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A Rademacher-type formula for the Fourier coefficients of the generating function for the parti-
tions of n where no odd part is repeated is presented.

1. Partitions

A partition of a positive integer n is a representation of # as a sum of positive integers where
order of summands (parts) does not matter. Let p(n) represent the number of partitions of .
In 1937, Rademacher [1, 2] was able to express p(n) as a convergent series:
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is a Dedekind sum.



2 International Journal of Mathematics and Mathematical Sciences
In 2011, Bruinier and Ono [3] announced a new formula that expresses p(n) as a finite

sum.

1.1. Formula for p(n)

Let

1
ml1 q

f() —Zp(n)q = (1.4)

be Euler’s generating function for p(n). H. Rademacher used the classical circle method to
find the coefficients of q". There are many other infinite products to which this method could
be applied. We introduce one of these infinite products here and derive the formula for the
coefficients of g". Define
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Let p(j) denote the coefficient of ¢/ in the expansion of G(g), that is,
G(q) = >p()q- (1.6)
j=0

We will find a closed expression for p(j). Note that

1+ qu 1 [e9) .
G(-q) = l_[ g = > pod(n)q", 17)
n=0

where pod(n) equals the number of partitions of n where no odd part is repeated. Thus

pod(n) = (-1)"p(n)

= (—1)"% i \/E Z w (h k/2) g 2rinh/k d

k=1(k2)=2  0<h<k(hk)=1 w(h, k) dn (18)
sinh <ﬂ'\/8ni—l / 2k)

v8n -1
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which is simpler than the one given by Sills [4, page 4, Equation (1.13)] in 2010:

(4 k) w(h, k)ew(4h/ (k,4),k/ (k,4))
pod(n) = Z ( l J>O<h<k(h k=1 w(2h/(k,2),k/(k,2))
(1.9
ey d ( sh(r VR D En-T)/4k) )
xXe —

dn V8n—1 ’

where w(h, k) is defined as

w(h, k) = exp<7ri2£<— - [hrJ - ->> (1.10)

2. Evaluation of the Path Integral
2.1. Convergence and Cauchy Residue Theorem

Considering g as a complex variable in

(1-9")
1‘[(1 )’ ama 1‘[(1 e

we see from the right-hand side that infinite product and thus also infinite series are
convergent for |g| < 1 since

i (qk)n = ﬁ, (2.2)

n=0

is a geometric series which converges for |g| < 1 for any fixed k > 1.
Next, we note that from

G(q) = ﬁ;ﬁ (), (2.3)

we get that

G(q) ZP(])qj

n+1 n+1

if 0<|q| <1. (2.4)
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The series on the right side of (2.4) is a Laurent series of G(q)/q™*". It has a pole of
order n + 1 at g = 0 with residue p(n). Applying Cauchy’s Residue Theorem we get that
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4
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where C is any positively oriented simple closed countour lying inside the unit circle.

2.2. Change of the Variable

The change of the variable g = e*™" maps the unit disk |g] < 1 into an infinite vertical strip
of width 1 in the 7-plane. To see this we note that from q = e*™'" we get logq = 2uit, so
=log q/2zri. Choosing the branch cut to be [0, 1], we get

logll?l + Arg(q). (2.6)
2ri 20

T =

As g traverses a circle centered at g = 0 of radius e™>" in the positive direction, the point 7
varies from i to i + 1 along a horizontal segment as could be easly deduced from (2.6).

Replacing the segment by the Rademacher path composed of upper arcs of the Ford
circles formed by the Farey series ¥y, (2.5) becomes

i+1 (f(e47rn')) Zﬂ.leZJrlT

p(n) = 5 2.7
( ) z.ﬂ'l f(ezﬂ'lT)eZJl'IT(Tl+1) ’ ( )
which simplifies to
D i (f(647rlT)) g2miTn
Pln) = L e T
(2.8)

. FE™ en

() f (eZmT)

The above can be written as

(f(e4.7rn')) —27riTn dr = & (f(e4.7rn')) —2JTiTn dr
IP(N) Z Z J‘ (h,k) ’ (29)

f(e¥im) k=1 0<h<k(hk)=1" Y f ~flermm)

where y(h, k) is the upper arc of the Ford circle C(h, k).
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2.3. Another Change of the Variable

Consider another change of variable

h iz
.= 2.10
=Lt (2.10)
so that
) h
z = —1k<T - %) (2.11)
dz = —ik drt. (2.12)

