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We study some realization problems related to the Hessian polynomials. In particular, we solve
the Hessian curve realization problem for degrees zero, one, two, and three and the Hessian
polynomial realization problem for degrees zero, one, and two.

1. Introduction

A topic which has been of interest since the XIX century is the study of the parabolic curve of
smooth surfaces in real three-dimensional space, as shown in the works of Gauss, Darboux,
Salmon [1], Kergosien and Thom [2], Arnold [3], among others.

The parabolic curve of the graph of a smooth function, f : R> — R, is the set
{(p, f(p)) € R? x R: Hessf(p) = 0}, where Hess f := fuxfy, - f7,- In this case, the Hessian
curve of f, Hess f(x,y) = 0, is a plane curve which is the projection of the parabolic curve
into the xy-plane along the z-axis. When f is a polynomial of degree n in two variables, Hess
f is a polynomial of degree at most 2n — 4. Therefore, the Hessian curve is an algebraic plane
curve. In this setting there are two natural realization problems related to the Hessian of a
polynomial.

(1) Hessian curve realization problem. Given an algebraic plane curve g(x,y) = 0 in K2,
where K =R or C, we ask: When is g(x, y) = 0 the Hessian curve of a polynomial
feKxyl?

(2) Hessian polynomial realization problem. Given g € K[x,y] we ask: When does f €
K[x,y] exist such that Hess f = g? If such f existsand K = C (K = R ), then
g is called a complex Hessian polynomial (real Hessian polynomial). We remark that
Arnold (see [4]) calls Hessian topology problem to the study of the problem 1 in the
real case.
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Note that problem 2 contains problem 1. Moreover, in the real case, problem 2 is a
global realization problem of a smooth function such as the Gaussian curvature function. In
[5], Arnold studies this problem locally.

This work is devoted to problems 1 and 2 for complex and real case of degree less or
equal to three. It is divided in two parts. In the first we give the results according to the degree
of the polynomials g. In the second part, we give the proofs and some other results such as a
geometric interpretation of Corollary 2.8.

2. Notation and Results

For each nonnegative integer number n, we define AX := {f € K[x,y] | deg(f) < n}. Letus
consider the Hessian map

Hf:AY — A5 ,, given by f > Hess f. (2.1)

We will say that the Hessian map HE is complex or real if K = C or K = R,
respectively. We remark that dim(A%) > dim(A) ) if 2 < n < 4 and dim(A)) < dim(A]
if n > 5. In particular, for n > 4, the image, HX(AY), is a connected subset of codimension at
least three in A5 ,. This means that, in “general”, a polynomial g € A5 , is not a Hessian
polynomial if n >4 under HX.

In diagram form we have

Ay CASCASC QAL
lH§<lH§< lH} T lHi‘f T (2.2)

K K K K
Ag CAy CASC--C Ay 4

In virtue of the previous remarks, we introduce the fiber of g € A%, under HY as the
set

(HE) ' (9) = [ e aX | HE(P) = 5. 23)

Even when we consider the fibers, (H],If)_l( g) , for different values of n, we are interested
in knowing if the fiber (HX)™(g) is not empty when n satisfies 0 < 21 — 4 — deg(g) < 1.
If the fiber (HX)™(g) is empty, the next problem is to see if the fibers (HX)™(g) are not
empty for s > n+1 (this problem will not be studied in this work). Another way to study the
Hessian polynomial realization problem is by describing the set of all polynomials f € A¥,
with r>n=(m+4)/2,such that HX(f) = g whenever g€ AX.

Remark 2.1. Let g(x,y) = fo;t) bijx'y/ be a polynomial in A} ,. There exists a polynomial
floy) = 3his a;jx'y/ in (HX)"'(g) if and only if f satisfies the following system of (2 —
3)(n — 1) equations:

hij(ars) =bij, 0<i+j<2n-4,2<r+s<n, (2.4)
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where h;;(ay;) are the coefficients of the Hessian polynomial H,S(f). They are also quadratic
polynomials in the variables a,s.

It is important to note that the computations for solving the system (2.4) are generally
very complicated.

In the following results we describe the sets of polynomials of a given degree which
are Hessian and those which are not Hessian under a specific Hessian map.

2.1. Degree of ¢ Equal to Zero

Proposition 2.2. For each g € AS, the set (HY) ™ (g) is a quadric in AS given by a?, = 4azap - g.
Moreover, this quadric is singular if and only if g = 0.

