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We study some realization problems related to the Hessian polynomials. In particular, we solve
the Hessian curve realization problem for degrees zero, one, two, and three and the Hessian
polynomial realization problem for degrees zero, one, and two.

1. Introduction

A topic which has been of interest since the XIX century is the study of the parabolic curve of
smooth surfaces in real three-dimensional space, as shown in the works of Gauss, Darboux,
Salmon [1], Kergosien and Thom [2], Arnold [3], among others.

The parabolic curve of the graph of a smooth function, f : R
2 → R, is the set

{(p, f(p)) ∈ R
2 × R: Hessf(p) = 0}, where Hess f := fxxfyy − f2

xy. In this case, the Hessian
curve of f , Hess f(x, y) = 0, is a plane curve which is the projection of the parabolic curve
into the xy-plane along the z-axis. When f is a polynomial of degree n in two variables, Hess
f is a polynomial of degree at most 2n − 4. Therefore, the Hessian curve is an algebraic plane
curve. In this setting there are two natural realization problems related to the Hessian of a
polynomial.

(1) Hessian curve realization problem. Given an algebraic plane curve g(x, y) = 0 in K
2,

where K = R or C, we ask: When is g(x, y) = 0 the Hessian curve of a polynomial
f ∈ K[x, y]?

(2) Hessian polynomial realization problem. Given g ∈ K[x, y] we ask: When does f ∈
K[x, y] exist such that Hess f = g? If such f exists and K = C ( K = R ), then
g is called a complex Hessian polynomial (real Hessian polynomial). We remark that
Arnold (see [4]) calls Hessian topology problem to the study of the problem 1 in the
real case.
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Note that problem 2 contains problem 1. Moreover, in the real case, problem 2 is a
global realization problem of a smooth function such as the Gaussian curvature function. In
[5], Arnold studies this problem locally.

This work is devoted to problems 1 and 2 for complex and real case of degree less or
equal to three. It is divided in two parts. In the first we give the results according to the degree
of the polynomials g. In the second part, we give the proofs and some other results such as a
geometric interpretation of Corollary 2.8.

2. Notation and Results

For each nonnegative integer number n, we define A
K

n := {f ∈ K[x, y] | deg(f) ≤ n}. Let us
consider the Hessian map

HK

n : A
K

n −→ A
K

2n−4, given by f �−→ Hess f. (2.1)

We will say that the Hessian map HK

n is complex or real if K = C or K = R,
respectively. We remark that dim(AK

n ) ≥ dim(AK

2n−4) if 2 ≤ n ≤ 4 and dim(AK

n ) < dim(AK

2n−4)
if n ≥ 5. In particular, for n ≥ 4, the image, HK

n (A
K

n ), is a connected subset of codimension at
least three in A

K

2n−4. This means that, in “general”, a polynomial g ∈ A
K

2n−4 is not a Hessian
polynomial if n ≥ 4 underHK

n .
In diagram form we have

A
K

2 � A
K

3 � A
K

4 � · · · � A
K

n · · ·
↓HK

2
↓HK

3
↓HK

4
· · · ↓HK

n
· · ·

A
K

0 � A
K

2 � A
K

4 � · · · � A
K

2n−4 · · ·

(2.2)

In virtue of the previous remarks, we introduce the fiber of g ∈ A
K

2n−4 under H
K

n as the
set

(
HK

n

)−1(
g
)
:=
{
f ∈ A

K

n | HK

n

(
f
)
= g
}
. (2.3)

Even when we consider the fibers, (HK

n )
−1(g) , for different values of n, we are interested

in knowing if the fiber (HK

n )
−1(g) is not empty when n satisfies 0 ≤ 2n − 4 − deg(g) ≤ 1.

If the fiber (HK

n )
−1(g) is empty, the next problem is to see if the fibers (HK

s )
−1(g) are not

empty for s ≥ n+1 (this problemwill not be studied in this work). Another way to study the
Hessian polynomial realization problem is by describing the set of all polynomials f ∈ A

K

r ,
with r ≥ n = (m + 4)/2, such that HK

n (f) = g whenever g ∈ A
K

m.

Remark 2.1. Let g(x, y) =
∑2n−4

i+j=0 bijx
iyj be a polynomial in A

K

2n−4. There exists a polynomial

f(x, y) =
∑n

i+j=0 aijx
iyj in (HK

n )
−1(g) if and only if f satisfies the following system of (2n −

3)(n − 1) equations:

hij(ars) = bij , 0 ≤ i + j ≤ 2n − 4, 2 ≤ r + s ≤ n, (2.4)
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where hij(ars) are the coefficients of the Hessian polynomial HK

n (f). They are also quadratic
polynomials in the variables ars.

It is important to note that the computations for solving the system (2.4) are generally
very complicated.

In the following results we describe the sets of polynomials of a given degree which
are Hessian and those which are not Hessian under a specific Hessian map.

2.1. Degree of g Equal to Zero

Proposition 2.2. For each g ∈ A
C

0 , the set (H
C

2 )
−1(g) is a quadric in A

C

2 given by a211 = 4a20a02−g.
Moreover, this quadric is singular if and only if g = 0.

Corollary 2.3. In the complex case every element in AC

0 = C is a complex Hessian polynomial
under HC

2 . And, in the real case every element in AR

0 = R is a real Hessian polynomial under HR

2 .

Proposition 2.4. For each g ∈ A
C

0 , the set (HC

3 )
−1(g) is an analytic subvariety in A

C

3 which is given
by the union of connected analytic subvarieties which are parametrized by the following.

(1) F±
1 : C×C

∗ ×C
∗ ×C

3 → A
C

3 ; (t1, t2, t3, t4, t5, t6) �→ (a30 = t22/3t3, a21 = t2, a12 = t3, a03 =
t23/3t2, a20 = t1, a11 = (2t3t1 ± t2

√−g)/t2, a02 = t3(t3t1 ± t2
√−g)/t22, a10 = t4, a01 =

t5, a00 = t6).

(2) F2 : C × C
∗ × C

3 → A
C

3 ; (t1, t2, t3, t4, t5) �→ (a30 = 0, a21 = 0, a12 = 0, a03 = 0, a20 =
(t21 + g)/4t2, a11 = t1, a02 = t2, a10 = t3, a01 = t4, a00 = t5).

(3) F±
3 : C

5 → A
C

3 ; (t1, t2, t3, t4, t5) �→ (a30 = t1, a21 = 0, a12 = 0, a03 = 0, a20 = t2, a11 =
±√−g, a02 = 0, a10 = t3, a01 = t4, a00 = t5).