Under this transformation the Ford circle C(h, k) in the T-plane with center at h/k +
i1/2k? and radius 1/2k? is mapped to a negatively oriented circle Ci in the z-plane with
center at 1/2k and radius 1/2k. This follows from the fact that any point on the Ford circle
C(h, k) is given by

o1 1
T:(E+l@>+me, 0<6<2r (2.13)

Substitution of (2.13) into (2.11) gives

z= % + % <—iei6>, (2.14)

which is a circle centered at 1/2k with radius 1/2k. Now we make change of variable in (2.9).
This gives

i . Z sk [ (f(e4arih/k—4yriz/k))2 N
Bn) =ik g2rin J ___ e2ma/k gz (2.15)
2 ot oy f(e2min/k2mz/k)
where

Shk = K + i i

B

(2.16)
k ks
thi =

- 1
k2 + k2  k2+k?

are initial and terminal points, respectively.
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2.4. Modular Transformation
Next, we note that

eyriT/lZ

n(r) ’

f(a) = f<e2mr> _ (2.17)

where 71(7) is the Dedekind eta function. Rewriting modular functional equation [5, page 96]
for 17(7) in terms of f(g) = f(e*™'") = f(e>™h/k-272/k) we get

n -
f (ezjrih/k—ZJrZ/k> = w(h, k) exp <]%> VZf <exp <27rille+H> > , (2.18)

with hH = -1(modk), (h, k) = 1.
To evaluate (2.15) we would like to express

4oih/k-4miz/ k2
_ 2mit _ 2ih/k-27wz/k\ _ (f(e )
G(q) = G(e*™™) = G(e )= () (2.19)

in the same way we did for f(g) above. Two cases have to be considered: (k,2) = 1 and
(k,2) =2. When (k,2) = 1 we will replace h by 2h and z by 2z, and when (k,2) = 2, k will be
replaced by k/2 in order to obtain f(g*) from f(g). Hence, we have

w?(2h, k) e ((22)"-22)/6kn 172 ( p2mi(i(22)™! +Hz)/k>
w(h, k)e’f(z'l—z)/Uk\/Ef(eZJri(iz—1+H2)/k)
w?(h, k/z)eyr(z’l—z)/BszZ <e47ri(iz’1+H1)/k>

, if (k,2) =1,
G<€Zyrih/k—27rz/k> _

w(h, k)ex(z-l—z)/ukﬁf(ezm(iz-uH])/k) / if (k,2) =2,
(2.20)
which simplifies to
) fz p2mi(i(22) ' +Hy) /k

zwemmﬁ < __ > if (k,2) =1,
G<ezmh/k—2m/k> _ w(h, k) f (e2iliz"+Ha) /K (2.21)

wz(h/ k/2) e:r(zfl—z)/4kﬁG<e27ri(iz’1+H1)/k> if (k 2) =2

w(h, k) 7 4 4

where hH; = -1(modk) and j | H; for j = 1,2.
We return to evaluation of (2.15). To proceed we note that

G<627ri(iz‘1+H1)/k) -1+ {G<62:ri(iz4+H1)/k> — 1}. (2.22)
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Rewriting (2.15) in terms of (2.21) and (2.22) we obtain

N ) e f2 eZJri(i(2z)’1+H2)/k>

~ - -1 w (Zh/ k) —2rinh/k ’ < az/k(2n-1/4)

p(n) =i k 22— Z¢ Vz — e dz
k=1(%2)=1 0§h<kz(h,k)=1 w(h, k) f (e?rii=+Ha) /)

Shk

oS w?(h,k/2) _ inh/k-rh’k iz +Hy) /K _
+1i Z k™ Z AP Sh,kﬁ{1+(G<eZ’r +H ) 1>}

=ik osnergipa WK

e((]rz/k)(Zn—l/4)+Jr/4zk) dz

27ri(i(22)’1+H2) /k)
7rz/k(2n-1 /4)dz

N
Y -1 (Zh k) —Zmnh/k
=2 Z k (U(h k) \f f(eZJrz(lz*HHz)/k)

k=1(k,2)=1 0<h<k(h,k)=1

S W (hk/2)
+1 k! (— —Zerh/k(] (h, k) + o (h, k),
kzl(;z):z osh<%,k), w(h, k) ! 2
(2.23)

where

]1(]’1, k) — j;:l; ﬁe(ﬂz/k(Zn—1/4)+Jr/4zk) dz ,

tnk (2.24)
Jo(h, k) = J‘ ﬁ{G<62ﬂi(iz‘1+H1)/k> -1 }e(Jrz/k(Zn—l/4)+Jr/4zk) dz.

