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In 2007, Haung and Zhang introduced the notion of cone metric spaces. In this paper, we define
an ordered space E, and we discuss some properties and examples. Also, normed ordered space
is introduced. We recall properties of R, and we discuss their extension to E. We introduce the
notion of E-metric spaces and characterize cone metric space. Afterwards, we get generalizations
of notions of convergence and Cauchy theory. In particular, we get a fixed point theorem of a
contractive mapping in E-metric spaces. Finally, by extending the notion of a contractive sequence
in a real-valued metric space, we show that in E-metric spaces, a contractive sequence is Cauchy.

1. Introduction

Recall that the space of real numbers R is a normed space which having the usual ordering
≤, such that it is translation invariant, that is, for all x, y, and z in R, x ≤ y implies that
x + z ≤ y + z. Also, for any space X, a metric d (real-valued metric) defines a metric space
(X, d).

Recently, the concept of a cone metric space has been studied in [1–15], and others.
Indeed, they proved some fixed-point theorems of generalized contractive mappings. In
particular, Huang and Zhang in [7] introduced the following.

Definition 1.1 (see [7]). Let P be a subset of a normed space Ewith Int(P)/= ∅. Then P is called
a cone if

(1) P is closed and P /= {0}.
(2) a, b ∈ R

+, x, y ∈ P ⇒ ax + by ∈ P .

(3) x ∈ P and −x ∈ P ⇒ x = 0.
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A cone P induces a partial ordering ≤ with respect to P by x ≤ y if and only if y − x ∈ P . The
notion x < y means that x ≤ y and x /=y, while x � y stands for y − x ∈ Int(P). A cone P is
called normal if there exists a number k > 0 such that for all x, y ∈ E, we have

0 ≤ x ≤ y =⇒ ‖x‖ ≤ k
∥
∥y

∥
∥. (1.1)

The least positive number k, satisfying (1.1), is called the normal constant of P . Vandergraft
in [16] (or see Example 2.1 of [10]) presented an example of a nonnormal cone, that is, a cone
of a normed space E which does not satisfy (1.1).

Definition 1.2 (See [7]). LetX be a nonempty set, and let E be a normed space having a normal
cone P with Int(P)/= ∅. Suppose, the mapping d : X ×X → E satisfies the following:

(1) 0 < d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x), for all x, y ∈ X,

(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Remark 1.3. In [7] and in order to define a cone metric space, the authors started by a Banach
space E (see [7, page 1469]). But in fact, and up to the results of the current paper, they just
need E to be a normed space only.

More generally, Karapınar in [17] and Shatanawi in [18, 19] studied the couple fixed-point
theorems in cone metric spaces. Also, Shatanawi in [20] studied common coincidence point
in cone metric spaces.

In this paper, we start with different approach, and without starting by cones,
we introduce the notion of normed ordered spaces in general (see Definition 2.1) which
generalizes most of the properties of R (also the notion of ordered field is already defined,
see [21, page 7]). We show that many results can be extended to a normed ordered space
E; however, some properties cannot, as depending on crucial properties of R. In the second
part, and considering a nonempty set X, we replace the real-valued metric with an E-valued
metric (denoted by dE), and (X, dE) is called E-metric space, we discuss some examples. We
generalize results of real-valued metric spaces (see, e.g., [22]) concerning sequences to the
case of E-metric spaces. Afterwards, we introduce the notions of convergence and Cauchy
sequences in E-metric space. Considering E to be a normed ordered space and that X has an
E-valued matric, we give a characterization of cone metric spaces in the sense of Huang and
Zhang in [7]. Then we get results concerning convergence and Cauchy theory in the case of
E-metric space. In particular, we get a fixed-point theorem of a contractive mapping. Finally,
and in a similar way of a real-valued metric space, we introduce the notion of a contractive
sequence in an E-metric space, and we prove that every contractive sequence is Cauchy.

Notice that ordered spaces need not be totally ordered. In fact, many properties of R

are deduced as R being totally ordered. We say that E has the completeness property (CP) if
every subset of an upper bound has a supremum in E and every subset of a lower bound has
an infemum in E. If E is an ordered space, then all types of intervals can be defined. Indeed
the unbounded intervals (left and right rays) are

(a,∞) = {x ∈ E; a < x}, (−∞, a) = {x ∈ E; x < a}. (1.2)
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2. Normed Ordered Spaces

In this section, we define normed ordered spaces, and we give different examples. Then
we discuss generalizations of main results in the real space to normed ordered spaces. In
particular, the Bolzano-Weierstrass theorem and intermediate value theorem are not true in
general normed ordered spaces. The properties (CP) and totally ordered of R, are in fact
seems to be crucial.