(4) F±
4 : C

5 → A
C

3 ; (t1, t2, t3, t4, t5) �→ (a30 = 0, a21 = 0, a12 = 0, a03 = t1, a20 = 0, a11 =
±√−g, a02 = t2, a10 = t3, a01 = t4, a00 = t5).

2.2. Degree of g Equal to One

Proposition 2.5. For each g(x, y) = b10x + b01y + b00 ∈ A
C

2 of degree one, the set (HC

3 )
−1(g) is

an analytic subvariety in A
C

3 which is given by the union of analytic subvarieties parametrized by the
following.

(1) For b10b01 = 0, F1 : C
∗ × C × C

3 \ {4b201t21 − 4b10b01t1t2 + b210t
2
2 + b00b

2
10 = 0} →

A
C

3 ; (t1, t2, t3, t4, t5) �→ (a30 = (1/3)(b310t1/(4b
2
01t

2
1 − 4b10b01t1t2 + b210t

2
2 + b00b

2
10)), a21 =

b01b
2
10t1/(4b

2
01t

2
1 − 4b10b01t1t2 + b210t

2
2 + b00b

2
10), a12 = b201b10t1/(4b

2
01t

2
1 − 4b10b01t1t2 +

b210t
2
2+b00b

2
10), a03 = b

3
01t1/3(4b

2
01t

2
1−4b10b01t1t2+b210t22+b00b210), a20 = t1, a11 = t2, a02 =

(t22 + b00)/4t1, a10 = t3, a01 = t4, a00 = t5).

(2) For b10b01 /= 0, F±
2 : C

∗ × C
3 → A

C

3 ; (t1, t2, t3, t4) �→ (a30 = (1/3)(t1b10/b01), a21 =

t1, a12 = b01t1/b10, a03 = (1/3)(b201t1/b
2
10), a20 = 0, a11 = ±

√
−b00, a02 =

(1/4)(b01(±4t1
√
−b00 + b10)/b10t1), a10 = t2, a01 = t3, a00 = t4).

From this proposition we have the following.

Corollary 2.6. Every complex polynomial of degree one is a complex Hessian polynomial under HC

3 .
And every real polynomial of degree one is a real Hessian polynomial under HR

3 .
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2.3. Degree of g Equal to Two

Let g1, g2 ∈ K[x, y]. We say that g1 is in the orbit of g2 if they are equivalent by an affine
transformation of the plane K

2.

Theorem 2.7. Complex Case

(1) The complex polynomials of degree two

y2 x − y2 y2 − x2 − k, k ∈ C (2.5)

are complex Hessian polynomials under HC

3 . Moreover, a polynomial g ∈ A
C

2 of degree two
is a complex Hessian polynomial under HC

3 if and only if it belongs to the orbit of one of
those polynomials.

(2) The complex polynomials, y2 + r ∈ A
C

2 , where r ∈ C
∗, are not complex Hessian

polynomials under HC

3 . Moreover, a polynomial g ∈ A
C

2 of degree two is not a complex
Hessian polynomial under HC

3 if and only if it belongs to the orbit of one of those
polynomials.

Real case

(1) The real polynomials of degree two

−y2 x − y2 y2 − x2 − r1, r1 > 0 −y2 − x2 + r2, r2 > 0 (2.6)

are real Hessian polynomials under HR

3 . Moreover, a polynomial g ∈ A
R

2 of degree two is
a real Hessian polynomial under HR

3 if and only if it belongs to the orbit of one of those
polynomials.

(2) The real polynomials of degree two

y2 y2 − x2 − r3, r3 ≤ 0 y2 + x2 − r4, r4 ∈ R −y2 − x2 + r5, r5 ≤ 0

y2 + x y2 − r6, r6 ∈ R
∗ −y2 − r7, r7 ∈ R

∗ (2.7)

are not real Hessian polynomials under HR

3 . Moreover, a polynomial g ∈ A
R

2 of degree two
is not a real Hessian polynomial under HR

3 if and only if it belongs to the orbit of one of
those polynomials.

It is well known that the complex affine classification of conics is given by the normal
forms: y2 = x (parabola), y2 = x2 + 1 (general conic), y2 = x2 (line pair), y2 = 1 (parallel
lines), and finally y2 = 0 (double line). Therefore, we have the following corollary.

Corollary 2.8. All the complex affine conics, except the parallel lines, are complex Hessian curves of
polynomials in A

C

3 .

In the next section we will give a geometric proof of this corollary.



International Journal of Mathematics and Mathematical Sciences 5

Proposition 2.9. Let g(x, y) = b20x
2 + b11xy + b02y

2 + b00 be a polynomial in A
C

2 with
b20(4b20b02 − b211)/= 0. Then the set (HC

3 )
−1(g) is an analytic subvariety on A

C

3 which is the union
of analytic subvarieties parametrized by the following.

(1) F±
1 : C

4 → A
C

3 ; (t1, t2, t3, t4) �→ (a30 = t1, a21 = (1/2)(3b11t1±√
9t21b

2
11 − 36t21b02b20 − b320/b20), a12 = (−6t1b02b20+3b11t1±

√
9t21b

2
11 − 36t21b02b20 − b320)

/2b220, a03 = (−1/6b220)(±b02
√
9t21b

2
11 − 36t21b02b20 − b320 + 6b11t1b02 − (3b11t1 ±√

9t21b
2
11 − 36t21b02b20 − b320)b211/b20 + 3b11b02t1), a20 = b20

√
b00/4b20b02 − b211, a11 =

b11
√
b00/4b20b02 − b211, a02 = b02

√
b00/(4b20b02 − b211), a10 = t2, a01 = t3, a00 = t4).

(2) F±
2 : C

4 → A
C

3 ; (t1, t2, t3, t4) �→ (a30 = t1, a21 = (3b11t1 ±√
9t21b

2
11 − 36t21b02b20 − b320)/2b20, a12 = (3b11t1 − 6t1b02b20 ±√

9t21b
2
11 − 36t21b02b20 − b320)/2b220, a03 = (−1/6b220)(±b02

√
9t21b

2
11 − 36t21b02b20 − b320 +

3b02b11t1 + 6b11t1b02 − (3b311t1 ± b211

√
9t21b

2
11 − 36t21b02b20 − b320)/b20), a20 =

−b20
√
b00/4b20b02 − b211, a11 = −b11

√
b00/4b20b02 − b211, a02 = −b02

√
b00/4b20b02 − b211,

a10 = t2, a01 = t3, a00 = t4).

