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Making use of a linear operator, which is defined by the Hadamard product, we introduce and
study a subclass Y .(A, B;p, A, a) of the class A*(p). In this paper, we obtain the coefficient
inequality, distortion theorem, radius of convexity and starlikeness, neighborhood property,
modified convolution properties of this class. Furthermore, an application of fractional calculus
operator is given. The results are presented here would provide extensions of some earlier works.
Several new results are also obtained.

1. Introduction

Let A*(p) denote the class of functions
f(2) =2 = D |arp|Z? (peN={1,2,...}) (1.1)
k=1

which are analytic and p-valent in the open unit disc U = {z : |z| < 1} on the complex plane
C.

We denote by S;‘,(A, B) and K, (A, B) (-1 < B < A <1) the subclass of p-valent starlike
functions and the subclass of p-valent convex functions, respectively, that is, (see for details

(1,2])

zf'(z) 1+ Az
pfz) “1+Bz

S;‘,(A,B):{f(z)eA(p): (zeU; —1§B<A§1)},
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zf”(z) 1+ Az
= -1 < .
K,(A,B) {f(z)GA(p) pf(z)<1+Bz (zel; 1_B<A§1)}
(1.2)
A function f € A*(p) is said to be analytic starlike of order ¢ if it satisfies
zf'(z)
Re > 1.3
{ pf(z) } : (13)
for some ¢ (0 <¢ < 1) and forall z € U.
Further, a function f € A*(p) is said to be analytic convex of order ¢ if it satisfies
Re {— 2 } ¢ (1.4)
Popfz)

for some ¢(0 < ¢ < 1) and for all z € U.
For f(z) = 2/ + 3% axpz"? and g(z) = z¥ + 37 bxspz"*?, the Hadamard product
(or convolution) is defined by

(fxg)(z)=2"+ Zak+pbk+pz P = (g*f)(2). (1.5)

The linear operator L, (a, c) is defined as follows (see Saitoh [3]):
Ly(a,c)f(z) =gp(a,c;z)* f(z) (f(z) € A(p)), (1.6)
and ¢, (a, c; z) is defined by

(a)x Zk+p

)k (aeR c\zy z5:=1{0,-1,-2,...}), (1.7)

¢p(a, cz)—z”+z

where (v), is the pochharmmer symbol defined (in terms of the Gamma function) by

(1.8)

(v)nzl"(v+n):{1r n=0,

I'(v) viv+1l)---(v+n-1), ne N.

The operator L,(a,c) was studied recently by Srivastava and Patel [4]. It is easily
verified from (1.6) and (1.7) that

z(Ly(a, o)f(z) = aL,(a+1,¢)f(z) - (a-p)Ly(a,c)f(z). (1.9)
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Moreover, for f(z) € A(p),

Ly(a,a)f(z) = f(z),  Ly(p+Lp)f(2) =

zf'(z)
r (1.10)
Ly(n+p,1)f(z) = D" () (> -p),

where D"P71 f(z) denotes the Ruscheweyh derivative of a function f(z) € A(z) of order
n+p -1 (see [5]).

Aouf, Silverman and Srivastava [6] introduced the class of P;.(A,B;p,A) by
use of linear operator L,(a,c), further investigated the properties of this class. In [7],
SokoL investigated several properties of the linear Aouf-Silverman-Srivastava operator and
furthermore obtained the corresponding characterizations of multivalent analytic functions
which were studied by Aouf et al. in paper [6]. The properties of multivalent functions
with negative coefficients were studied in [8-10]. References [11, 12] gave the results of the
univalent function with negative coefficients.

In this paper, we will use operator L, (a, c) to define a new subclass of A*(p) as follows.

Forpe N, a>0, ¢>0, a >0and for the parameters A\, A, and B such that

-1<B<A<1, -1<B<0, 0<\<p, (1.11)

we say that a function f(z) € A*(p) is in the class Y .(A, B; p, A, a) if it satisfies the following
subordination:

p—-A zp-1 pzP! 1+ Bz

1 <(L,,(a,c)f(z))l_a‘(Lp(ﬂ/C)f(Z))l _1'_ l><1+Az (zel) (1.12)

or equivalently, if the following inequality holds true:

(Lp(a,©)f (2))' /2 = a|(Ly(a, ) f(2)) /p = 1| -p
B((Lp(a,0)f(2)) /27 = a| (Ly(a,©)f () /pz" = 1|) = (pB+ (A= B)(p- 1))

<1.