Definition 2.1. An ordered space E is a vector space over the real numbers, with a partial order
relation ≤ such that

(O1) for all x, y, and z in E, x ≤ y implies x + z ≤ y + z (translation invariant),

(O2) for all α ∈ R
+ and x ∈ E with x ≥ 0, αx ≥ 0.

Moreover, if E is equipped with a norm ‖ · ‖ such that

(O3) there exists a real number k > 0 and for all x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ k‖y‖,
then E is called a normed ordered space.

By the translation invariant (O1), x ≤ y means y − x ≥ 0. The strict inequality x < y stands
for x ≤ y and x /=y.

Proposition 2.2. Let E be an ordered space. Then for all x and y in E, we have

(i) x ≥ 0 implies that −x ≤ 0,

(ii) If x ≥ 0 and −x ≥ 0, then x = 0,

(iii) If x ≥ 0 and y ≥ 0, then x + y ≥ 0,

(iv) for all α ∈ R
− and x ≥ 0, αx ≤ 0,

(v) x > y and α ∈ R
+ implies that αx > αy,

(vi) x > y and α ∈ R
− implies that αx < αy.

Proof. (i)As x ≥ 0, by translation invariant, we have −x+x ≥ −x, hence −x ≤ 0. (ii)Assuming
that −x ≥ 0 implies by (i) that x = −(−x) ≤ 0 so we get x ≤ 0 ≤ x, and as the relation is an
antisymmetric, we have x = 0. (iii) As x ≥ 0, we get x + y ≥ y ≥ 0, hence the result holds by
transitivity. (iv) As α ∈ R

−, we have −α ∈ R
+ and by (O2) this implies that −αx ≥ 0. Using (i)

−(−αx) ≤ 0, hence αx ≤ 0. (v)As x > y, then x−y > 0, and by (O2)we get α(x−y) > 0, hence
αx > αy. (vi) is similar.

Now let us introduce the following examples of normed ordered spaces.

Example 2.3. (a) The set of real numbers R with usual ordering and the absolute value.

(b) The set R
n with the ordering defined by

(x1, x2, . . . , xn) ≤
(

y1, y2, . . . , yn

) ⇐⇒ xi ≤ yi, 1 ≤ i ≤ n. (2.1)

This ordering is called the simplicial ordering of R
n. Then R

n together with
simplicial ordering and the Euclidean norm is a normed ordered space.
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(c) The set of rational numbers Q as a vector space over itself together with absolute
value and usual ordering.

(d) The complex space C together with the modulus, and the order defined by

z ≤ w ⇐⇒ w − z ∈ R, w − z ≥ 0 (2.2)

is a normed ordered space.

(e) The space C[0, 1] of all continuous real-valued functions on [0, 1] together with the
supremum norm,

∥
∥f

∥
∥ = sup

{

f(x); x ∈ [0, 1]
}

(2.3)

and the pointwise ordering,

f ≤ g ⇐⇒ f(x) ≤ g(x); ∀x ∈ [0, 1] (2.4)

is a normed ordered space.

(f) Let (X, μ) be any measure space. Then for all 1 ≤ p ≤ ∞, the space Lp(X) with the
norm,

∥
∥f

∥
∥
p =

(∫

X

∣
∣fp

∣
∣dμ

)1/p
(2.5)

and the pointwise ordering is a normed order space.

Definition 2.4. Let E be an ordered space. Then an element v ∈ E is called positive if v ≥ 0,
and it is called strict positive if v > 0. The set of all positive elements in E is denoted by E+.

Remark 2.5. The following result is valid for any ordered space having a norm, and not
necessarily satisfying the property (O3). So the space needs not to be a normed ordered space.
Then according to Definition 2.1 with the characterization in Theorem 3.8, this is equivalent
to say that a cone P is nonnormal (indeed this exists, see Example 2.1 of [10]).

Proposition 2.6. Let E be an ordered space having a norm. Then E+ is a closed set.