From the study of the previous fibers, a natural question arises. What is the relation
between the set of critical points of HC

n and the set of singular Hessian curves defined by
polynomials in A

C

2n−4?
We define A

C

nR := {f ∈ C[x, y] | 2 ≤ deg(f) ≤ n}. Let us describe the relation between
the set of critical points of HC

3R : A
C

3R → A
C

2 and the set of polynomials in A
C

2 such that they
define singular Hessian curves.

Proposition 2.10. If f ∈ A
C

3R is a critical point of the map HC

3R : A
C

3R → A
C

2 , then the Hessian
curveHC

3R(f)(x, y) = 0 is singular or it has degree one.

For the general case, we have the following conjecture.

Conjecture 2.11. If f ∈ AnR is a critical point of the map HC

nR : A
C

nR → A
C

2n−4, then its Hessian
curve,Hess f(x, y) = 0, is singular or has degree less than 2n − 4.

2.4. Degree of g Equal to Three

The following theorem is one of the most important of this paper.

Theorem 2.12. Complex Case

(1) The curves defined by Table 1 of complex cubic curves (see [6]) are complex Hessian curves
under HC

4 .

(2) The curves defined by Table 2 of complex cubic curves are not complex Hessian curves under
HC

4 .
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Table 1: Complex Hessian cubic curves.

xy2 = bx2 + cx + d, b, c, d ∈ C xy2 + ey = bx2 + cx + d, e ∈ C
∗, b, c, d ∈ C

y2 = ax3 + bx2 + cx + d, a ∈ C
∗, b, c, d ∈ C

Table 2: Complex cubic curves which are not complex Hessian curves.

xy2 + ey = ax3 + bx2 + cx + d, a ∈ C
∗, b, c, d, e ∈ C xy = ax3 + bx2 + cx + d, a ∈ C

∗, b, c, d ∈ C

y = ax3 + bx2 + cx + d, a ∈ C
∗, b, c, d ∈ C x3 + bx2 + cx + d = 0, b, c, d ∈ C

Real Case

(1) The normal form of curves (see [7]) defined in Table 3 is a real Hessian curve under HR

4 .
Moreover, a curve g ∈ A

R

3 of degree three is a real Hessian curve under HR

4 if and only if
its polynomial belongs to the orbit of one of those polynomials.

(2) The normal form of curves defined by the polynomials in Table 4 is not a real Hessian
polynomial under HR

4 . Moreover, a curve g ∈ A
R

3 of degree three is not a real Hessian curve
under HR

4 if and only if its polynomial belongs to the orbit of one of those polynomials.

3. Proofs

Let us consider the complex Hessian mapHC

n : A
C

n → A
C

2n−4 f �→ Hess f and recall that the
fiber of g ∈ A2n−4 underHC

n is the set (HC

n )
−1(g) := {f ∈ A

C

n | HC

n (f) = g}.

Proof of the Proposition 2.2. Let f(x, y) =
∑2

i+j=0 aijx
iyj ∈ A

C

2 . A direct calculus shows that
fxx = 2a20, fxy = a11, and fyy = 2a02. Therefore,

HC

2
(
f
)
= 4a20a02 − a211. (3.1)

For each g ∈ A
C

0 , consider S(g) = {(a00, a10, a01, a20, a11, a02) : a211 = 4a20a02 − g}. To show that
(HC

2 )
−1(g) = S(g) it is enough to show (HC

2 )
−1(g) ⊂ S because a direct substitution shows

S ⊂ (HC

2 )
−1(g). Therefore, let us consider f ∈ (HC

2 )
−1(g), that is, HC

2 (f) = 4a20a02 − a211 = g.
Hence a211 = 4a20a02 − g and the first part of the claim is done. Finally, the derivative ofHC

2 is
given by

DHC

2
(
f
)
= (0, 0, 0, 4a02,−2a11, 4a20). (3.2)

Therefore, we conclude the proof of the result.

Proof of the Corollary 2.3. The polynomial f(x, y) = x2 + (g/4)y2 satisfies that HK

2 (f) = g in
complex or real case.
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Table 3: Real Hessian polynomials.

x2y + y2 + x + a1y + a2 = 0, a1, a2 ∈ R x2y + y2 + y + a3 = 0, a3 ∈ (−∞, 0) ∪ (0, 1/4)
x2y + y2 − y + a4 = 0, a4 < −3/4 x2y + y2 − 1 = 0
x2y + 3y = 0 x2y − 3y = 0
x2y = 0 x3 + a5x − y2 − 1 = 0, a5 ∈ R,

x3 − y2 + a6x + 1 = 0, a6 ∈ R x3 − y2 + x = 0
x3 − y2 − x = 0 x3 − y2 = 0

Table 4: Real polynomials which are not Hessian polynomials.

xy2 − x(x − 3)2 + b1x + b2y − b3 = 0, b1, b2, b3 ∈ R xy2 − x3 + b4x + 2y − b5 = 0, b5 ∈ R

xy2 − x3 + b6x − 1 = 0, b6 ∈ R xy2 − x3 + x = 0
xy2 − x3 − x = 0 xy2 − x3 = 0
x3 + xy2 − 6y2 + b7x + b8y + b9 = 0, b7, b8, b9 ∈ R x3 + xy2 + b10x + 3y + b11 = 0, b10, b11 ∈ R

x3 + xy2 + b12x + 1 = 0, b12 ∈ R x3 + xy2 + 3x = 0
x3 + xy2 − 3x = 0 x3 + xy2 = 0
x2y + y2 + y + c = 0, c ∈ {0} ∪ [1/4,∞) x2y + y2 − y + d = 0, d ≥ −3/4
x2y + y2 + 1 = 0 x2y + y2 = 0
x2y + 3x + 3y + b13 = 0, b13 ∈ R x2y + 3y + 1 = 0
x2y + 3x − 3y + b14 = 0, b14 ∈ R x2y − 3y + 1 = 0
x2y + 3x + 1 = 0 x2y + 3x = 0
x2y + 1 = 0 x3 − xy + 1 = 0
x3 − xy = 0 x3 − y = 0
x3 + b15x + 1 = 0, b15 ∈ R x3 − 3x = 0
x3 + 3x = 0 x3 = 0

Lemma 3.1. If f(x, y) =
∑3

i+j=0 aijx
iyj ∈ A

C

3 , then the mapHC

3 : AC

3 → AC

2 is

HC

3
(
f
)
= b20x2 + b11xy + b02y2 + b10x + b01y + b00, (3.3)

where the brs coefficients satisfy the following system of quadratic equations:

b20 = −4a221 + 12a30a12,

b11 = −4a21a12 + 36a30a03,

b02 = −4a212 + 12a21a03,

b10 = 12a30a02 + 4a20a12 − 4a21a11,

b01 = 12a20a03 + 4a21a02 − 4a12a11,

b00 = −a211 + 4a20a02.