(1.13)

From the above definition, we can imply that the function class P; (A, B;p, 1) in
[6] is the special case of Y .(A, B;p, A, a) in our present paper because Y, .(A,B;p,\,0) =
P; (A, B;p,L).

Since Y, .(A,B;p,4,0) = P,.(A B;p,\), then, like [6], we have the following
subclasses which were studied in many earlier works:

(1) Y;ml(—l,l;p,)n,o) = Qnip-1(V) (0 <A <1, n>-p; p € N) (Aouf and Darwish

(81),
(2) Y; (A, B;p,0,0) = P*(p, A, B) (Shukla and Dashrath [9]),
3 Y;,(1,-1;p,1,0) = F,(1,A) (0<A<p; peN) (Lee etal. [10]),

4) Y7, (=B,B; 1,1,0) =P*(\,p) (0<A<1; 0<p<1) (Guptaand Jain [11]),
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G)Y: (-1,1; 1,1,0) = Qu(X) (mn € Ng := NU{0}; 0 < A < 1) (Uralegaddi and

n+p,1
Sarangi [12]).

The purpose of this paper is to give various properties of class Y .(A, B;p,\, a). We
extend the results of basic paper [6].

2. Necessary and Sufficient Condition for f(z) € Y, (A, B;p,\, a)

Theorem 2.1. Let the function f(z) € A*(p) be given by (1.1), then f(z) € Y, .(A,B;p, A, a) if
and only if

id’k (p,a;B,a,c)|axyp| < (A-B), (2.1)
k=1

where

(p+a)(1-B)(k+p)(a),

22
p(p 1) () 22

¢k(p,a;B,a,c) =

Proof. For the sufficient condition, let f(z) = 2P — 332 |ak.y|z""?, we have

(Ly(a,)f(2)) /27~ a| (Ly(@,0) f(2)) /p=r -1 -
B((Ly(a,0)f(2)) /277 - a| (Ly(a, ) (2))' /pzr|) - (pB + (A= B) (p - 1))

p(L,,(a,c)f(z))' - aeie' (Ly(a, c)f(z))' - pzp’l' - p?zr!

B(p(Lp(a,0)f(2)) - ac®|(Ly(a,0)f(2)) —pz-!|) - p(pB+ (A= B)(p- 1)) 2 |
(2.3)

then
|p(Lp(a,0)f () - ac®|(Ly(a,0)f(2)) - pz! | - p*2r|
- |B<p(L,,(a,c)f(z))' - aeie' (Lp(a, c)f(z))' - pzp"l') -p(pPB+(A-B)(p- J\))z”_li

k Zhp=1 _ ()k k-1

( )k L1 _ P )k ep-1

Z(k+P)|ak+p|

-p(A-B)(p-A)zF"!
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< Sopc ) v |y 1217 | 350 ) e (7
k=1

(a)
+|BIZP(k+P)|ak+p| IZI'“” 1+0tIB|Z(k+10)Iak+p| kl [t
k=1
-p(A-B)(p- 1)zl

();<

= (p+a)Z(k+p)(l B)|ak+p| -p(A-B)(p-1) (ze€ol). (2.4)

By the maximum modulus theorem, for any z € U, we have

|p(Lp(a,€)f () - ac®|(Lp(a,0)f(2)) - pzt | - p?2|

B |B<p(LP(a, C)f(z))’ — ae'®

) =p(pB+(A-B)(p-1))="|

():<

<(p+a)Z(k+p)(1 B)|ak+p| p(A-B)(p- 1)

