1(s). (2.7)

Theorem 2.3. Problem U has at most one solution.
By

∫

Γ · · · dσ one means

N∑

n=1

∫bn

an

· · · dσ. (2.8)

Nowwe prove the theorem. The limit values of functions on Γ+ and Γ− will be denoted
by the superscripts “+” and “−”, respectively.
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Let u0(x) be a solution of the homogeneous problem U. We will prove that u0(x) ≡ 0.
To prove this with the help of energy equalities for harmonic functions [13], we envelope
open curves by closed contours, tend contours to the curves and use the smoothness of the
solution of the problem U. In this way we obtain

‖∇u0‖2L2(Cr\Γ) =
∫

Γ
u+
0

(
∂u0

∂nx

)+

ds −
∫

Γ
u−
0

(
∂u0

∂nx

)−
ds +

∫2π

0
u0

∂u0

∂r
r dϕ

=
∫

Γ

{
(
u+
0 − u−

0

)
(
∂u0

∂nx

)−
+ u+

0

[(
∂u0

∂nx

)+

−
(
∂u0

∂nx

)−]}
ds +

∫2π

0
u0

∂u0

∂r
r dϕ,

(2.9)

where Cr is the circle of the large radius r with the center in the origin, and ϕ is a polar angle.
We suppose that Γ ⊂ Cr .

Since u0(x) satisfies zero boundary conditions of the homogeneous problemU, we get:

‖∇u0‖2L2(Cr\Γ) = −
∫

Γ

∣
∣β(s)

∣
∣
∣
∣u+

0 (x(s))
∣
∣2ds +

∫2π

0
u0

∂u0

∂r
r dϕ. (2.10)

Here we took into account that β(s) ≤ 0 for any s ∈ Γ. Putting r → ∞, we have

‖∇u0‖2L2(R2\Γ) = lim
r→∞

‖∇u0‖2L2(Cr\Γ) = −
∫

Γ

∣
∣β(s)

∣
∣
∣
∣u+

0 (x(s))
∣
∣2ds (2.11)

because

lim
r→∞

∫2π

0
u0

∂u0

∂r
r dϕ = 0, (2.12)

according to conditions at infinity (2.5). It follows from (2.11) that ‖∇u0‖2L2(R2\Γ) = 0 and,
therefore u0(x) ≡ const. Since β(s) is continuous on Γ and β(s)/≡ 0, there exists s0 ∈ Γ, so that
β(s0)/= 0. Hence, β(s)/= 0 in the neighbourhood of s0 on Γ. Thanks to (2.11), u+

0 (x(s0)) = 0.
Consequently, const = 0 and u0(x) ≡ 0 in R2 (we used the smoothness of the function u0(x)
ensured by the class K). Now the statement of the theorem follows from the linearity of the
problem U.

3. The Solution of the Problem

To construct a solution of the problem Uwe impose additional assumptions on the functions
f1(s), f2(s) in the boundary conditions (2.4a) and (2.4b):

f1(s) ∈ C1,λ(Γ), f2(s) ∈ C0,λ(Γ), λ ∈ (0, 1]; (3.1a)

f1(an) = f1(bn) = 0, n = 1, . . . ,N. (3.1b)
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The solution of the problem U can be constructed in the form of a sum of a single layer
potential, an angular potential [4, 14] and a constant. Set

f ′
1(σ) =

d

dσ
f1(σ) (3.2)

and consider a function

u
[
μ
]
(x) = v

[
f ′
1

]
(x) +w

[
μ
]
(x) +

∫

Γ
μ(σ)dσ, (3.3)

where

w
[
μ
]
(x) = − 1

2π

∫

Γ
θ
[
μ
]
(σ) ln

∣
∣x − y(σ)

∣
∣dσ (3.4)

is a single layer potential for (2.3), and

v
[
f ′
1

]
(x) = − 1

2π

∫

Γ
f ′
1(σ)V (x, σ)dσ (3.5)

is the angular potential [4, 14] for (2.3),

θ
[
μ
]
(σ) = μ(σ) −

∫

Γ μ(ξ)dξ∫

Γ 1dξ
. (3.6)

We will look for the unknown density μ(s) in the Hölder space C0,ω(Γ) with some ω ∈ (0, 1].
The kernel V (x, σ) is defined (up to indeterminacy 2πm, m = ±1,±2, . . .) by the formulae

cosV (x, σ) =
x1 − y1(σ)
∣
∣x − y(σ)