(3.4)
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Proof of the Proposition 2.4. For g ∈ A
C

0 we have that, by Lemma 3.1, HC

3 (f) = g is equivalent
to the following system of equations:

0 = −4a221 + 12a30a12, (3.5)

0 = −4a21a12 + 36a30a03, (3.6)

0 = −4a212 + 12a21a03, (3.7)

0 = 12a30a02 + 4a20a12 − 4a21a11, (3.8)

0 = 12a20a03 + 4a21a02 − 4a12a11, (3.9)

g = −a211 + 4a20a02. (3.10)

Let Sg be the set obtained by the union of the image of parametrizations F1, . . . , F4. To prove
that (HC

3 )
−1(g) = Sg , it is enough to show that (HC

3 )
−1(g) ⊂ Sg because a direct substitution

shows that Sg ⊂ (HC

3 )
−1(g). Now, to prove (HC

3 )
−1(g) ⊂ Sg we will consider two cases: Case

1 is when a12 /= 0 and Case 2 is when a12 = 0.

Case 1. In this case, from a direct substitution we obtain a30 = a221/3a12, a03 = a212/3a21, a12 ∈
C

∗, and (3.8), (3.9), and (3.10). To solve these equations we will assume the following.

Subcase 1.1. a20 = 0. In this case we obtain a11 = ±√−g; a02 = ±a12a21√−g/a221. All this values
together are contained in the set whose parametrization is F1.

Subcase 1.2. a20 /= 0. This case will be subdivided in two subcases.

(1) a02 = 0. First, we obtain a11 from (3.10). Later, from a substitution of a11 together
with the value of a30 in (3.8) we get a20a12 ± a21

√−g = 0. This equation implies
a11 = 2a20a12±a21√−g/a21. All these values together are contained in the set whose
parametrization is F1.

(2) a02 /= 0. In this case, from (3.8) we obtain

a11 =
1

a21a12

(
a221a02 + a20a

2
12

)
. (3.11)

A substitution of a11 in (3.10) gives us the quadratic equation in the a20 variable:

a421a
2
02 − 2a221a

2
12a02 +

(
a220a

4
12 + ga

2
21a

2
12

)
= 0. (3.12)

Solving this quadratic equation we get a02 = a12(a20a12 ± a21
√−g)/a221. Finally, from a

substitution of a02 in (3.11)we get a11 = (2a20a12 ±a21√−g)/a21. From these values we obtain
the parametrization F1.
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Case 2. From a direct calculus we obtain a21 = 0 and the equations:

0 = a30a03,

0 = a30a02,

0 = a20a03,

g = −a211 + 4a20a02.

(3.13)

To solve these four equations we will consider two cases.

Subcase 2.1. a02 = 0. From a direct substitution we get a11 = ±√−g and the two equations:

0 = a30a03,

0 = a30a02.
(3.14)

To solve these two equations we will consider two subcases.

(1) a03 = 0. We obtain a30 ∈ C and a20 ∈ C. From all of these values we get the
parametrization F3.

(2) a03 /= 0. We obtain a30 = a20 = 0. From all these values we get the parametrization F4

when a02 = 0.

Subcase 2.2. a02 /= 0. We obtain a20 = (a211 + g)/4a02 and the three equations:

0 = a30a03,

0 = a30a02,

0 = a20a03.

(3.15)

To solve these three equations we will consider two subcases.

(1) a03 = 0. We obtain a30 = 0 and then the parametrization F2.

(2) a03 /= 0. We obtain a30 = 0, a20 = 0, as well as a11 = ±√−g. All these values together
are included in the parametrization F4 when a02 ∈ C

∗. Therefore, we have obtained
all parametrizations in the proposition and the proof is done.

Let g1, g2 ∈ K[x, y]. We say that g1 is in the orbit of g2 (or g2 is in the orbit of g1) if they
are equivalent by an affine transformation of the plane K

2 (where K = R or C).

Remark 3.2. If g1 is in the orbit of g, then g1 is a Hessian polynomial if and only if g is a
Hessian polynomial. This remark is due to the equality Hess((1/det T)(f ◦T)) = (Hess f)◦T,
where T ∈ Aff(2,K), and Hessf = g.



10 International Journal of Mathematics and Mathematical Sciences

Proof of Corollary 2.6. Note that the polynomial g(x, y) = x ∈ A
C

2 is a complex Hessian
polynomial under HC

3 because f(x, y) = (1/12)x3 + y2 ∈ (HC

3 )
−1(g). On the other hand,

every complex polynomial of degree one is in the orbit of g. By Remark 3.2 we have that every
complex polynomial of degree one is a Hessian polynomial. The real case is analogous.

Proof of Proposition 2.5. Let g(x, y) = b10x+b01y+b00 be a polynomial of degree one in A
C

2 with
constant term. Then the expression HC

3 (f) = g is equivalent, by Lemma 3.1, to the system of
equations:

0 = −a221 + 3a30a12, (3.16)

0 = −a21a12 + 9a30a03, (3.17)

0 = −a212 + 3a21a03, (3.18)

b10 = 12a30a02 + 4a20a12 − 4a21a11, (3.19)

b01 = 12a20a03 + 4a21a02 − 4a12a11, (3.20)

b00 = −a211 + 4a20a02. (3.21)

Denote by Sg the union of the images of F1 and F2. We shall prove that (HC

3 )
−1(g) =

Sg. After some calculus it is proved that Sg ⊂ (HC

3 )
−1(g). Now, we shall prove that

(HC

3 )
−1(g) ⊂ Sg.
Suppose that a21, a12 /= 0. Multiply (3.19) by a21 and (3.20) by a12 and subtract the two

obtained equations. It gives

4a20a212 − 4a02a221 + 12a30a02a12 − 12a03a20a21 = b10a12 − b01a21. (3.22)

From (3.16) and (3.18)we obtain a221 = 3a30a12 and a212 = 9a30a03, respectively, which
we insert in (3.22) to obtain

a12b10 = b01a21. (3.23)

From (3.23) we obtain a12 = b01a21/b10 if b10 /= 0 and we insert it in (3.16) to obtain

a30 =
b10a21
3b01

. (3.24)