=Z k(p,a;B,a,c)|aky| - (A-B)
k=1

<0,
(2.5)
this implies f(z) € Y, .(A,B;p, A, a).
For necessary condition, let f(z) € Y;.(A, B;p, \, a) be given by (1.1), then
(Lp(a,0)f(2)) - (a )
— kZ (k+p) |ak+p| k2K, (2.6)

from (1.13) and (2.6), we find that

(L,,(a,c)f(z))’/zp-l—a|(L (a, c)f(z))’/pzp-1—1|—p
B((Lp(a,c)f(z)),/zp‘l—zx|(Lp(a, f(z)) /pzrt 1|> (pB+ (A-B)(p-1))

_ = 321 (k +p)|arp| @)/ (0)) 2" —a|- i (k +p) /p) [akep | (@) / (€))"|
~«A-B)(p-1)-B X7 (k+p) | aky | (@ / ©0 2k —aB|- X2 ((k+p) /p) | akp | (@)i/ ()9 2|
<1.

2.7)
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Now, since |Rez| < |z| for all z, we have

— 32 (k+p) |arp| () / ()02 — a|= T2 ((k +p) /p) | aksp| ()i / (0)) 2|
~(A=B)(p - \)-BEL, (kip) |awy | (@ / ©) 2-aB|= iy (ktp) /p) | akp| (@1 / ©1) 2|

<1.

(2.8)

We choose value of z on the real axis so that the expression (L,(a, c) f (2))'/zP71 is real.
Then, we have

R - 3 (k) |arsp | (@) / (0) ) 25| = X2, ((kp) /P) | ks | (@) / (€)) 2|
e
~(A-B)(p-\)-B X2, (kip) |ak+P|((a)k/(c)k)zk_‘xB|_ZI?=1((k+p) /p) Iak+P|((a)k/(C)k)Zk|

= S (kip) | aiep| (@) / (€)i) 2a| = 332, ((ktp) /p) |y | (@)1 / (€)) 2"

"~ (AB) (p) B 3, (k) |akep | (@) / () ) 2B -3y (ktp) /p) | akep | (@ / (91) 2]
(2.9)

=2 (k+p)|akip| ((a)k/(c)k)zk—“|_21?;1 ((k+p)/p)|axsp] ((a)k/(c)k)zk|
-(A-B) (P—)t) _BZI?;l(k"'P)|’1k+P|((a)k/(c)k)zk_aBl_Zl?;l((k"'p) /p)|ak+,,|((a)k/(c)k)zk|

- ' -3 (k+p) |ak+P|((a)k/(c)k)Zk —a X7, ((k+p)/p) |ak+p|((a)k/(c)k)|z|k
~(A-B)(p-)) -BZ2, (kip) | arp| (@) / (91)25aB X7, (k) /p) | aksp| (@i / (9|2l

< 1.
(2.10)

Letting z — 1~ throughout real values in (2.10), we get

- (k+p) |‘1k+p|((a)k/(c)k) a3 ((k+p)/p) |ak+P|((a)k/(c)k)
~(A-B)(p-1) = BX%, (k+p) |aksp| (@) / (©)x) — aB X2, ((k+p) /p) |aksp| (@), / (c)r)

< 1.

(2.11)

So we have

Siap(k+p) |ak+p|((a)k/(c)k) +a X2 (k+p) |ak+p|((‘1)k/(c)k)

(A=B)(p- 1) + BEZ p(k+p)|arp|((@)i/(0)y) +aB 32y (k +p) [ axp| (@)i/ (c)i)
(2.12)
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itis
S (a)
S (p+a)(1=B)(k+p) a5 < p(A=B)(p-). (2.13)
k=1

This completes the proof of the theorem. O

Corollary 2.2. Let the function f(z) € A*(p) be given by (1.1). If f(z) € Y; (A, B;p, A, a), then

|ak | < P(A_B)(p_)‘)(c)k
P

kpeN). 214
S (p+a)(1-B)(k+p)(a) (kp €N) 2.14)

The result is sharp for the function given by

f(z) =zP _i P(A—B)(p—l)(c)k Skp

2.15
= (p+a)1-B)(k+p)(a) (219

3. Distortion Inequality of Class Y, (A, B;p, \,a)

Theorem 3.1. If a function f(z) defined by (1.1) is in the class Y .(A, B;p, A, a), then

< pl  cp(A-B)(p-A)p!
(p-m) a(p+a)(1-B)(p+1-

P, _cpA-B)(p-L)p!
“\(p-m)! a(p+a)(1-B)(p+1-m)!

m)!|z|>|z|’““ <|rme)

|z|>|z|p_m zel; a>c>0; me Ny; p>m).