∣
∣
, sinV (x, σ) =

x2 − y2(σ)
∣
∣x − y(σ)

∣
∣
, (3.7)

where

y(σ) =
(
y1(σ), y2(σ)

) ∈ Γ,
∣
∣x − y(σ)

∣
∣ =

√
(
x1 − y1(σ)

)2 +
(
x2 − y2(σ)

)2
. (3.8)

One can see that V (x, σ) is the angle between the vector (
−−−−−−−−→
x − y(σ)) and the direction of the

Ox1 axis. More precisely, V (x, σ) is a many-valued harmonic function of x connected with
ln |x−y(σ)| by the Cauchy-Riemann relations. Below by V (x, σ)we denote an arbitrary fixed
branch of this function, which varies continuously with σ varying along each curve Γn (n =
1, . . . ,N) for given fixed x /∈ Γ. Under this definition of V (x, σ), the potential v[f ′

1](x) is
a multivalued function. In order that the potential v[f ′

1](x) be single-valued, the following
additional conditions [10] must hold:

∫bn

an

f ′
1(σ)dσ = f1(bn) − f(an) = 0, n = 1, . . . ,N. (3.9)
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Clearly, these conditions are satisfied due to our assumptions (3.1b). Integrating v[f ′
1](x) by

parts and using (3.1b)we express the angular potential in terms of a double-layer potential:

v
[
f ′
1

]
(x) =

1
2π

∫

Γ
f1(σ)

∂

∂ny
ln
∣
∣x − y(σ)

∣
∣dσ. (3.10)

Consequently, the angular potential v[f ′
1](x) satisfies (2.3) outside Γ and conditions at infinity

(2.5). The single-layer potential w[μ](x) satisfies conditions (2.5).
It follows from properties of single-layer and angular potentials [4, 13] that the

function (3.3) belongs to the class K and obeys (2.3). Besides, function (3.3) satisfies
conditions (2.5) at infinity. Hence, the function (3.3) satisfies all conditions of the problem
U except for the boundary conditions (2.4a) and (2.4b). To satisfy the boundary conditions
we, at first, derive the jump formulas for u(x) and its normal derivative on Γ using limit
properties of single layer potential and angular potential. According to [4], normal derivative
of the angular potential v[f ′

1](x) is continuous across Γ. The single-layer potential w[μ](x)
is continuous across Γ in our assumptions. On the basis of the jump relations on Γ for the
angular potential and for the normal derivative of the single-layer potential, we obtain [4]

u
[
μ
]
(x)

∣
∣
x(s)∈Γ+n − u

[
μ
]
(x)

∣
∣
x(s)∈Γ−n = v[f ′

1](x)
∣
∣
x(s)∈Γ+n − v[f ′

1](x)
∣
∣
x(s)∈Γ−n

=
∫s

an

(
d

dσ
f1(σ)

)

dσ = f1(s), n = 1, . . . ,N,
(3.11)

∂u
[
μ
]
(x)

∂nx

∣
∣
∣
∣
∣
x(s)∈Γ+

− ∂u
[
μ
]
(x)

∂nx

∣
∣
∣
∣
∣
x(s)∈Γ−

=
∂

∂nx
w
[
μ
]
(x)

∣
∣
∣
∣
x(s)∈Γ+

− ∂

∂nx
w
[
μ
]
(x)

∣
∣
∣
∣
x(s)∈Γ−

= θ
[
μ
]
(s),

(3.12)

where conditions (3.1b) for f1(s) have been applied. It follows from (3.11) that the function
(3.3) satisfies the boundary condition (2.4a). Substituting (3.3) in (2.4b) and using (3.12) and
limit formulas for potentials [4], we obtain the integral equation for the function μ(s) on Γ

μ(s) + β(s)
1
2π

∫

Γ
θ
[
μ
]
(σ) ln

∣
∣x(s) − y(σ)

∣
∣dσ

−
(

β(s) +
1

∫

Γ 1dξ

)∫

Γ
μ(σ)dσ = F(s), s ∈ Γ,

(3.13)

where

F(s) = f2(s) + β(s)

[
1
2
f1(s) +

1
2π

∫

Γ
f1(σ)

∂ ln
∣
∣x(s) − y(σ)

∣
∣

∂ny
dσ

]