Analogous, we insert it in (3.18) to obtain

a03 =
b201a21

3b210
. (3.25)

When we put (3.23), (3.24), and (3.25) in (3.17), it fulfills identically.
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Case 1. Suppose that a20 /= 0. From (3.21) it has

a02 =
b00 + a211
4a20

. (3.26)

From (3.19)

a12 =
4a21a11 − 12a30a02 + b10

4a20
. (3.27)

From (3.23) we obtain a21 and we replace it in (3.27). We replace also a30 from (3.24) and
a02 to obtain

12a220b
2
01a12 = 12a11a20a12b10b01 − 3a12b210

(
b00 + a211

)
+ 3a20b10b201. (3.28)

We associate the terms containing a12

a12 =
a20b10b

2
01

4a220b
2
01 − 4a11a20b10b01 + b210b00 + b

2
10a

2
11

. (3.29)

We replace this last expression of a12 in (3.23) and we obtain

a21 =
a20b

2
10b01

4a220b
2
01 − 4a11a20b10b01 + b210b00 + b

2
10a

2
11

. (3.30)

We replace the expression of a21 in (3.24) and (3.25) and we have

a30 =
a20b

3
10

3
(
4a220b

2
01 − 4a11a20b10b01 + b210b00 + b

2
10a

2
11

) ,

a03 =
a20b

3
01

3
(
4a220b

2
01 − 4a11a20b10b01 + b210b00 + b

2
10a

2
11

) .
(3.31)

Note that those last four expressions are in the image of F1.

Case 2. Suppose that a20 = 0. From (3.21) we obtain

a211 = −b00. (3.32)

From (3.19)

a02 =
4a21a11 + b10

12a30
. (3.33)
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We replace the value of a30 (obtained from (3.24)) and the expression a11 in this last equation
to obtain

a02 =
b01
(
±4a21

√
−b00 + b10

)

4a21b10
. (3.34)

The expression of a12 is obtained from (3.23). The expressions of this case are in the image
of F2.

Proof of Theorem 2.7. Complex Case

(1) Let g(x, y) = ax2 + bxy + cy2 + dx + ey + h ∈ A
C

2 be a quadratic polynomial. By
an affine transformation of the complex plane the polynomial g is equivalent to the
prenormal form P(x, y) = y2 −Ax2 − Bx − C, where A,B,C ∈ C.

If A/= 0, then P is in the orbit of y2 − x2 + k,where k ∈ C. If A = 0 and B /= 0, then
P is in the orbit of y2 + x. Finally, if A = 0, B = 0, C /= 0, then P is in the orbit of
y2 −m,where m ∈ C.

Note that the polynomial f(x, y) = (
√−1/2)xy2 ∈ A

C

3 satisfies HC

3 (f) = y
2. The

polynomial f(x, y) = xy2/2 + x2/2 ∈ A
C

3 verifies HC

3 (f) = x − y2. For each
k ∈ C, the polynomial fk(x, y) = y3/6 + x2y/2 − (

√
−k/2)x2 + (

√
−k/2)y2 ∈ A

C

3
fulfills HC

3 (fk) = y
2 − x2 − k.

(2) To verify that the polynomials y2 + r, where r ∈ C
∗, are not complex Hessian

polynomials, we used the computer algebra system Maple 9.5. In particular, the
Groebner package with the graded reverse lexicographic monomial order. We
obtained a reduced Groebner basis for the system HC

3 (f) = y2 + r . The Groebner
basis obtained was 1. So, by the Weak Nullstellensatz Theorem there is no solution
to this system of equations.

Real Case

Analogous to the complex case, after a composition with an affine transformation of the real
plane, the real quadratic polynomial g(x, y) = ax2 + bxy + cy2 + dx + ey + h is in the orbit of
one of the normal forms: y2−x2−q1, y2+x2− q2,−y2−x2−q3, x−y2, y2+x, y2−q4, −y2−q5,
where q1, . . . , q5 ∈ R.

Definition 3.3. We say that a complex polynomial is totally imaginary if the real part of all its
coefficients is zero.

Lemma 3.4. Let g ∈ A
R

2n−4 be a polynomial with real coefficients. Then g is a real Hessian polynomial
if and only if there exists a polynomial f totally imaginary on the set (HC

n )
−1(−g).

(1) By Lemma 3.4 and Proposition 2.9 we have that the polynomials y2 − x2 − r1,−y2 −
x2 − r2,with r1, r2 > 0 are real Hessian polynomials. To finish this part we note that
the polynomial f(x, y) = xy2/2 + x2/2 ∈ A

R

3 verifies HR

3 (f) = x − y2 and that
HR

3 (xy
2/2) = −y2.
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(2) By Lemma 3.4 and Proposition 2.9 we have that the polynomials −x2 + y2, −x2 −
y2, y2−x2−r3, y2+x2−r4, −y2−x2+r5,with r3, r5 < 0, r4 ∈ R, are not real Hessian
polynomials. On the other hand, the polynomials y2−r6, −y2−r7,where r6, r7 ∈ R

∗,
are not real Hessian polynomials because the complex polynomial y2 + r, r ∈ C

∗ is
not complex Hessian polynomial. To show that the polynomials y2 and y2 + x are
not real Hessian polynomials, we use the same method of Groebner basis realized
in the complex case.

Proof of Lemma 3.4. ⇒) By hypothesis there exists f(x, y) =
∑n

r+s=0 arsx
rys ∈ A

R

n such that
HR

n (f) = g. Therefore, consider the totally imaginary polynomial if(x, y) =
∑n

r+s=0 iars x
rys,

which satisfiesHC

n (if) = i
2HC

n (f) = −g.
⇐) By hypothesis there exists f totally imaginary such thatHC

n (f) = −g. Therefore, if
is a real polynomial such thatHR

n (if) = i
2HC

n (f) = g. Hence, g is a real Hessian polynomial.

Proof of Corollary 2.8. Let us consider the map ψ : A
C

3 ×C
2 → C

3 = {(w1, w2, w3)} given by

(
f, p
) �−→ (fxx

(
p
)
, fxy

(
p
)
, fyy

(
p
))
. (3.35)

If f(x, y) =
∑3

i+j=0 aijx
iyj ∈ A

C

3 and p = (x, y), then

ψ
(
f, p
)
=
(
6a30x + 2a21y + 2a20, 2a21x + 2a12y + 2a11, 2a12x + 6a03y + 2a02

)
. (3.36)

For each fixed f ∈ A
C

3 let us consider ψf : C
2 → C3 given by ψf(p) := ψ(f, p).