Proof. We will prove that E \ E+ is an open subset of E. Given that a ∈ E \ E+. Define that
d = inf{‖x − a‖; x ∈ E+}, then

B(a, d) = {x ∈ E; ‖x − a‖ < d} (2.6)

is an open ball containing a. Now we claim that B(a, d) ⊆ E \ E+: if not, then there exists
x0 ∈ B(a, d), which means that ‖x0 − a‖ < d, and x0 ∈ E+, ‖x0 − a‖ ≥ d, hence we get a
contradiction. Then the claim is proved.

The interior of E+ is denoted by Int(E+). In the following example, we show that
Int(C[0, 1]+) consists of functions that never touch the x-axis.
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Example 2.7. If E = C[0, 1], then Int(E+) = {f ∈ E+; f(x)/= 0; ∀x}.

Proof. Suppose that f ∈ E+ and f(x)/= 0, for all x ∈ [0, 1]. Choose ε > 0 such that ε <
inf{f(x); ∀x ∈ [0, 1]}. Now given any g in the open ball B(f, ε), and assume that g(x0) = 0
for some x0 ∈ [0, 1]. Then

ε < inf
{∣
∣f(x)

∣
∣ <

∣
∣f(x0)

∣
∣ < sup

{∣
∣f(x) − g(x)

∣
∣; x ∈ [0, 1]

}

=
∥
∥f − g

∥
∥ < ε

}

. (2.7)

Therefore, {f ∈ E+; f(x)/= 0; ∀x} is an open subset, so we get that {f ∈ E+; f(x)/= 0; ∀x} ⊆
Int(E+). Conversely, if g ∈ Int(E+), then there exists ε0 > 0 such that B(g, ε0) ⊆ E+. If for some
x0 ∈ [0, 1], g(x0) = 0, then define that h(x) = g(x) − ε0/2. Therefore, h ∈ B(g, ε0) and h /∈ E+

as h(x0) = −ε0/2 which is a contradiction, so g(x)/= 0, for all x ∈ [0, 1].

The following example shows that Int(E+) can be empty.

Example 2.8. In R
2, consider the subspace E = {(x,−x); ∀x ∈ R}, with the induced norm and

simplicial ordering as in Example 2.3(b). Then E+ = {(0, 0)}, hence Int(E+) = ∅.

For all x and y in E, by x � y we mean y − x ∈ Int(E+), so x � 0 means x ∈ Int(E+).
Then we have the following properties.

Proposition 2.9. Let E be an ordered space having a norm. Then

(i) The zero element is not in Int(E+),

(ii) If x � 0, then −x � 0,

(iii) If x � 0 and α ∈ R
+, then αx � 0,

(iv) If x � 0 and α ∈ R
−, then αx � 0.

Proof. (i) Assume that 0 ∈ Int(E+), then there is an ε-neighborhood B(0, ε) of 0 such that

B(0, ε) = {x ∈ E; ‖x‖ < ε} ⊆ E+, (2.8)

so this open neighborhood contains a nonzero x (if not then B(0, ε) = {0}; hence, {0} is an
open subset which is a contradiction, as metric spaces are Hausdorff). Also, we have −x ∈
B(0, ε), hence by Proposition 2.2(ii), we get a contradiction. If x � 0, then 0 − (−x) = x ∈
Int(E+); hence, this proves (ii). To prove (iii) assume that x ∈ Int(E+) and let α > 0. There
exists an ε-neighborhood B(x, ε) of x such that

B(x, ε) = {e ∈ E; ‖e − x‖ < ε} ⊆ E+. (2.9)

Consider that ball B(αx, αε) of αx, we claim that it is contained in E+. If e ∈ B(αx, αε), then
‖e/α − x‖ < ε which means that e/α ∈ B(x, ε) and therefore e/α ∈ E+ so by (O2) , we get
e ≥ 0, which proves the claim. (iv) follows by (ii) and (iii), hence the proposition has been
checked.

Proposition 2.10. Let E be an ordered space having a norm with Int(E+)/= ∅. If ε > 0, then there
exists c � 0, such that ‖c‖ < ε.
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Proof. Given that ε > 0 and let x ∈ Int(E+), by Proposition 2.9(i), we have x /= 0 and
by Proposition 2.9(iii), we have x/‖x‖ � 0. Choose a real number t ∈ (0, ε) and put
c := t(x/‖x‖). Then c � 0 and ‖c‖ = t < ε, hence the lemma is checked.