Shk

2.5, Estimation of the First Term

We will estimate the first term in (2.23) and will show that it is small for large N. To do this
we change variable again by letting ¢ = zk. Then the first term in (2.23) becomes

f2< zm(i(zg/krqu)/k)
eTé/ K (2n=1/4) dg,

2i i k75/2 Z w (Zh k) sznh/kj

k=121 o<hk)=1 “w(h k) . f<ezm(i(g/kyl+H2>/k>
(2.25)
where
st = K + KKy i, (2.26)
TR+ ky K2+ kg
. K2 kks .
Bk = 2, P (2.27)

are initial and terminal points obtained from (2.16), respectively. Under this change of
variable circle Ck in z-plane with center at 1/2k and radius 1/2k is mapped to a circle Cj
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in ¢-plane centered at 1/2 with radius 1/2. Note also that the mapping w = 1/¢ maps the
circle C; and its interior onto a half-plane R(w) > 1 (where :3(w) denotes the real part of
complex variable w and J(w) is the imaginary part). From elementary complex analysis we
have that R(w) = x/(x*+y?) and J(w) = -y/(x* +y?), where x +iy = ¢. It is readily seen that
the segment 0 < x < 1 in the ¢-plane is mapped to an infinite strip [1, o) in the w-plane. So,
it follows that inside and on the circle C; we have that 0 <R(§) < 1and R(1/¢§) > 1. We now
show that :3(1/¢) = 1 on the circle C;. To see this note that in the polar form § = 1/2+(1/ 2)et?
on Cy, 0 < 6 < 2or. From this we get that

12 2
¢ 1+e® (1+cos)+isinf
_ 2[(1+cos®) —isind]
(1 + cos 6)2 + sin%0
_ 2(1+cos0) _; 2sin 0
T 2+2cos® 2+2cosH
; sin@
1+cos@’

(2.28)

So, M(1/¢) = 1.

Furthermore, we may move path of integration from the arc joining s , and t; ; to
a segment connecting these two points on the circle C;. By [5, page 104], Theorem 5.9 the
length of the path of integration is bounded by 2v/2k/N, and on the segment connecting Shi
and t;, ., [¢| < v2k/N.

Next, let us define p*(m) by

12 (ezm(i(zg/k)“ +H2)/k>

> 5t (m)q" = (2.29)
m=0

f(ezm(i(é/k)’HHz)/k) ’

which is a part of the integrand in (2.25). Then, estimating the integrand in (2.25) we get

7 <627ri(i(2§/k’1)+H2)/k>
x [-1+

'\/é o(T8/I) (2n-1/4)

f (ezma(g/k)’%Hz)/k)

e ) | gy 1)
m=1

_ |§|1/2|em;/k2 (2n—1/4)| %
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S (m) eXp<_27me> exp<2ﬂ'i—zin>

m=1

< |§|1/2627rnmi:1|ﬁ*(m)| exp<—23rm9‘i<%>>

< |§|1/Zeyr/k2 (2n-1/4)R(¢)

©
< |§|1/2627mz |ﬁ*(m)|e—27rm
m=1

= |§|1/2827mi |ﬁ*(m)|ym, (where y= e—27r>
m=1

1/2
= cl¢g['?,

(2.30)

where
c=e"" > |pH(m)|y™. (2.31)
m=1

Note that ¢ does not depend on ¢ or N. It depends on n, but n remains fixed in the above
analysis. So,

12 < 62xi(i(2§/k)’1+Hz)/k>

*(hk 1/2
£ (h k) (ré/k?)(2n-1/4) 1/2 \/Ek 2\/§N
4 e dg| <clg| " <c
s*(h,k) f'(ez.ﬂ'i(i((_:/k)’1 +H2)/k> N N (232)
< ak¥2N=/2,

for some constant «, and we have that

N # (hk
. 502 W 1K) pmiayic
2i E k E "k e

k=1(k.2)=1 oshe<kniy=1 W k) s*(hk)

12 ( e27ri(i(2§/k)’1+Hz)/k>
eﬂ'g/k2 (2n-1/4) (d(‘;)

e2i(i(¢/k) " +Hy) /k
f < ) (2.33)