Corollary 2.3. In the complex case every element in A5 = C is a complex Hessian polynomial
under HY . And, in the real case every element in Ay = R is a real Hessian polynomial under HY.

Proposition 2.4. Foreach g € A(g , the set (Héc)_1 (8) is an analytic subvariety in Ag which is given
by the union of connected analytic subvarieties which are parametrized by the following.

(1) Ff: CxC* xC*x C® — AS; (t, ta, ts, ta, b5, t6) > (azo = 15/3t3, ax = to, a1p = t3, aps =
£5/3t, a0 = t,a11 = sty £ thy/=8) /b, an = t3(tst £ tay/=8)/t5,a10 = ts, a0 =
ts, aoo = te)-

(2) F,: CxC* xC* — A§; (t1,t2,t3,ta,t5) > (az = 0,a21 = 0,a12 = 0,403 = 0, a2 =
(] +8)/4ty, a11 = t1, ag = ty, a1o = t3, ao1 = ta, Ao = t5).

(3) F5 : C° — AS;(t,ta,t3,ta,t5) > (az) = t, a2 = 0,a12 = 0,403 = 0,40 = tp, an =
+./=g, a0 =0,a19 = t3,a0 = t4, ag = t5).

(4) Ff : © — AS; (t,to,t3,ta,t5) — (azo = 0,a21 = 0,a12 = 0,a03 = ty, a2 = 0,a11 =
/=g, a0 = tr, aip = t3, ap1 = ty, ag = t5).

2.2, Degree of ¢ Equal to One

Proposition 2.5. For each g(x,y) = biox + bory + by € AS of degree one, the set (HS)™(g) is
an analytic subvariety in AS which is given by the union of analytic subvarieties parametrized by the
following.
(1) For b10b01 = 0, F1 :CxCx C3 \ {4b31t% - 4b10b01t1t2 + b%ot% + boob%o = 0} i
A(SC,' (t1,t2,t3,t4,t5) — (azp = (1/3)(bi’0t1/(4bélt% — 4bobg1t1tr + b%ot% + boob%o)), ap =
b01b%0t1/(4b(2)1t% — 4byoboitity + b%oti + boob%o), ap = b§1b10t1/(4b(2)1t% — 4byoboi t1tp +
bl 5 +boobl,y), ags = bt /3(4b% 1 —4bioboititr +bits +boob?,), ax = ty, arn = ty, ag =
(15 + boo) /4ty aro = t3, ao1 = ts, ago = t5).
(2) For biobp1 #0, F5 : C* x C* — AS; (t1,t2,t3,ts) — (az = (1/3)(tibio/b), axn =
t,an = boti/b,as = (1/3)(bjt/b3,), a0 = 0,an = +\/-bo,ap =
(1/4)(bo1 (£4t1\/=boo + b1g) /biot1), a0 = ta, ao = t3, app = ts).

From this proposition we have the following.

Corollary 2.6. Every complex polynomial of degree one is a complex Hessian polynomial under HS.
And every real polynomial of degree one is a real Hessian polynomial under Hy'.
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2.3. Degree of ¢ Equal to Two

Let g1,$ € K[x,y]. We say that g; is in the orbit of g if they are equivalent by an affine
transformation of the plane K.

Theorem 2.7. Complex Case

(1) The complex polynomials of degree two

v ]x-y* |y -x* -k, keC (2.5)

are complex Hessian polynomials under Hy . Moreover, a polynomial g € AS of degree two
is a complex Hessian polynomial under HY if and only if it belongs to the orbit of one of
those polynomials.

(2) The complex polynomials, y*> + r € AS, where r € C*, are not complex Hessian
polynomials under Hy. Moreover, a polynomial g € AS of degree two is not a complex
Hessian polynomial under Hy if and only if it belongs to the orbit of one of those
polynomials.

Real case

(1) The real polynomials of degree two

—yz‘x—yz‘yz—xz—ﬁ, r1>0‘—y2—x2+r2, >0 (2.6)

are real Hessian polynomials under Hy'. Moreover, a polynomial g € A3 of degree two is
a real Hessian polynomial under Hy' if and only if it belongs to the orbit of one of those
polynomials.

(2) The real polynomials of degree two

y? ‘yz—x2—r3, rgso‘y2+x2—r4, r4eR‘—y2—x2+r5, r5 <0
y2+x‘ Y* —76, 16 ER* ‘ -y*—17, 17 ER* ‘

2.7)

are not real Hessian polynomials under H3'. Moreover, a polynomial g € AT of degree two
is not a real Hessian polynomial under Hj' if and only if it belongs to the orbit of one of
those polynomials.