, (3.14)

and conditions (3.1b) have been used. The term in the square brackets is the limit value of a
double layer potential (3.10) on Γ+. The last term in square brackets is the direct value of the
double layer potential (3.10) on Γ. This term belongs to C0,λ(Γ) in s [see Lemma 1 in [5] and



International Journal of Mathematics and Mathematical Sciences 7

Lemma 2 in [4]] if conditions (3.1a) hold. Taking into account conditions (3.1a) we observe
that F(s) ∈ C0,λ(Γ). The kernel of the integral term in (3.13) has logarithmic singularity if
s = σ. It follows from [Lemma 2 in [15]] that the integral operator in (3.13):

Aμ =
1
2π

∫

Γ
θ
[
μ
]
(σ)β(s) ln

∣
∣x(s) − y(σ)

∣
∣dσ (3.15)

is a compact operator mapping C0(Γ) into itself. Moreover, this integral operator maps
C0(Γ) into C0,ω(Γ) with ω = min{λ, 1/4}. Hence if μ(s) is a solution of (3.13) in C0(Γ),
then proceeding from identity (3.13) for μ(s) we observe that μ(s) automatically belongs
to C0,ω(Γ), where ω = min{λ, 1/4}. Consequently, if μ(s) ∈ C0(Γ) is a solution of (3.13), then
according to properties of potentials [4, 11, 13] the function (3.3) belongs to the class K and
satisfies all conditions of the problem U.

We arrive at the following lemma.

Lemma 3.1. (1) If F(s) ∈ C0,λ(Γ), λ ∈ (0, 1], then any solution of (3.13) in C0(Γ) automatically
belongs to C0,ω(Γ) with ω = min{λ, 1/4}.

(2) Let conditions (3.1a) and (3.1b) hold. If μ(s) is a solution of (3.13) in C0(Γ), where F(s)
is given by (3.14), then the function (3.3) is a solution of the problem U.

Remark 3.2. Notice that in [12] the integral representation for the solution to the problem U
has been obtained in the form

u
[
μ
]
(x) = v

[
f ′
1

]
(x)

− 1
2π

∫

Γ
μ(σ) ln

∣
∣x − y(σ)

∣
∣dσ +

(1/2π)
∫

Γ μ(σ)
∫

Γ β(s) ln
∣
∣x(s) − y(σ)

∣
∣dsdσ

∫
Γ β(s)ds

−
∫

Γ

(
β(s)

[
(1/2)f1(s) + (1/2π)

∫

Γ f1(σ)
((
∂/∂ny

)
ln
∣
∣x(s) − y(σ)

∣
∣dσ

)]
+ f2(s)

)
ds

∫
Γ β(s)ds

.

(3.16)

This function a priori does not satisfy conditions at infinity (2.5) for an arbitrary μ unlike the
function (3.3). However being substituted into the boundary condition (2.4b) this integral
representation for a solution leads to such an integral equation for the unknown function μ
(see [12]) that this integral equation satisfies two important properties. First, any solution
μ of the integral equation in [12] falls in the class of functions that ensure satisfaction of
conditions at infinity for the solution of the boundary value problem. Second, the integral
equation in [12] is uniquely solvable. In fact, the integral representation for a solution of
the problem U has been taken in [12] in the above form in order to obtaining integral
equation satisfying two aforementioned properties (see details and proofs in [12]). However,
the integral representation for a solution of the problem U given by (3.3) is much simpler
than the integral representation for a solution of the problemU suggested in [12] and written
out above. Finding simple integral representation for a solution is very important for further
numerical treatment of the problem by the boundary integral equation method.
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Below we look for a solution of (3.13) in C0(Γ) owing to Lemma 3.1. The operator

Bμ =

(

β(s) +
1

∫

Γ 1dξ

)∫

Γ
μ(σ)dσ (3.17)

is finite dimensional operator mapping C0(Γ) into itself, and so it is compact [16].
Consequently, the integral operator (A − B)μ in (3.13) is a compact operator mapping C0(Γ)
into itself. Therefore (3.13) is a Fredholm integral equation of the second kind and index zero
in C0(Γ), that is, (3.13) is subject to the Fredholm alternative in C0(Γ) (see [16, 17]).