(3.1)
The result is sharp for the function f(z) given by
c(A-B)(p-1) ,
=zl - —————— 2 N). 2
flz) =z a(l—B)(p+0£)Z (penN) G2
Proof. Since f(z) = zF = 3,04 |akp|zF*, then
m Pl pm_ s (ktp)! spm
= oy ey T 63

From f(z) € Y, .(A, B;p, A, a), using Theorem 2.1, we have

a(p+a)(1-B)(1+p) i(k+p)!|ak+p| < i(p+a)(k+p)(1—3)(a)k

| <1
cp(A-B)(p-1)(p+ )G & p(A-B)(p- V) (o) |akep| <

(3.4)
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which readily yields
S (k+p)!fas | < PA-B)(p-Lp! (3.5)
p ' a(p+a)(1-B)

By (3.3) and (3.5), we can imply (3.1). O

4. Radius of Starlikeness and Convexity

Theorem 4.1. Let the function f(z) defined by (1.1) be in the class Y, .(A, B;p, A, ). Then, f(z) is
starlike of 1 (0 <7 < 1) in |z| < ry(p, k,a, A, B, a,c) where

1/k
1- 7 rB/ 7
ry(p,k,a, A, B, a,c) = inf { p(=méi(p, ;B a,c) } (4.1)
(A=B)[k+p(1-1)]
and ¢i(p, a; B, a, ¢) is defined by (2.1).
Proof. We must show that
zf'(2)
-1 <1- for |z| <r,(p, k,a,A,B,a,c). 4.2
Since
zf'(2) _1‘ _ ‘ ~ 3 Klaiep|=* Kl axp|l12l* .
pf(z) p—Zaplacp|Z| T p- Z2, plakeg Iz
to prove (4.1), it is sufficient to prove
© k
S ka2l 1-1. (4.4)
) k
pP- i P|‘1k+p||Z|
It is equivalent to
k+p(1-
Z[ A ) 1S T (4.5)
k=1 p(1-m)
By Theorem 2.1, we have
k ,a,B a,c
Z¢ 2B ) <1, (®6)
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hence (4.5) will be true if

[k +p(1—n)]|axp]|

o Plp i o)

p(l —TZ) | | - A—B |ak+p|- (47)
It is equivalent to
1/k
1- s /Br s
i< {P( mPi(p, ;B a C)} (48)
(A=B)[k+p(1-n)]
This completes the proof. O

Theorem 4.2. Let the function f(z) defined by (1.1) be in the class Y, .(A, B;p, A, ). Then, f(z) is
convex of £(0 < ¢ < 1) in |z| < r¢(p, k,a, A, B, a, c) where

2 1- 7 rB/ ’ Vk
re(p,k,a,A,B,a,c) = inf{ P(1-5¢c(p,a;B,a,c) } (4.9)
(k+p)(A-B)[k+p(1-¢)]
and ¢r(p, a; B, a, c) is defined by (2.1).
Proof. It sufficient to show that
zf"(z) p-1 ‘
- - (<1- for |z| <r:(p, k,a,A,B,a,c). 4.10
Pf’(z) p é | | é(p ) ( )
Since
zf"(z) _P—l‘ _ - i1 k(k +p)|akp|z Zf:lk(k+?9)|ak+p“z|k (4.11)
pf(z) p p? = X p(k+p)|acy|z8| 7 p? - 52 p(k +p) |axp| |20
to prove (4.9), it is sufficient to prove
© k(k k
Zk—lC>O ( +p)|ak+P||Z| - 1 _g' (412)
p? = S p(k+p)|aksp|lz|
It is equivalent to
(k+p)[k+pA=d]|aryp|
z[" < 1. 4.13
z T E (4.13)
By Theorem 2.1, we have
,a,B a,c
Z P (’” ) || <1, (4.14)
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hence (4.13) will be true if