It is well known that the complex affine classification of conics is given by the normal
forms: y? = x (parabola), y* = x* + 1 (general conic), y* = x? (line pair), y* = 1 (parallel
lines), and finally y* = 0 (double line). Therefore, we have the following corollary.

Corollary 2.8. All the complex affine conics, except the parallel lines, are complex Hessian curves of
polynomials in AS.

In the next section we will give a geometric proof of this corollary.
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Proposition 2.9. Let g(x,y) = byx? + buxy + bpy? + by be a polynomial in AS with
bag(4bobgy — bfl) #0. Then the set (H;)C)_1 (g) is an analytic subvariety on Ag which is the union
of analytic subvarieties parametrized by the following.

1) C* - AL (tutytst) — (a0 = t,an = (1/2)@bnhx

Fy
\/9t%b%l - 36t%b02b20 - bgo/bzo), aip = (=6t bgobyg +3by1t1 £ \/9t%b%1 - 36t%b02b20 - bgo)
/Zb%OI ap = (—1/6b§0)(:tb02\/9t%b%1 - 36t%b02b20 - bgO + 6b11ty b02 - (3b11t1 +

\/91‘%1?%1 — 3613boabag — by )b, /bag + 3biibmt), ax = ba/boo/4babor - b3y, an
bi1\/boo/4bxoboy — b3y, ag = boz\/boo/(4b20b02 —b2), a10 = t, ag = t3, ag = ta).

(2 Fy: € =AY (hitytst) o~  (an = th,an = (Bbuh =+
\/ 92b2, — 36{2boobog — b3y) /2bno, an = (Bbuty = 6tibppby =+
\J9BB2, — 368 byoban — b3,) /263, gy = (<1/6b3;) (xbya\ /9563, — 368 boabay — b +

3b02b11t1 + 6b11t1b02 - (3b‘i’1t1 + b%l \/9t%b%l - 361’%1’)021920 - bgo)/bzo), ano

—b2o\/boo/4baoboy — by, a1 = —b114/boo/4baoboy — b7, agz = —boa\/boo/4baoboz — b7,

ay =ty, am =t3, ap = ts).

From the study of the previous fibers, a natural question arises. What is the relation
between the set of critical points of HY and the set of singular Hessian curves defined by
polynomials in Agn_ 42

We define ASR = {f € C[x,y] | 2 < deg(f) < n}. Let us describe the relation between
the set of critical points of Hy, : AT, — AJ and the set of polynomials in AS such that they
define singular Hessian curves.

Proposition 2.10. If f € AS, is a critical point of the map Hy, : ASy — A, then the Hessian
curve Hi, (f)(x,y) = 0 s singular or it has degree one.

For the general case, we have the following conjecture.

Conjecture 2.11. If f € Aug is a critical point of the map H-p : AS, — AT, then its Hessian

2n-4’/
curve, Hess f(x,y) = 0, is singular or has degree less than 2n — 4.

2.4. Degree of g Equal to Three

The following theorem is one of the most important of this paper.

Theorem 2.12. Complex Case

(1) The curves defined by Table 1 of complex cubic curves (see [6]) are complex Hessian curves
under Hy .

(2) The curves defined by Table 2 of complex cubic curves are not complex Hessian curves under
HE.
4
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Table 1: Complex Hessian cubic curves.

xyzsz2+cx+d, b,c,deC xy2+ey:bx2+cx+d, eeC*, b,c,deC
y?=ax®+bx>+cx+d, aeC*, b,c,deC

Table 2: Complex cubic curves which are not complex Hessian curves.

xy2+ey:ax3+bx2+cx+d, aeC*, b,c,decC xy:ax3+bx2+cx+d, aeC* b,c,deC
y=ax’+bx’+cx+d, aeC*, b,c,deC X} +bx2+cx+d=0, bc,deC
Real Case

(1) The normal form of curves (see [7]) defined in Table 3 is a real Hessian curve under H,'.
Moreover, a curve g € AY of degree three is a real Hessian curve under Hj if and only if
its polynomial belongs to the orbit of one of those polynomials.

(2) The normal form of curves defined by the polynomials in Table 4 is not a real Hessian
polynomial under Hy. Moreover, a curve g € A% of degree three is not a real Hessian curve
under H}' if and only if its polynomial belongs to the orbit of one of those polynomials.