Now let us consider a sequence {xn}∞n=1 in a normed ordered space E. We recall some
properties that hold for R and try to extend it to E. As R is totally ordered, we know that xn

have a monotonic subsequence. This is not true in general even though xn is assumed to be
bounded sequence, the following example explains this.

Example 2.11. Consider that E = R
2, with the simplicial ordering. Let γ be a bijection from N

onto Q ∩ (1, 2) and define the sequence {xn}∞n=1 by xn = (γ(n), 1/γ(n)). Then xn is a bounded
sequence in E; for example, (2, 1) is an upper bound, with no monotonic subsequence, as
every two terms are not comparable. Also, it is a divergent sequence.

Remark 2.12. Recall that by the completeness property (CP), we know that R has the bounded
monotone convergence theorem. Also, the spaces R

n and C[0, 1] (Example 2.3(b), (e), resp.)
have the bounded monotone convergence theorem.

The following example shows that the boundedmonotone convergence theorem is not
true in a normed ordered space E, in general. The (CP) does not hold in the normed ordered
space Q. Moreover, the Bolzano-Weierstrass theorem (B-W) is not true in general.

Example 2.13. Consider the normed ordered space in Example 2.3(c) and the sequence xn =
(1+1/n)n. It is bounded and increasing sequence but has no limit in Q. As every subsequence
of xn is convergent to e, so no subsequence is convergent in Q, that is, (B-W) fails.

Now, let us consider a continuous function f defined on a normed ordered space E
into a normed ordered space F. The following examples show that the maximum-minimum
theorem (Max-Min) and the intermediate value theorem (IVT) in the case of real-valued
functions do not hold for f .

Example 2.14. Consider that the continuous function f : R → R
2, which is defined by f(x) =

(x,−x), and consider that M = [0, 1]. Then M is a compact subset of R and f(M) is the line
segment from (0, 0) to (1,−1). Indeed, sup f(M) = (1, 0) and inf f(M) = (0,−1) and both do
not belong to f(M).

More precisely, using known theorems about normed spaces and compactness (see,
e.g., [22]), one may easily deduce the following.

Proposition 2.15. Let E be a normed ordered space having (CP), letX be a metric space and f : X →
E be any continuous function. IfM is any compact subset of X, then f(M) attains its sup and inf in
E.

Example 2.16 (IVT is invalid). Consider the function g : R → R
2, which is defined by

g(x) =

⎧

⎨

⎩

(

x,−
√
1 − x2

)

, −1 ≤ x ≤ 1,

(x, 0), x ≥ 1 or x ≤ −1.
(2.10)
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Let h : R
2 → R

2 be the rotation mapping by the angle π/4, that is, for any z = (x, y) ∈
R

2, h(z) = ei(π/4)z. Set f := h ◦ g, so f is a continuous function defined on real numbers with
values in R

2. Now

f(−1) = (−1,−1) ≤ (0, 0) ≤ (1, 1) = f(1), (2.11)

but no c ∈ (−1, 1) with f(c) = (0, 0).

3. E-Metric Spaces

Recall that in order to define a metric on a set X, it is necessary to have an ordered space E
only. In this section, we define E-metric spaces, and we give main examples. We characterize
cone metric spaces as in [7], by using the notion of E-metric space of a normed ordered
space E. Then we generalize main theorems in real-valued metric spaces such as Cauchy,
convergence theories, and contractive sequences (see, e.g., [21, 22]) to the case of E-metric
spaces. Moreover, we get a fixed point theorem of a contractive mapping.

Definition 3.1. LetX be any nonempty set and let E be any ordered space, over the real scalars.
An ordered E-metric on X is an E-valued function dE : X ×X → E such that for all x, y, and
z in X, we have

(i) dE(x, y) > 0 and dE(x, y) = 0 if and only if x = y,

(ii) dE(x, y) = dE(y, x),

(iii) dE(x, y) ≤ dE(x, z) + dE(z, y).

Then the pair (X, dE) is called E-metric space.

Now, consider an ordered space Ewith a norm and consider an E-metric space (X, dE),
let p be a point in X and c ∈ Int(E+). Then the open ball in X centered at p of radius c is

B
(

p, c
)

=
{

x ∈ X;dE(x, p
)

< c
}

. (3.1)

Example 3.2. (a) Fixing X = E = R, with the usual distance, is reduced to the usual metric
space of real numbers, having the open intervals as open balls.