Now, we are interested to describe the conditions in f under which the image under
ψf of C

2, ψf(C2), is not a plane.

Lemma 3.5. The set Sψ := {f ∈ A
C

3 | ψf(C2) is not a plane} is given by the union of the following
sets:

CP1 :=
{
f ∈ A

C

3 | a30 = a21 = a12 = 0
}
,

CP2 :=

{
f ∈ A

C

3 | a30 ∈ C
∗, a12 =

a221
3a30

, a03 =
a321

27a230

}
.

(3.37)

Proof. The Jacobian matrix of ψf is

⎛
⎝

3a30 a21
a21 a12
a12 3a03

⎞
⎠. (3.38)

ψf(C2) is not a plane if and only if Jψf has not maximal rank, which is equivalent to solve
the system of equations given by the three minor equal to zero. That is,

3a12a30 − a221 = 0, 3a21a03 − a212 = 0, 9a03a30 − a21a12 = 0. (3.39)

The sets CP1 and CP2 are obtained by solving the last system of equations.
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Lemma 3.6. Let f(x, y) =
∑3

i+j=0 aijx
iyj be a complex polynomial such that f ∈ Sψ.

Case 1. Suppose f ∈ CP1.

(1) If a03 /= 0, then ψf(C2) is a parallel line to the w3-axis in C
3.

(2) If a03 = 0, then ψf(C2) is the point (2a20, a11, 2a02).

Case 2. If f ∈ CP1, then ψf(C2) is the line

lf =

{(
6a30x + 2a20, 2a21x + a11,

2a221
3a30

x + 2a02

)
| x ∈ C

}
. (3.40)

Proof. Let f(x, y) =
∑3

i+j=0 aijx
iyj ∈ A

C

3 . In virtue of Lemma 3.5 we have the following cases

Case 1. If f ∈ CP1, then, by (3.36), ψf(C2) = {(2a20, a11, 6a30y + 2a02) ∈ C
3 | y ∈ C}.

(1) If a03 /= 0, then ψf(C2) = {(2a20, a11, 6a30y + 2a02) ∈ C
3 | y ∈ C}.

(2) If a03 = 0, then ψf(C2) is the point (2a20, a11, 2a02).

Case 2. If f ∈ CP2, then, by (3.36),

ψf
(
C

2
)
=

(
6a30x + 2a21y + 2a20, 2a21x +

2a221
3a30

y + a11,
2a321
9a230

y +
2a221
3a30

x + 2a02

)
. (3.41)

Let v1 = (6a30, 2a21, 2a221/3a30) be a nonzero vector (by hypothesis) and v2 =
(2a21, 2a21/3a30, 2a321/9a

2
30). Note that v2 = (a21/3a30)v1. Therefore, the set lf is the same set

of ψf(C2).

Let us consider the cone C = {(w1, w2, w3) ∈ C
3 | w1w3 −w2

2 = 0}. We shall describe
the set ψf(C2) ∩ C when f ∈ Sψ.

Lemma 3.7. Let f ∈ Sψ.

(1) If ψf(C2) is a parallel line to the w3-axis in C
3, then

(a) ψf(C2) ∩ C is a parallel line to the w3-axis in C
3 whenever a20 = 0;

(b) ψf(C2) ∩ C is the point (2a20, a11, (a211 − 4a20a02)/2a20 + 2a20) whenever a20 /= 0.

(2) If ψf(C2) is the point (2a20, a11, 2a02) and 4a20a02 − a211 = 0, then ψf(C2) ∩ C is the
point (2a20, a11, 2a02).

(3) If ψf(C2) is the line lf , then

(a) ψf(C2) ∩ C is the point (6a30x0 + 2a20, 2a21x0 + a11, (2a221/3a30)x0 + 2a02) if α =
(1/3a30)(36a230a02 + 4a20a221 − 12a21a11a30)/= 0, where x0 = (1/α)(a211 − 4a20a02);

(b) ψf(C2) ∩ C is the line lf whenever α = 0.
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Proof. In virtue of Lemma 3.6 we have the following cases.

(1) If ψf(C2)∩C is a parallel line to thew3-axis, then ψf(C2)∩C = {(2a20, a11, 6a03y+
2a02) ∈ C

3 | y ∈ C, 2a20(6a03y + 2a02) − a211 = 0}.

(a) If a20 = 0, then ψf(C2) ∩ C is a parallel line to the w3-axis.

(b) If a20 /= 0, then y = (a211 − 4a20a02)/12a206a03 and ψf(C2) ∩ C is a point.

(2) If ψf(C2) ∩ C is the point (2a20, a11, 2a02), then ψf(C2) ∩ C = (2a20, a11, 2a02) if
4a20a02 − a211 = 0.

(3) If ψf(C2) ∩ C is the line lf , then ψf(C2) ∩ C = lf ∩ {(6a30x + 2a20)((2a221/3a30)x +
2a20) − (2a21x + a11)

2 = 0}. It means that

αx + 4a20a02 − a211 = 0, where α =
36a230a02 + 4a20a221 − 12a21a11a30

3a30
. (3.42)

Therefore, if α = 0, then 4a20a02 − a211 = 0 and we obtain a line on C. If α/= 0, then ψf(C2) ∩C
is a point.

With this lemma we finish the proof of corollary.

Proof of Proposition 2.9. Let g(x, y) = b20x
2 + b11xy + b02y

2 + b00 ∈ A
C

2 . Then the expression
HC

3 (f) = g is equivalent, by Lemma 3.1, to the system of equations:

b02 = −4a221 + 12a30a12,

b11 = −4a21a12 + 36a30a03,

b02 = −4a212 + 12a21a03,

0 = 12a30a02 + 4a20a12 − 4a21a11,

0 = 12a20a03 + 4a21a02 − 4a12a11,

b00 = −a211 + 4a20a02.

(3.43)

Let S be the union of the images of F1 and F2. A direct substitution shows that S ⊂ (HC

3 )
−1(g).

Therefore, to finish the proof it is enough to show that (HC

3 )
−1(g) ⊂ S. To check this last

sentence we have used the computer algebra system Maple 9.5.