3. Proofs

Let us consider the complex Hessian map Hy : A — AT | f > Hess f and recall that the

fiber of g € Ay,_4 under HE is the set (HS) ™ (g) := {f € AS | HS(f) = g).

Proof of the Proposition 2.2. Let f(x,y) = Xi.oaijx'y/ € Af. A direct calculus shows that

fxx = 2a0, fxy = a1, and f,,, = 2anp. Therefore,
Héc (f) = 4(120[102 - a%l. (31)

For each g € AC, consider 5(g) = {(aoo, a0, ao1, azo, a11, aoz) : afl = 4ayap, — g}. To show that
(Héc)_1 (g) = S(g) it is enough to show (H‘ZC)_l(g) C S because a direct substitution shows
S ¢ (HE)™'(g). Therefore, let us consider f € (HY)™'(g), thatis, HS(f) = 4axan — a%, = g.
Hence a%l = 4aypagy — g and the first part of the claim is done. Finally, the derivative of Hﬁc is
given by

DHg (f) = (0,0,0,4a0, —2a11,4ax). (3.2)

Therefore, we conclude the proof of the result. O

Proof of the Corollary 2.3. The polynomial f(x,y) = x> + (g/4)y* satisfies that Hy'(f) = g in
complex or real case. O
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Table 3: Real Hessian polynomials.

x2y+y2+x+a1y+a2:0, ay,a; €R x2y+y2+y+a3:0, as € (—o0,0) U (0,1/4)
Xy+y?-y+as=0, as <-3/4 XPy+y?-1=0
X’y +3y =0 x*y -3y =0
xX?y =0 Brasx-y*-1=0, as €R,
Sy’ +agx+1=0, ag €R -y +x=0
S_y?-x=0 X-y*=0
Table 4: Real polynomials which are not Hessian polynomials.
xy? —x(x =3)> +bix + byy —b3 = 0, by, by, b3 €R xy? —xP+byix+2y—bs =0, bs €R
xy*—xP+bex—1=0, bg € R xy?-xP+x=0
xy?-x3-x=0 xy?-x3=0
x3+xy2—6y2+b7x+bgy+b9 =0, by,bg,bg € R x3+xy2+b10x+3y+b11 =0,byg, b1 €R
x3+xy2+b]2x+1:0, b1, €R x3+xy2+3x:0
X +xy?-3x=0 X +xy?=0
XPy+y>+y+c=0, c€{0}U[1/4,0) Xy+y?-y+d=0,d>-3/4
XPy+y?+1=0 XPy+y*=0
Xy +3x+3y+b;3=0, bz eR Xy +3y+1=0
X’y +3x-3y+biu=0, by €R X’y -3y+1=0
Xy +3x+1=0 X2y +3x=0
Xy+1=0 X-xy+1=0
xs—xy:O 3—y:0
x3+b15x+1=0, b15e]R 3_3x=0
x3+3x=0 3=0

Lemma 3.1. If f(x,y) = 37, aijx'y/ € A, then the map HS : AS — AT is

Héc (f) = b20x2 + bnxy + b02y2 + blox + b01y + boo, (33)

where the b, coefficients satisfy the following system of quadratic equations:

2
b20 = —4[121 + 12[130(112,
b1y = —4ax a1; + 36azpaps,
2
boz = —4[112 +12ax aops,
(3.4)
bio = 12azpae; + 4axaz —4ax ay,

bo1 = 12ax0a03 + 4azx1ap; — 4appaqy,

2
boo =-aj; t 4arpagp,.
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Proof of the Proposition 2.4. For g € A we have that, by Lemma 3.1, Hy (f) = g is equivalent
to the following system of equations:

0 = —4a3, + 12azaz, (3.5)

0 = —4ay a1 + 36azpags, (3.6)

0 = —4a?, + 12ay ags, (3.7)

0 =12azpag; + 4axann —4anan, (3.8)
0 = 12ayaes + 4axian — 4anai, (3.9)
g = —ay, +4axap. (3.10)

Let S; be the set obtained by the union of the image of parametrizations Fy, ..., F4. To prove
that (Héc)_1 (8) = Sy, it is enough to show that (Héc)_l( g) C Sg because a direct substitution
shows that S,  (HS)™'(g). Now, to prove (HY) ™' (g) € S, we will consider two cases: Case
1is when a1 #0 and Case 2 is when ay; = 0.

Case 1. In this case, from a direct substitution we obtain azy = a%l /3ayp, aps = aé /3ay1, ayx €
C*, and (3.8), (3.9), and (3.10). To solve these equations we will assume the following.