(k+p)[k+p( —§)]|ak+p|| < ¢x(p,a;B,a,c)

-0 z|* < . |akp|- (4.15)
It is equivalent to
1/k
|Z| < { pz(l_‘;)(l)k(p’a;B’a’c) } (4 16)
~ | (k+p)(A-B)[k+p(1-9)]
This completes the proof. O

5. 6-Neighborhood of Y .(A,B;p, \, a)

Based on the earlier works by Aouf et al. [6], Altintas et al. [13-15], and Aouf [16], we
introduce the 6-neighborhood of a function f(z) € A*(p) of the form (1.1) and present the
relationship between 6-neighborhood and corresponding function class.

Definition 5.1. For 6 > 0, a > 0, ¢ > 0, the 6-neighborhood of a function f(z) € A*(p) is
defined as follows:

N3 (f) = {g 18(2) = 2" = 3 |bewp| 27 € A(p), Dbl [bisp] = |aisp || <5}, (5.1)
k=1 k=1

where

_ (p+a)(1-B)(k+p)(a)

tk (5.2)
p(A=B)(p-1)()x
Theorem 5.2. Let the function f(z) defined by (1.1) be in the class Y;LC(A, B;p, A, a). Then,
1
+ + .

N:(f) cY;.(A Bp A a) <a+1>' (5.3)
This result is the best possible in the sense that 6 cannot be increased.
Proof. Let f(z) € Y;LC(A, B;p,\, a), then by Theorem 2.1, we have

< (p+a)(1-B)(k+p)(a+1

= p(A-B)(p-1) (o)
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which is equivalent to

S T v, el < at o
For any
g(z)=2F - g|bk+p|zk+p € N:(f), (5.6)
we find from (5.1) that
2 s ;&) (_11;;(3; (—k;) fc);ka)k [epl = aterll < 57
By (5.5) and (5.7), we get
e e
: g . ;&) (—13_>1<2 (—k;> Z:)ia)k o]+ g . ;(Z) (—13_>2 (—k;) fc);ka)k 1] = o ll
sai1+5=1
(5.8)

By Theorem 2.1, it implies that g(z) € Y .(A, B;p, \, a).
To show the sharpness of the assertion of Theorem 5.2, we consider the functions f(z)
and g(z) given by

cp(A-B)(p-1) iy
(a+1)(p+a)(1-B)(p+1) T Yo,

[ pA-B(p-1) PA-B)(p-NE )
s == <(a+1)(P+a)(1—B)(P+1)+a(P+“)(1—B)(1+P)>ZP ,

f(z)=2"-

(A,B;p, A\, a),
(5.9)

where & > 6 =1/(a+1).
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Since

(p+a)(p+1)(1-B)(a),

(A= B)(p- 1)) [[brep| = a1
_(p+ra)(p+1)A-B)(a); cp(A-B)(p-1)& (5.10)
p(A-B)(p-1)(c)  a(p+a)(1-B)(1+p)

=&

s0 g(2) € N (f).
But

(p+a)(P+1)(1—B)(a)1[ cp(A-B)(p-1) , _P(A-B)(p-1)& ]
p(A-B)(p-A)(c) (a+D)(p+a)(p+1)1-B) a(p+a)(1-B)(1+p)

5.11
= a —+ 6I ( )
a+1
>1,
by Theorem 2.1 g(z)€Y, .(A, B;p, A, a). O

6. Properties Associated with Modified Hadamard Product

Following early works by Aouf et al. in [6], we provide the properties of modified Hadamard
product of Y .(A, B;p, A, a).
For the function

fi(@) = 2" = > |akw,i|Z7 (j=1,2; peN), (6.1)
k=1

the modified Hadamard product of the functions fi(z) and f>(z) was denoted by (fi - f2)(z)
and defined as follows:

(fi-f2)(z) =2 _ilaker,l”aker,Zleﬂj = (f2- f1)(2). (6.2)
k=1

Theorem 6.1. Let f;(z) (j =1,2) given by (6.1) be in the class Y, .(A, B;p, A, &), then
(fi-f2)(z) €Y, (A B;p,y,a), (6.3)

where

_ p(A-B)(p- 1)’
a(p+a)(1-B)(1+p)’

(6.4)
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The result is sharp for the functions f;(z) (j = 1,2) given by

AR .,
a(p+a)(1-B)(1+p) '

fi(z) =2

Proof. By Theorem 2.1, we need to find the largest y such that

& (p+ @)1= B)(k +p)(ak
kZ:; p(A=B)(p-7)(e) |2kl - akpa] <1.