Let us show that the homogeneous equation (3.13) has only a trivial solution in C0(Γ).
Let μ0(s) be a solution of the homogeneous equation (3.13). According to lemma, μ0(s)
automatically belongs to C0,ω(Γ). It follows from point 2 of Lemma 3.1 that

u
[
μ0
]
(x) = w

[
μ0
]
(x) +

∫

Γ
μ0(σ)dσ

= − 1
2π

∫

Γ
θ
[
μ0
]
(s) ln

∣
∣x(s) − y(σ)

∣
∣dσ +

∫

Γ
μ0(σ)dσ

(3.18)

is a solution of the homogeneous problem U. Taking into account Theorem 2.3, we observe
that

u
[
μ0
]
(x) ≡ 0, x ∈ R2 \ Γ, (3.19)

since the homogeneous problem U has only a trivial solution. Using the jump relations for
the normal derivative of the single layer potential on Γ, we obtain

∂u
[
μ0](x)
∂nx

∣
∣
∣
∣
∣
x∈Γ+

− ∂u
[
μ0](x)
∂nx

∣
∣
∣
∣
∣
x∈Γ−

= θ
[
μ0
]
(s)

= μ0(s) −
∫

Γ μ
0(ξ)dξ

∫
Γ 1dξ

≡ 0, s ∈ Γ.

(3.20)

Consequenly,

μ0(s) =

∫

Γ μ
0(ξ)dξ

∫

Γ 1dξ
, s ∈ Γ. (3.21)

Substituting (3.18) into (3.19)we have

∫

Γ
μ0(ξ)dξ = 0. (3.22)
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It follows from (3.21) that

μ0(s) ≡ 0, s ∈ Γ. (3.23)

Thus, we have proved that the homogeneous equation (3.13) has only a trivial solution.
According to Fredholm alternative, the inhomogeneous equation (3.13) is uniquely solvable
in C0(Γ) for any F(s) ∈ C0(Γ).

Theorem 3.3. Equation (3.13) has unique solution μ(s) ∈ C0(Γ) for any F(s) ∈ C0(Γ). In addition,
if F(s) ∈ C0,λ(Γ), λ ∈ (0, 1], then the unique solution of (3.13) in C0(Γ) belongs to C0,ω(Γ) with
ω = min{λ, 1/4}.

The latter statement of Theorem 3.3 follows from Lemma 3.1. As aforementioned, if
conditions (3.1a) and (3.1b) hold, then F(s) ∈ C0,λ(Γ), λ ∈ (0, 1]. Using Lemma 3.1 we obtain
solvability of the problem U.

Theorem 3.4. If conditions (3.1a) and (3.1b) hold, then the solution of the problem U exists and is
given by (3.3), where μ(s) ∈ C0,ω(Γ) (ω = min{λ, 1/4}) is a solution of (3.13) in C0(Γ) ensured by
Theorem 3.3.

It follows from [Theorem 5 in [4]] that the condition (2.2) for |∇u| is fulfied for any ε ∈
(0, 1), that is, for any small positive ε. In other words, ∇u(x) does not have power singularity
at the ends of Γ. It will be shown in next section that ∇u has logarithmic singularity or, in
certain cases, does not have singularity at all. Explicit formulas for singularities of ∇u at the
ends of Γ will be presented and discussed in the next section.

4. Singularities of a Gradient of a Solution at the Ends of Γ

In this section by u(x) we denote the solution of the problem U ensured by the Theorem 3.4.
According to (2.2), ∇u may be unbounded at the ends of Γ. The explicit expressions for
singularities of∇u can be obtained from the formulas for singularities of derivatives of single
layer and angular potentials near edges [4, 5]. Let x(d) be one of the end-points of Γ. In the
neighbourhood of x(d)we introduce the system of polar coordinates

x1 = x1(d) + |x − x(d)| cosϕ, x2 = x2(d) + |x − x(d)| sinϕ. (4.1)

Wewill assume that ϕ ∈ (α(d), α(d)+2π) if d = an and ϕ ∈ (α(d)−π, α(d)+π) if d = bn
for n = 1, . . . ,N. Recall that α(s) is the angle between the tangent vector τx to Γ at the point
x(s) and the direction of the Ox1 axis. Hence, α(d) = α(an + 0) if d = an and α(d) = α(bn − 0)
if d = bn. Consequently the angle ϕ varies continuously in the neighbourhood of the point
x(d), cut along the contour Γ.