Subcase 1.1. ayy = 0. In this case we obtain ajy = +,/~g; ap = :I:alzaZM/—g/a%l. All this values
together are contained in the set whose parametrization is Fj.

Subcase 1.2. ay # 0. This case will be subdivided in two subcases.

(1) apx = 0. First, we obtain a;; from (3.10). Later, from a substitution of a;; together
with the value of azy in (3.8) we get axair + a»/~g = 0. This equation implies
an = 2axan+ax/—g/an. All these values together are contained in the set whose
parametrization is F;.

(2) ap #0. In this case, from (3.8) we obtain

1

2 2

a = <a21 ap + a20a12>. (311)
azi1aip

A substitution of ay; in (3.10) gives us the quadratic equation in the ay variable:
a3, ag, — 2ay,a3,ap + (aéoa‘ll2 +ga5, ai) =0. (3.12)

Solving this quadratic equation we get apy = a(axan + an./~-g)/ aél. Finally, from a
substitution of ag, in (3.11) we get a1y = (2axai2 £ ax/~g)/ az . From these values we obtain
the parametrization F;.
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Case 2. From a direct calculus we obtain a,; = 0 and the equations:

0 = azpaos,

0 = azpam, (313)
3.13

0 = axoaos,

2
g=—-a+ 4argag,.

To solve these four equations we will consider two cases.

Subcase 2.1. ag, = 0. From a direct substitution we get a;; = +,/=g and the two equations:

0 = azpaos, (3.14)
0 = azpap.

To solve these two equations we will consider two subcases.

(1) a3 = 0. We obtain azy € C and ay € C. From all of these values we get the
parametrization Fj.

(2) apz #0. We obtain azy = ayy = 0. From all these values we get the parametrization Fy
when ag, = 0.

Subcase 2.2. ay, # 0. We obtain ayy = (a%1 + g)/4ap; and the three equations:

0 = azoaos,
0 = azpaoy, (3.15)
0 = axags.

To solve these three equations we will consider two subcases.

(1) apz = 0. We obtain a3y = 0 and then the parametrization F.

(2) apz #0. We obtain azg = 0, ax = 0, as well as a1 = +,/=g. All these values together
are included in the parametrization F4 when ag, € C*. Therefore, we have obtained
all parametrizations in the proposition and the proof is done.

O

Let g1, g € K[x,y]. We say that g; is in the orbit of g (or g is in the orbit of g1) if they
are equivalent by an affine transformation of the plane K> (where K =R or C).

Remark 3.2. 1f g is in the orbit of g, then g; is a Hessian polynomial if and only if g is a
Hessian polynomial. This remark is due to the equality Hess((1/ detT)(f oT)) = (Hess f)oT,
where T € Aff(2,K), and Hessf = g.
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Proof of Corollary 2.6. Note that the polynomial g(x,y) = x € A is a complex Hessian
polynomial under ng because f(x,y) = (1/12)x°> + y* € (H\;}C)_1 (g)- On the other hand,
every complex polynomial of degree one is in the orbit of g. By Remark 3.2 we have that every
complex polynomial of degree one is a Hessian polynomial. The real case is analogous. [

Proof of Proposition 2.5. Let g(x,y) = biox +bo1y +boo be a polynomial of degree one in AT with
constant term. Then the expression H (f) = g is equivalent, by Lemma 3.1, to the system of
equations:

0= —agl + 3aspar, (3.16)

0 = —axaix +9azoaps, (3.17)

0= —-a?, + 3axnagps, (3.18)

bio = 12azpap + 4axar — 4axa, (3.19)
bo1 = 12axa03 + 4ax apy — 4apain, (3.20)
by = —at, + 4azag. (3.21)

Denote by S, the union of the images of F; and F,. We shall prove that (H;)C)f1 (g) =
Sg. After some calculus it is proved that S, C (Héc)*l(g). Now, we shall prove that

(H) ™ (g) C Sg.
Suppose that ay1, ai2 # 0. Multiply (3.19) by ay; and (3.20) by a1, and subtract the two
obtained equations. It gives

2 2
daxyay, —4apay, +12azapaz — 12apazaz = bioa — beiaz. (3.22)

From (3.16) and (3.18) we obtain a%l = 3azpap; and a%z = 9azpags, respectively, which
we insert in (3.22) to obtain

axbig = bpras:. (3.23)