Since fj(z) € Y, .(A,B;p, A, &), (j =1,2), then we see that

i (p+a)(1-B)(k+p)(a)
= p(A-B)(p-1)(0)

By Cauchy-Schwartz inequality, we obtain

k=1

This implies that we only need to show that

|ak+p,1| : |ak+p,2| < |ak+nl| : |ak+p/2|
p-y B p-A

(ke N)

or equivalently that

|akepal - |axpa] < =T

=

By making use of the inequality (6.8), it is sufficient to prove that

pA-Bp-N  _p-y
(p+a)(1-B)(k+p)(a), " p-A

(k € N).

From (6.11), we have

p(A-B)(p-1)*(c);
(p+a)(1-B)(k+p)(a),

y<p- (k € N).

Jaies| <1 (1=1,2).

2 (p+a)(1-B)(k+p)(a)
- p(A—B)(p<—A><c>k V0wl lacpal <1.

13

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)
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Define the function ®(k) by

p(A-B)(p-1)*(c),

(k) :=p - (p+a)(1-B)(k+p)(a)

(k € N). (6.13)

We see that @ (k) is an increasing function of k. Therefore, we conclude that

p(A-B)(p-1)’(c)

y<@1)=p- (p+a)(1-B)(k+p)(a),

(6.14)

By using arguments similar to those in the proof of Theorem 6.1, we can derive the
following result. O

Theorem 6.2. Let f1(z) defined by (6.1) be in the class Y; .(A, B;p, A, a), f2(z) defined by (6.1) be
in the class Y; .(A, B;p,y, a), then

(fi-f2)(2) €Y, (A B;p,¢ a), (6.15)

where

_cp(A-B)(p-V)(p-7)

ST B (ep) 10
The result is sharp for the functions f;(z) (j = 1,2) given by
_ cpA-B)(p-1) 4
&= raa-na+pn- TN (617)
6.17
=z - —PABDED ey

a(p+a)(1-B)(1+p)

Theorem 6.3. Let fi(z) (j = 1,2) defined by (6.1) bein the class Y; .(A, B; p, A, a), then the function
h(z) defined by

0

h(z)=2" - <|ak+p,1 > + |ak+p,2|2) (6.18)

k=1
belongs to the class Y; .(A, B; p, x, a) where

2pc(A - B)(p— A
X=p ped-B)(p—1) (6.19)

- alp+a)(1-B)(1+p)’

This result is sharp for the functions given by (6.5).
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Proof. By Theorem 2.1, we want to find the largest y such that

<|ak+p,1|2 + |ak+p,2|2> <L

i(p+a)(1—B)(k+p)(a)k
= p(A-B)(p-x) (O

Since f;(z) € Y, .(A,B;p, A, a) (j = 1,2), we readily see that

fﬁp+aﬂ1—BKk+PNMkmhm|51 (j=12).
k=1

p(A-B)(p-x)(©)k

From (6.21), we have

& (pra)’A-B (k+p)’ (@ \' e
A PA-B(p-x) <wn>'“wﬂ st (=12),

then we have

[*) 2 _ 2 2 2
(p+a)"(1-B) (k+p) <(a)k> <|ak+p,1|2+|ak+p,2|2> <.

o PA-B(p-y)’ Nk

15

(6.20)

(6.21)

(6.22)

(6.23)

From (6.23), if we want to prove (6.20), it is sufficient to prove there exists the largest

x such that
1 Graten)d-B@ o
P=X  2p(A-B)(p-1) (o)
that is
2p(A-B)(p - 1)’ (o)
P ke pa-Bay, <N
Now we define ¥ (k) by
2
-y BA-BE-V'O

"~ (p+a)(k+p)(1-B)(a),
We see that W (k) is an increasing function of k. Therefore, we conclude that

 2pcA-B)(p-
a(p+a)(k+p)(1-B)

X<¥(M)=p

which completes the proof of Theorem 6.1.