N
< 2 Z Z ak—l N—3/2
k=1(k,2)=10<h<k(h,k)=1

N
<2aN¥2 N 1=2aN""2
k=1(k,2)=1

This completes the estimation of the first term in (2.23). We proceed to the second term.
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2.6. Estimation of the Second Term

First, we will show that

thk o
Jo(h, k) = f ﬁ{c<82ﬂl(lz +H1)/k> _ 1}6(7rz/k(2n—1/4)+7r/4zk) dz (2.34)

Shk

is small for large N. Making change of variable ¢ = zk as before, we get that
t;z,k Py -1 2
Ja(h, k) = k_m,[ \/E{G<e2m(z(§/k) +H1)/k> _ 1}6(7r§/k Qu-1/4)en/40) g (2.35)
Shk
where s} | and t} , are as in (2.26), respectively. As before, we define p**(m) by
Zﬁ**(m)qm — G<62.7ri(i(§/k’1)+H1)/k> -1. (236)
m=0

Then, estimating the integrand, we see that

X

Née“’“ﬂkz) (2n-1/4)7/49)

G<ezm(i(g/k)*l+Hl)/k> _ 1|

®, 2rim(ik/& + H
%P**(m)exp< rim k/é+ 1)> -1

m=1

= ~okk 1
< |§|1/2€2nnen/4%(1/§)z |P (m)| exp<—2_7rm9‘{<g)>

m=1

= |g["/2e2™ ; [P (m)]| eXP<<—2’”“ ’ 9”(%»

_ |§|1/2|eﬂ'§/k2 (2n—1/4)ear/4§| %

< |§|1/Ze(7r/k2) (2n=1/4)RQ) pr /49R(1/8)

<26 33 7 ) exp(-2mm + )

[ee]

— |§|1/2e2ymz

m=1

—ar/4(8m-1)

ﬁ**(m)|e

©
< |§|1/2€27rnz |’p‘**(8m _ 1) |e—]r/4(8m—1)
m=1
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(o)
— |§|1/2€2ﬂnz|ﬁ**(8m_1)|x8m—1, Where x = e—]l'/4
m=1

= bjg|'?,
(2.37)

where

b=e™" > |p™(8m —1)[x*"". (2.38)
m=1

Note that b does not depend on ¢ or N. It depends on n, but # is fixed. It follows, therefore,
that

3k 1/2 2/IN

[J2(h, k)| < b<W> N < pK32N/2, (2.39)

for some constant 3. Then we have that

(1 k/2) 2mrinh N
w1, Tk -1 7y-3/2
Wil © ko Lhk|< > > BKIN

k=1(k,2)=20<h<k (h,k)=1

Sk

i k—5 2

k=1(k,2)=2 0<h<k(h,k)=1
(2.40)

N
<BNTE N 1=pNT2
k=1(k,2)=2

Combining the results from (2.33) and (2.40) we have that

N 2
W k/2)

Pm=i >, k7 w(h, k)

,Zﬁinh/kjl(h’ k) + O<ﬁN’1/2 + 2“N71/2)
k=1(k,2)=2 0<h<k(h,k)=1

(2.41)
N 2
- Z k572 Z w”(h,k/2) e—2m‘nh/k]1(hl k) + O(N_1/2>.

k=1(k2)=2 ochekipr W k)

Finally, we turn our attention to
"
Fi(h k) = k302 J' e \/ge<<zr§/k2><2n—1/4>+zr/4§> dt. (2.42)
Shk

We note that

0 t;[,k
Ji(h, k) = f —j —I = J -51-S,, (2.43)
Cy SZ,k 0 Cr

k
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where C} is a circle in the -plane centered at 1/2 with radius 1/2, as before. It is easily seen

that the length of the arc connecting 0 and s; , is less then

*
|Sh,k
2

(2.44)

27 SJT|SZ/k| Sm‘ﬁ%'

From the discussion above we know that R(1/¢) = Tand 0 < R(¢) < 1 on C}. So, the integrand
in S could be estimated as

(g /K2 @n-1/4)+m/48) | _ | 211/2| @/ (2n-1/4) || /42
ge =157 e e

— |§|1/Ze.7r/k2 (271—1/4)9%(@)87[/49%(1/(;) (245)

k1/2
< 1/4 62.7['716.7[/4‘

= N1/2

2.7. Combining the Results

We combine the results in (2.44) and (2.45) to get

IS1] < yk3¥2N73/2, (2.46)

where y is a constant. We can obtain similar estimate for S, and, as before, we get an error
term O(N~'/2) in the formula for p(n). Therefore, we can write