Proof of the Theorem 2.12. Real Case

We will proof that the plane curve g(x, y) = 0, where g(x, y) = xy2 − x3 + x, is not a real
Hessian curve (the other cases are analogous). To do that, we will prove that there are no
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real cuartic polynomial f in (HC

4 )
−1(g); that is, there are no real polynomial satisfying the

system of equations:

24a40a22 − 9a231 = 0, (3.44)

72a40a13 − 12a31a22 = 0, (3.45)

144a40a04 + 18a31a13 − 12a222 = 0, (3.46)

72a31a04 − 12a22a13 = 0, (3.47)

24a04a22 − 9a213 = 0, (3.48)

12a30a22 + 24a40a12 − 12a31a21 = −1, (3.49)

36a30a13 + 72a40a03 − 12a21a22 = 0, (3.50)

36a03a31 + 72a04a30 − 12a12a22 = 1, (3.51)

12a03a22 + 24a04a21 − 12a13a12 = 0, (3.52)

24a40a02 + 4a20a22 + 12a30a12 − 6a31a11 − 4a221 = 0, (3.53)

12a31a02 + 12a20a13 + 36a30a03 − 4a21a12 − 8a11a22 = 0, (3.54)

24a04a20 + 4a02a22 + 12a03a21 − 6a13a11 − 4a212 = 0, (3.55)

12a30a02 + 4a20a12 − 4a21a11 = 1, (3.56)

12a03a20 + 4a02a21 − 4a12a11 = 0, (3.57)

4a20a02 − a211 = 0. (3.58)

A Groebner bases for (3.44)–(3.48) with the graded reverse lexicographic monomial
order is

3a213 − 8a22a04, a22a13 − 6a31a04, 2a222 − 3a31a13 − 24a40a04, a31a22 − 6a40a13,

3a231 − 8a40a22, a13a31a04 − 16a40a204, a31a40a13 − 16a240a04.
(3.59)

The set of common zeroes of these last 7 polynomials is the union of the sets

{a40 = a40, a31 = 0, a22 = 0, a13 = 0, a04 = 0}, (3.60)
{
a40 =

a413
256 a304

, a31 =
a313
16a204

, a22 =
3a213
8a04

, a13 = a13, a04 /= 0

}
. (3.61)
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On the one hand, replacing the solution (3.60) in (3.49)–(3.58), particularly in (3.56)we obtain
0 = 1. On the other hand, replacing the solution (3.61) in (3.49)–(3.58), we obtain the system

4a20a02 − a211 = 0,

12a30a02 + 4a20a12 − 4a21a11 − 1 = 0,

−4a12a11 + 4a21a02 + 12a20a03 = 0,

12a30a12 +
3a413a02
32a304

− 4a221 −
3a313a11
8a204

+
3a20a213
2a04

= 0,

36a30a03 + 12a20a13 −
3a213a11
a04

− 4a21a12 +
3a313a02
4a204

= 0,

−6a13a11 + 24a20a04 +
3a213a02
2a04

+ 12a21a03 − 4a212 = 0,

−3a313a21
4a204

+
9a30a213
2a04

+
3a413a12
32a304

+ 1 = 0,

9a413a03
32a304

+ 36a30a13 −
9a21a213
2a04

= 0,

9a313a03
4a204

− 9a213a12
2a04

+ 72a30a04 − 1 = 0,

−12a13a12 +
9a213a03
2a04

+ 24a21a04 = 0.

(3.62)

From the last equation we obtain that a21 = −a13(−8a12a04 + 3a13a03)/16a204 and from the
sixth equation,

a20 = −6a
2
13a02a04 − 24a13a11a204 + 24a13a03a12a04 − 9a213a

2
03 − 16a212a

2
04

96a304
. (3.63)

When we replace these expressions in the last four equations of the last system (we do
not write the other equations because we do not need it):

−18a413a12a04 + 9a513a03 + 288a30a213a
3
04 + 64a404

64a404
= 0, (3.64)

9a13
(
32a30a304 − 2a12a213a04 + a

3
13a03

)

8a304
= 0, (3.65)
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9a313a03 − 18a12a213a04 + 288a30a304 − 4a204
4a204

= 0, (3.66)

0 = 0. (3.67)

From (3.65)we have that a13 = 0 or 32a30a304 − 2a12a213a04 +a
3
13a03 = 0. If a13 = 0, then (3.64)

becomes −1 = 0.
If 32a30a304−2a12a213a04+a313a03 = 0, then a30 = (2a12a213a04−a313a03)/32a304. Substituing

a30 in (3.66), we obtain −1 = 0.

Lemma 3.8. The set, Cv(3), of critical points of the map HC

3R : AC

3R → AC

2 is the union of the
following six sets:

S1 =

{
a02 =

9a03a11a30 − 6a03a21a20 − a12a11a21 + 2a212a20
2
(
3a12a30 − a221

) , 3a12a30 − a221 /= 0

}
,

S2 = {a11 = 0, a21 = 0, a12 = 0},

S3 =

{
a11 =

2a12a20
a21

, a30 =
a221
3a12

, a21a12 /= 0

}
,

S4 = {a30 = 0, a21 = 0, a12 = 0},

S5 = {a20 = 0, a30 = 0, a21 = 0},

S6 =

{
a12 =

a221
3a30

, a03 =
a321

27a230
, a30 /= 0

}
.

(3.68)

Proof. Let f(x, y) =
∑3

i+j=2 aijx
iyj ∈ A

C

3R. The Jacobian matrix ofHC

3R is,

J
(
HC

3R

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a02 −a11 2a20 0 0 0 0

6a03 −2a12 2a21 0 2a02 −2a11 6a20

2a12 −2a21 6a30 6a02 −2a11 2a20 0

0 0 0 0 6a03 −4a12 6a21

0 0 0 18a03 −2a12 −2a21 18a30

0 0 0 6a12 −4a21 6a30 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.69)
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Let us denote by Mk, k = 1, . . . , 7, the 6 × 6 matrix obtained from J(HC

3R) by deleting the
column 7 − k + 1. On the other hand, f is a critical point ofHC

3R if and only if det(Mk) = 0 for
all k = 1, . . . , 7, that is, if and only if the following system of seven equations is satisfied:

(
−9a21a12a03 + 27a30a203 + 2a312

)
(F) = 0,

(
a212a21 − 6a221a03 + 9a12a30a03

)
(F) = 0,

(
a221a12 − 6a212a30 + 9a21a30a03

)
(F) = 0,

(
2a321 − 9a12a21a30 + 27a230a03

)
(F) = 0,

(
−3a03a21a11 + a212a11 − a21a12a02 + 9a03a30a02

)
(F) = 0,

(
3a02a12a30 + a212a20 − 3a03a21a20 − a221a02

)
(F) = 0,

(
a11a

2
21 − a12a21a20 + 9a20a30a03 − 3a12a11a30

)
(F) = 0,

(3.70)

where

F = −9a03a11a30 + 6a03a21a20 + 6a02a12a30 − 2a221a02 + a12a11a21 − 2a212a20. (3.71)

Therefore f(x, y) =
∑3

i+j=2 aijx
iyj satisfies the previous system of seven equations if and only

if f ∈ S =
⋃6
k=1 Sk, where S is the union of the six solutions Sj . Therefore, the proof is done.