(6.24)

(6.25)

(6.26)

(6.27)
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7. Application of Fractional Calculus Operator

References [17-19] have studied the fractional calculus operators extensively. In this part, we
only investigate the application of fractional calculus operator which was defined by [6] in
the class of Y, .(A, B;p, A, a).

Definition 7.1 (see [6]). The fractional integral of order y is defined, for a function f(z), by

* f(a2)
L) Jo (z-¢)'*

Df(2) = & (u>0), (7.1)

where the function f(z) is analytic in a simply connected domain of the complex z-plane
containing the origin and the multiplicity of (z — &) is removed by requiring log(z — &) to
be real when z — ¢ > 0.

Definition 7.2 (see [6]). The fractional integral of order y is defined, for a function f(z), by

f2)

1 z
p _
D1 = fo - oF

i (0<p<1), (7.2)
where the function f(z) is constrained, the multiplicity of (z-¢)™" is removed as in

Definition 7.1.

In our investigation, we will use the operators Js, defined by (cf, [20-22])
6+p (% 50
(Jspf)(2) = Ot fhdt (feA(p);, 6>-p; peN) (7.3)

as well as D" for which it is well known that (see [23])

I'(p+1) o

Dlzf =
T(p—p+1)

(p>-1;, peR) (7.4)

in terms of Gamma.

Lemma 7.3 (see Chen et al. [18]). For a function f(z) € A(p),

u o Tp+1) & (6+p)T(k+p+1) .
PO DE) =1, o Gk
5+p)T(p+1
Jsp(DELf(2)}) = G fpiZ;rEZt”)H)zp‘” (7.5)
. © 6+p)T(k+p+1) ak+pzk+’”_”

S +k+p-pl(k+p-p+1)

(M €R; 6>—p; p € N) provided that no zeros appear in the denominators in (7.5).
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Remark 7.4. Throughout this section, we assume further that a > ¢ > 0.

Theorem 7.5. Let function defined by (1.1) be in the class Y .(A, B;p, A, a), then

Tlp+1) il cp(6+p)(A-B)(p-1) i

| {(]5,,f)(z)}| I'(p+ +1)|| <1 alp+a)(p+6+1)(p+p+1)(1-B) |>
(7.6)

LP+1) o, cp(6+p)(A-B)(p-1) i

R e S O o e ey o)

(7.7)

u>0; 6>-p;, pe N; z €U, each of the assertions is sharp.

Proof. Since

I'(p+1) O (6+p)T(k+p+1)

P Uef) ) = mz §(6+k+r))r(k+p+ﬂ+1)| o2 78)
then
T(p+1) ) e (6+p)Ik+p+)I(p+p+1) N
{(]'Spf)(Z)}| T(p- |#| p_Z(6+k+P)F(k+P+#+1)F(P+1)| epl =
(7.9)

Let G(z) is defined by

B e (6+p)Ik+p+DI(p+pu+1)
Glz)=2"- Z(6+k+p)1‘(k+p+y+1)l"(p+l)

| @k | 27 = 2P — ZQ(k)Iak+p|zk+”

(7.10)
where
Qi) = (5(f : i);(rk(; ; ; 1); (+p1;rﬂ(; ?1) (kip €N; > 0). 710
Since Q(k) is a decreasing function of k when u > 0, we get
0<Q(ky < Q) - PP 7.12)

G+k+p)(Q+p+p)’
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since f(z) € Y, .(A,B;p, A, a), by Theorem 2.1, we get

a(P+“)(1—B)(P+1)i|ak+p| . i (p+a)(k+p)(1-B)(a)
k=1

| < 1. 713
cp(A-B)(p-1) & p(A=B)(p - L) (c)x ] < 713

It is that

i|“k+p| < PA-Bp-Y) (7.14)

p a(a+p)(1-B)(p+1)’
then

1G(2)| = |27~ 3TQ(K)|asy |25

k=1

akip| 2P| 2 (217 = QD)2 Y |aksy |
k=1
cp(p+6)(A-B)(p- 1) 2!

lelp_
a(p+a)(6+k+p)(p+1+p)(1-B)

(7.15)

IG(2)| = Z

Ak+p

2~ S0k
k=1

0
< 2P + Q)12 X |arsy|
k=1

cp(p+6)(A-B)(p-14) 2.