Recall that X is a set of end-points of Γ. Computing singularities of ∇u in the same
way as in [4, 5]we arrive to the following assertion.
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Theorem 4.1. Let x → x(d) ∈ X. Then in the neigbourhood of the point x(d) the derivatives of the
solution of the problem U have the following behaviour:

∂

∂x1
u(x) = −(−1)m f ′

1(d)
2π

[− sinα(d) ln|x − x(d)| + ϕ cosα(d)
]

− (−1)mθ
[
μ
]
(d)

2π
[
cosα(d) ln|x − x(d)| + ϕ sinα(d)

]
+O(1),

∂

∂x2
u(x) = −(−1)m f ′

1(d)
2π

[
cosα(d) ln|x − x(d)| + ϕ sinα(d)

]

+ (−1)mθ
[
μ
]
(d)

2π
[− sinα(d) ln|x − x(d)| + ϕ cosα(d)

]
+O(1),

(4.2)

wherem = 0 if d = an and m = 1 if d = bn for n = 1, . . . ,N.

Remark 4.2. By O(1) we denote functions which are continuous at the point x(d). Further-
more, the functions denoted by O(1) are continuous in the neighbourhood of the point x(d),
cut along the contour Γ.

According to Theorem 4.1, ∇u has logarithmic singularities at the ends of cracks Γ in
general. However, if f ′

1(d) = θ[μ](d) = 0 at the end x(d) ∈ X, then there is no any singularity
of ∇u at the end x(d). Moreover, ∇u is continuous at this end. If f ′

1(d)/= 0 or θ[μ](d)/= 0, then
∇u has a logarithmic singularity at x(d) ∈ X.

Let us compare our results with singularities of a solution gradient in the Dirichlet and
Neumann problems at the exterior of cracks in a plane. In these problems either Dirichlet or
Neumann boundary condition has been specified on the cracks instead of (2.4a) and (2.4b).
It was shown in [4, 5] that the solution gradient in the Dirichlet and Neumann problems in
general tends at infinity as O(|x − x(d)|−1/2)when x → x(d) ∈ X. According to Theorem 4.1,
the edge singularities of ∇u in the jump problem are generally logarithmic. Thus, the jump
problem and Dirichlet (or Neumann) problem have as a rule different orders of singularities
at the ends of cracks, so that the singularities in the jump problem are weaker. We can
conclude that the behaviour of the solution in the jump problem is essentially different from
behaviour of the solution in the Dirichlet (or Neumann) problem. The discussed properties
of singularities may be effectively used to select adequate model describing cracked media
or media with membranes.

5. Comparison of Results and Conclusions

Let us discuss obtained results and compare themwith previous treatments of the problemU.
Notice that the case β ≡ 0 in (2.4b) is excluded from consideration. This case has been

studied in [11]. It is curious that the problem U is not uniquely solvable in this case under
usual conditions at infinity. There exists solvability condition, and if it holds, then the problem
U has infinitely many solutions that differ by additive constant as in Neumann problem.
From the other hand this case admits explicit solution, so that solving of integral equation is
not needed.

For the first time the problem U with β /≡ 0 has been treated in [12]. To reduce the
problem to the uniquely solvable integral equation, very special and unusual technique has
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been applied. The solution was looked in the form of single-layer and angular potentials
plus some functionals depending on density μ in a single-layer potential and on boundary
data. The solution was looked for in the form that a priori does not satisfy conditions at
infinity. However, being substituted into the boundary condition, the solution in the form of
potentials and additional functionals produces such an integral equation, that any solution μ of
the integral equation automatically falls in the class of functions that ensure satisfaction of conditions
at infinity for the solution of the boundary value problem. More precisely, additional functionals
of μ and of boundary data in the form of a solution have been chosen a priori in such a
way to obtain this special property of solutions of the integral equation. Moreover, these
additional functionals of μ and of boundary data have been chosen in such a way to obtain
uniquely solvable integral equation at the same time. The only problem with approach in
[12]was concluded in the fact that the final expression for the solution of the boundary value
problem appeared to be rather complicated. In the present paper we derived another integral
representation for a solution of problem U and we have reduced problem U to another uniquely
solvable integral equation. The idea of new approach is the following. We a priori choose such a
representation for a solution of the problem U in the form of potentials that this chosen form
satisfy two properties. First, it automatically satisfies conditions at infinity for any density μ
in the single-layer potential. Second, it reduces the problem to the uniquely solvable integral
equation. It should be stressed that both integral equation and integral representation for
a solution obtained in the present paper are completely different from those obtained in
[12] and are essentially simpler. Finding simple integral representation for a solution and
finding simple uniquely solvable integral equation are very important for further numerical
treatment of the problem by the boundary integral equation method.
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