N
5(n) =i Z k-5/2 w?(h,k/2) p2rinh/k
k=1(k2)=2 oshkpr WL K) (247)
(¢ /K*) (2n=1/4)+7 /48) -1/2
x ge d¢+O(N .
[ ()
Letting N — oo we have that
et § k3 COMD
k=1(k.2)=2 ochekmpar @ k) (248)
« f \fRelmt/ Rt/ sn/i) g
k
We introduce another change of variable
1 1
= = - 2.49
f=, di=-— (2.49)
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Then (2.48) becomes

~ _1 = _5/2 a)z(h,k/Z) —-2rrinh/k
P =7 2 k wih k) ¢

k=1(k,2)=2 0<h<k(hk)=1
(2.50)

1+o0i
« f w—S/Ze((yr/kz)(Zn—l/4)1/w+7rw/4) dw.

1—o0i
Lett = orw/4 in (2.50), then the above becomes

;a'(n)=2ﬂ<71/2> i K52 Y w2(h,k/2)efzmnh/ki.
8 k=1(k,2)=2 0<h<k(hk)=1 w(h, k) 271

Jr [ 4+o0i
XI {7572 pt+(? /43 2n=1/4)(1/8) 34,

ar /4—ooi

(2.51)

2.8. Bessel Function

In Watson’s Treatise on Bessel functions [6, page 181], we find a formula equivalent to the
following:

1

/Zz)v c+ooi o (2 a) )
I,(z) = — tv e dt, (ifc>0, R(»)>0). (2.52)

2

Let

1/2
i {4”—;(211—}1)} (253)

and v = 3/2. Then we have

3/2 0 2 )
ﬁ(ﬂ) — 271.(‘71-8 > Z k—5/2 Z w (I’l,k/Z) e—Z]rmh/k

k=1(k2)=2 ochetipr W k)
a32(2n-1/4)%4 T 1
x o bl P\ g
_ 2m(2n- 1/4)%4 2 - w?(h,k/2) e 2rinh/kp, Al - 1 )
V8 ki) oshck(nior W K) k 4
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Note that Bessel functions of this order can be expressed as

Iya(z) = \/% < (Sinzhz>. (2.55)

Expanding (2.55) we have that

2z /coshz sinhz
13/2(Z)=V;< . = ) (2.56)

Substituting (2.53) into (2.56), we get

a 1\ /2 av8n—1
Fra(2) = 13/2<z<2"‘ ;) > - I3/2<T>

_\JZ(JZ‘ 8n—1/2k> cosh(ar 8n—1/2k> sinh(yr 8n—1/2k>

T (ﬂ\/ﬁﬁ/Zk) <ﬂ</8n—1/2k>2
(2.57)
Sn-1)V4 ([ 2 cosh(yr\/Sn - 1/2k> 4k /o sinh(yr\/Sn - 1/2k>
vk TVen-1 Z@n-1)
1 <.71' 8n—1> 4ksinh<3r\/8n—1/2k>
=— | 2cosh _
VB —1/k 2k wV8n -1
Multiplying (2.57) by
2r(2n —1/4)7* 27
= , 2.58
V8 (8n—1)%* (2.58)
we get
2(2 cosh(yr\/Sn - 1/2k> -4k sinh(ﬂ'M/Zk) /x«/&ﬁ)
. (2.59)

(8n-1)*\/v8n-1/k
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2.9. Final Form

Finally, we rewrite (2.54) in terms of (2.59) to get

ﬁ(?’l) — i k—l wz(h/ k/2) 672Jrinh/k
(iD= o<hekgip W K)
) (2.60)
2<2 Cosh<7r\/8n - 1/2k> -4k smh(m'\/Sn - 1/2k> /or\/8n — 1)
X N
(8n-1)¥*\/v8n-1/k
Thus,
< wz(h,k/2) 2orinh/k
pod(n) = (-1)" K —— e inh/
k=1(%2)=2 0<h<k(hk)=1 w(h, k)
2.61
2<2cosh<yr\/8n - 1/2k> -4k sinh(yr\/Bn - 1/2k> /ar/8n — 1> ( )
X 7
(8n-1)¥*\/v8n-1/k
or equivalently
a2 ¥k 1K/ sy (S (TVEH1/2K)
pod(n) = (-1)"= > Vk — € -
Tl ot W K) n V8n -1
(2.62)
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