(b) Consider that X = R
2 and E = R

2 with the simplicial ordering. Define the function
dR

2
from R

2 × R
2 into R

2 by

dR
2((

x1, y1
)

,
(

x2, y2
))

=
(|x2 − x1|,

∣
∣y2 − y1

∣
∣
)

. (3.2)

Then dR
2
is a metric, and hence (R2, dR

2
) is an R

2-metric space. Moreover, the open balls are
realized as the open rectangles in R

2 space.
(c) Recall Example 2.3(e), let X = C[0, 1], and consider the normed space E = C[0, 1].

Define the function dE : X × X → E by dE(f, g) = |f − g|. Then (X, dE) is an E-metric space.
Moreover, fix g ∈ C[0, 1] and let ε(x) be a function with all its values are strictly positive; that
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is, ε(x) never touch the x-axis, so by Example 2.7 we have ε(x) ∈ Int(E+). Then the open ball
B(g, ε) is a fiber that consists of all functions f with values

g(x) − ε(x) < f(x) < g(x) + ε(x), ∀x ∈ [0, 1]. (3.3)

Definition 3.3. Let E be a normed ordered space, and let (X, dE) be an E-metric space. Then a
sequence {xn}∞n=1 in X is called convergent to a point x0 ∈ X, if for all c ∈ Int(E+), there exists
a positive integer N such that dE(xn, x0) < c, for all n > N.

If a sequence {xn}∞n=1 converges to a point x0 ∈ X, then we write

lim
n→∞

xn = x0, or simply xn −→ x0. (3.4)

Definition 3.4. Let E be a normed ordered space, and let (X, dE) be an E-metric space. Then a
sequence {xn}∞n=1 in X is called Cauchy, if for all c ∈ Int(E+), there exists a positive integer N
such that dE(xn, xm) < c, for all n,m > N.

Proposition 3.5. Let {xn}∞n=1 be a sequence in a E-metric space (X, dE), where E is a normed ordered
space. If xn is convergent, then it is a Cauchy sequence.

Proof. Assume that for some x0 ∈ X, xn → x0. Let c ∈ Int(E+). Then there exists a positive
integer N such that dE(xn, x0) < c/2, for all n > N. Therefore for all n,m > N, dE(xn, xm) ≤
dE(xn, x0) + dE(xm, x0) < c.

Proposition 3.6. Let E be a normed ordered space with Int(E+)/= ∅ and let (X, dE) be an E-metric
space. Then any convergent sequence {xn}nn=1 in X has a unique limit.

Proof. Assume that xn → x1 and xn → x2 and let c � 0. Then there exist positive integers
N1 and N2 such that

dE(xn, x1) <
c

2
, ∀n > N1,

dE(xn, x2) <
c

2
, ∀n > N2.

(3.5)

Choose that N = max{N1,N2} + 1, then we get the following:

0 ≤ dE(x1, x2) ≤ dE(x1, xN) + dE(xN, x2) ≤ c

2
+
c

2
= c. (3.6)

As E is a normed ordered space, there exists k > 0 such that ‖dE(x1, x2)‖ ≤ k‖c‖. As c an
arbitrary, then ‖c‖ → 0, which gives ‖dE(x1, x2)‖ = 0, then dE(x1, x2) = 0, hence x1 = x2.

Definition 3.7. Let E be a normed ordered space, and let (X, dE) be an E-metric space. Then
(X, dE) is called complete E-metric space if every Cauchy sequence in X is convergent.

Now, using the concepts of E-metric spaces, let us have the following characterization
of cone metric spaces (Definition 1.2) in the sense of Huang and Zhang as in [7].
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Theorem 3.8. Let X be any nonempty set and E be a space over the real scalars. Then the following
are equivalent.

(a) The pair (X, dE) is an E-metric space, where E is a normed ordered space, with Int(E+)/= ∅,
(b) The pair (X, d) is a cone metric space.

Proof. First (a) implies (b). Consider that P = E+, then by Proposition 2.6, P is closed, and
as Int(E+)/= ∅, we have P /= {0}. If a, b ≥ 0 real numbers and x, y ∈ P , then, by (O2) of
Definition 2.1, we get ax, by ≥ 0, then, by Proposition 2.2(iii), we have ax + by ∈ P . Now
if x ∈ P and −x ∈ P , then by Proposition 2.2(ii), we get x = 0, so P is a cone in the
sense of Definition 1.1. As E is a normed space, then by definition, P is a normal cone. Then
considering that d = dE, we get that (X, d) is a cone metric space.