Lemma 3.9. Consider f ∈ A
C

3 and g = H3(f). The curve g = 0 is singular if and only if

−2a212a20 + 6a12a02a30 + 6a21a03a20 + a21a12a11 − 2a221a02 − 9a03a11a30 = 0,

−a221a212 − 18a21a12a30a03 + 27a230a
2
03 + 4a312a30 + 4a321a03 /= 0,

(3.72)

or,

− 9a12a21a03a20 − a21a11a212 − a12a221a02 + 27a30a203a20 + 2a20a312 + 1.8

+ 6a221a03a11 − 9a30a21a03a02 + 6a30a02a212 − 9a30a03a11a12 = 01,

− a221a212 − 18a21a12a30a03 + 27a230a
2
03 + 4a312a30 + 4a321a03 = 0.2.1,

(3.73)
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Proof. Suppose f(x, y) =
∑3

r+s=0 arsx
rys; then

H3
(
f
)
= −a211 + 4a20a02 + (12a30a02 + 4a20a12 − 4a21a11)x

+ (12a20a03 − 4a12a11 + 4a21a02)y +
(
−4a221 + 12a30a12

)
x2

+ (−4a21a12 + 36a30a03)yx +
(
−4a212 + 12a21a03

)
y2.

(3.74)

The curve g = HC

3 (f) is singular if and only if the system gx(p) = gy(p) = g(p) = 0 has a
solution for some p in C

2. The system formed by gx = 0, gy = 0 is

(
6a30a12 − 2a221

)
x + (9a30a03 − a21a12)y + 3a30a02 + a20a12 − a21a11 = 0,

(9a30a03 − a21a12)x +
(
6a21a03 − 2a212

)
y + 3a20a03 − a12a11 + a21a02 = 0.

(3.75)

The proof concludes by analyzing the system when its determinant is distinct from zero and
when it is zero.

Proof of Proposition 2.10. Let us consider the sets Sk, k = 1, . . . , 6, of Lemma 3.8. If f ∈ S1, then

HC

3
(
f
)
=

1
3a12a30 − a221
×
[
x2
(
36a230a

2
12 + 4a421 − 24a30a12a221

)

+ xy
(
108a230a03a12 + 36a30a03a221 + 4a321a12 − 12a21a212a30

)

+ y2
(
4a212a

2
21 − 12a312a30 + 36a21a03a12a30 − 12a321a03

)

+ x
(
24a30a212a20 + 54a230a03a11 + 4a321a11 − 4a20a12a221

−36a30a03a21a20 − 18a30a12a11a21
)

+ y
(
−12a212a11a30 + 18a21a03a11a30 + 36a20a03a12a30

−24a221a03a20 + 2a221a12a11 + 4a21a212a20
)

− 3a211a12a30 − 12a03a21a220 + 18a20a03a11a30

−2a20a12a11a21 + 4a212a
2
20 + a

2
11a

2
21

]
.

(3.76)
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Denote by h the polynomialHC

3 (f). Then,

hx =
1

3a12a30 − a221
×
[
x
(
72a230a

2
12 − 48a30a12a221 + 8a421

)

+ y
(
108a230a03a12 + 4a321a12 − 36a30a03a221 − 12a21a212a30

)

+ 4a321a11 + 54a230a03a11 − 4a20a12a221 + 24a30a212a20

−36a30a03a21a20 − 18a30a12a11a21
]
,

hy =
1

3a12a30 − a221
×
[
x
(
108a230a03a12 − 36a30a03a221 − 12a21a212a30 + 4a321a12

)

+ y
(
8a212a

2
21 − 24a312a30 − 24a321a03 + 72a21a03a12a30

)

+ 4a21a212a20 − 24a221a03a20 + 2a221a12a11 − 12a212a11a30

+18a21a03a11a30 + 36a20a03a12a30
]
.

(3.77)

The point (x, y) where the Hessian curve is singular is

x =
−2a20a12 + a21a11
2
(
3a12a30 − a221

) , y = −3a11a30 − 2a21a20
2
(
3a12a30 − a221

) . (3.78)

If f ∈ S2, then HC

3 (f) = (6a30x + 2a20)(6a03y + 2a02), hx = 6a30(6a03y + 2a02), and hy =
6(6a30x + 2a20)a03.

The point (x, y)where the Hessian curve is singular is x = −a20/3a30, y = −a02/3a03.
If f ∈ S3, then

HC

3
(
f
)
=

−4(a221x + a21ya12 + a20a12
)(
y
(−3a221a03 + a21a212

) − a221a02 + a20a212
)

a12a
2
21

,

hx =
−4(y(−3a221a03 + a21a212

) − a221a02 + a20a212
)

a12
,

hy = −4
(
y
(−3a221a03 + a21ya212

) − a221a02 + a20a212
)

a21

− 4
(
a221x + a21ya12 + a20a12

)(−3a221a03 + a21a212
)

a12a
2
21

.

(3.79)
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The point (x, y) where the Hessian curve is singular is

x =
a12(−a21a02 + 3a20a03)
a21
(−3a21a03 + a212

) , y = −−
(−a221a02 + a20a212

)

a21
(−3a21a03 + a212

) . (3.80)

If −3a21a03 + a212 = 0, thenHC

3 (f) is of degree one.
If f ∈ S4, then HC

3 (f) = 12a20a03y + 4a20a02 − a211, hx = 0, and hy = 12a20a03.
The Hessian curve in this case has degree one.

If f ∈ S5, then HC

3 (f) = −(2a12y + a11)
2, hx = 0, hy = −4(2a12y + a11)a12.

The point (x, y) where the Hessian curve is singular is y = −a11/2a12.
If f ∈ S6, then

HC

3
(
f
)
=

(
108a330a02 + 12a20a221a30 − 36a21a230a11

9a230

)
x

+

(
36a21a02a230 + 4a20a321 − 12a221a11a30

9a230

)
y +

36a20a02a230 − 9a211a
2
30

9a230
.

(3.81)

The Hessian curve in this case has degree one.
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