S TR G ke (s A=B)

From (7.15), we obtain (7.6) and (7.7), respectively.
Equalities in (7.6) and (7.7) are attained for the function f(z) given by

D (Janf) (=)} = I'(p+1) ZW<1 cp(6+p)(A-B)(p-1A) Z>‘

I(p-pu+1) _a(p+a)(6+k+p)(p+‘u+1)(1—B)
(7.16)
]

Theorem 7.6. Let function defined by (1.1) be in the class Y, .(A, B;p, A, a), then

; . Fp+1) ol cp(6+p)(A-B)(p-1)
10D 2 2 (1 s B )

DX Uspf)(2)}] < T(p—p+

I(p+1) (14 cp(6+p)(A-B)(p-1) N
1) a(p+a)(p+6+1)(p-u+1)1-B) ")’
(7.18)

u>0; 6>-p;, pe N; z €U, each of the assertions is sharp.
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Proof. Since

p I+ . & (G+p)T(k+p+1) p-
Dzt Uspf)(@)} = T(p—p+1) /4+1) i Z(5+k+P)1"(k+P #+1)|akﬂn|Z B

then

i( G+p)Tk+p+DI(p-p+1)

I'(p 2 H|| 2
{Uﬁpf)(z)” ml ¥ 6+k+p)l(k+p- y+1)1"(]a+l)|k+'g|Z

(7.20)
Let H(z) be defined by
x I} I'(k DI'(p - 1
H(z) = 2 - Z @rplltkep+ DI —prl) | ok
1 (6+k+p)T(k+p-pu+DI'(p+1)
(7.21)
=2/ = > E(k) (k +p)|axp| 27,
k=1
where
o) T'(k I'(p - 1
Ey = OP)Tk+p)l(p-p+1) (k,p e N; u>0). (7.22)
6+k+p)I(k+p-pu+1)I(p+1)
Since E(k) is a decreasing function of k when 0 < p < 1, then
o)
0 < E(k) < E(1) = (6+p) ) (7.23)
(6+1+p)(1+p—p)
since f(z) € Y, (A, B;p, A, a), by Theorem 2.1, we get
a(p+a)(1-B) +a)(k+p)(1-B)(a)
p+ %) Z(k+p)|ak+p| Z(p J(k+p) T (7.24)
cp(A-B)(p-1) & = p(A-B)(p-1) (o)
It is that
& cv(A-B -1
D (k+p)|axy| < PA-Bp-d) (7.25)
p a(a+p)(1-B)



20 International Journal of Mathematics and Mathematical Sciences

then
H(2)| = |2 = Y E(k) (k +p)|ap |27 | 2 |21 = EQ)z 3 (k +p) | ax |
k=1 k=1
> |z|p _ CP(P + 6) (A B B) (p B )L) |Z|p+1,
a(p+a)(6+k+p)(p+1-p)(1-B)
(7.26)
|H(z)| = |28 = D E(k) (k + p) | axep| 27| < 2P + EQ) [zl (k +p) | axep|
k=1 k=1
<l cp(p+8)(A-B)(p-4) 2P,
a(p+a)(+k+p)(p+1-p)(1-B)
From (7.26), we obtain (7.17) and (7.18), respectively.
Equalities in (7.17) and (7.18) are attained for the function f(z) given by
" _ Tlp+1) cp(6+p)(A-B)(p- 1)
DU D@ =50, Sn ™ ik ep-na-n ) 7Y
or equivalently by
o cp(6+p)(A-B)(p-1) 4
Uspf)(2) =2 a(p+a)(6+k+p)(p-pu+1)(1-B) 7 (7.28)
O
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