Conversely, assume that (X, d) is a cone metric space. Then we have a cone P in E, and
the order with respect to P (x ≤ y ⇔ y − x ∈ P) defines a partial ordering on E. To check
the translation invariant (O1): given any x, y and z ∈ E, with x ≤ y. Then by the definition
of the order, y − x ∈ P , therefore, y + z − (x + z) ∈ P , hence x + z ≤ y + z. To prove (O2): by
(ii) of Definition 1.1, we know that 0 ∈ P , and taking y = 0, we get ax − 0 ∈ P , which means
ax ≥ 0. (O3) is direct, hence E is a normed ordered space. By the definition of cone metric
space, Int(P)/= ∅. Finally, the cone metric d on X is chosen to be the ordered E-metric as in
Definition 3.1; hence, the theorem has been checked.

Now, using the above characterization, we have the following results, including a
fixed-point theorem of a contractive mapping. Indeed, Proposition 2.10 is used in the proof
of Lemmas 1 and 4 of Haung and Zhang in [7].

Corollary 3.9. Let E be a normed ordered space with Int(E+)/= ∅, and let (X, dE) be an E-metric
space. Then a sequence {xn}∞n=1 in X converges to x ∈ X if and only if dE(xn, x) → 0 in E.

Proof. Direct by using Theorem 3.8 together with Lemma 1 in [7].

Corollary 3.10. Let E be a normed ordered space with Int(E+)/= ∅, and let (X, dE) be an E-metric
space. Then a sequence {xn}∞n=1 is Cauchy if and only if dE(xn, xm) → 0 in E as n → ∞ and
m → ∞.

Proof. The proof is directed by using Theorem 3.8 together with Lemma 4 in [7].

Finally, we have the following fixed-point theorem in normed ordered spaces.

Theorem 3.11. Let E be a normed ordered space with Int(E+)/= ∅, and let (X, dE) be a complete
E-metric space. If a function f : X → X satisfies the following contractive condition:

dE(f(x), f
(

y
)) ≤ kdE(x, y

)

, for some k ∈ (0, 1), (3.7)

then f has a unique fixed point in X.

Proof. It follows directly by using Theorem 3.8 and Theorem 1 in [7].

Finally, and extending the notion in real-valued metric spaces, let us introduce the
notion of a contractive sequence in E-metric space, then proving that it is indeed a sufficient
to be a Cauchy sequence.
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Definition 3.12. Let E be an ordered space, and let (X, dE) be an E-metric space. Then a
sequence {xn}∞n=1 in X is called contractive if there exists a real number l ∈ (0, 1), such that
dE(xn+2, xn+1) ≤ ldE(xn+1, xn).

Theorem 3.13. Let E be a normed ordered space with Int(E+)/= ∅, and let (X, dE) be an E-metric
space. Then every contractive sequence in X is Cauchy.

Proof. Suppose that xn is a contractive sequence in X. Then for some real number l ∈ (0, 1),
we have

dE(xn+2, xn+1) ≤ ldE(xn+1, xn) ≤ · · · ≤ lndE(x2, x1). (3.8)

Therefore assuming that m > n, we get the following:

dE(xm, xn) ≤ dE(xm, xm−1) + dE(xm−1, xm−2) + · · · + dE(xn+1, xn)

≤
(

lm−2 + lm−3 + · · · + ln−1
)

dE(x2, x1)

≤ ln−1

1 − l
dE(x2, x1).

(3.9)

Therefore, for some k ∈ (0, 1),

∥
∥
∥dE(xm, xn)

∥
∥
∥ ≤ k

ln−1

1 − l

∥
∥
∥dE(x2, x1)

∥
∥
∥, (3.10)

which implies that ‖dE(xm, xn)‖ → 0 and then dE(xm, xn) → 0 in E, hence by Corollary 3.10,
xn is a Cauchy sequence.
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[9] S. Janković, Z. Kadelburg, and S. Radenović, “On cone metric spaces: a survey,” Nonlinear Analysis,
vol. 74, no. 7, pp. 2591–2601, 2011.
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