From (3.23) we obtain ajp = bp1az1 /b1 if bip # 0 and we insert it in (3.16) to obtain

bioaz
=, 3.24
asp 3bo; ( )

Analogous, we insert it in (3.18) to obtain
b2 any
01

ap = . 3.25
= (3.25)

When we put (3.23), (3.24), and (3.25) in (3.17), it fulfills identically.
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Case 1. Suppose that az) #0. From (3.21) it has

2
bo() + ay

ap =
4(120

From (3.19)

4arian - 12azpap + big
4(120 ’

ap =

11

(3.26)

(3.27)

From (3.23) we obtain a»; and we replace it in (3.27). We replace also azy from (3.24) and

ap, to obtain

2 1.2 2 2 2
12&201901 app = 12a11a20a12b10b01 - 3a12b10 (boo + a11> + 3[1201’)1()1?01.

We associate the terms containing ai,

2
a20b10b01

ap = .
2 1,2 2 2 2
4a20b01 - 4a11a20b10b01 + blObOO + bloan

We replace this last expression of aj; in (3.23) and we obtain

2
azoblob(n

az) = .
21,2 2 2 .2
4[120b01 - 4(111[1201?101?01 + blObOO + bwan

We replace the expression of ay; in (3.24) and (3.25) and we have

3
axby,
asp = ’
2 1,2 2 2 2
3(4(120b01 - 4a11a20b10b01 + b10b00 + bloan)
3
aZOb()l
ao3

" 3(4a2 b2, — 4ayianbiobo + Byby + bya?,)
Note that those last four expressions are in the image of F;.
Case 2. Suppose that axy = 0. From (3.21) we obtain
a?, = —by.
From (3.19)

4ay an + by

ap2 =
126130

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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We replace the value of a3 (obtained from (3.24)) and the expression ay; in this last equation
to obtain

bo <:t46121 \/=boo + b10>

4ay1byg

ap = (334)

The expression of aj, is obtained from (3.23). The expressions of this case are in the image
of Fz. O

Proof of Theorem 2.7. Complex Case

(1) Let g(x,y) = ax? + bxy + cy® + dx + ey + h € AS be a quadratic polynomial. B
8y y+tcy Y 2 q poly y
an affine transformation of the complex plane the polynomial g is equivalent to the
prenormal form P(x,vy) = y2 — Ax? - Bx - C,where A,B,C eC.

If A#0, then P is in the orbit of y?-x?+k, wherek € C.If A=0 and B#0, then
P is in the orbit of y2 + x. Finally, if A = 0,B = 0,C#0, then P is in the orbit of
y?> —m, where m € C.

Note that the polynomial f(x,y) = (vV-1/2)xy? € A satisfies HY(f) = y>. The
polynomial f(x,y) = xy*/2 +x?/2 € A verifies HL(f) = x — y>. For each
k € C, the polynomial fi(x,y) = ¥2/6 + x>y /2 — (V-k/2)x* + (V-k/2)y* € A
fulfills H (fx) = y* - x* - k.

(2) To verify that the polynomials y? + r, where r € C*, are not complex Hessian
polynomials, we used the computer algebra system Maple 9.5. In particular, the
Groebner package with the graded reverse lexicographic monomial order. We
obtained a reduced Groebner basis for the system H5 (f) = y* + r . The Groebner
basis obtained was 1. So, by the Weak Nullstellensatz Theorem there is no solution
to this system of equations.

Real Case

Analogous to the complex case, after a composition with an affine transformation of the real
plane, the real quadratic polynomial g(x,y) = ax*+bxy + cy? + dx + ey + h is in the orbit of
one of the normal forms: y*>-x>-q1, y?>+x*— qo,~y*—x*—qs, x-vy%, y*+x,y*—qs, —y*—gs,
where g1,...,95 € R. O

Definition 3.3. We say that a complex polynomial is totally imaginary if the real part of all its
coefficients is zero.

Lemma 3.4. Let g € AT, bea polynomial with real coefficients. Then g is a real Hessian polynomial
if and only if there exists a polynomial f totally imaginary on the set (HS)™(=g).

(1) By Lemma 3.4 and Proposition 2.9 we have that the polynomials y* - x> —ry, -y —
x2 =1y, withry, 1, >0 are real Hessian polynomials. To finish this part we note that
the polynomial f(x,y) = xy?/2+x*/2 € AT verifies H}(f) = x —y* and that

H3' (xy?/2) = -y*.
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(2) By Lemma 3.4 and Proposition 2.9 we have that the polynomials -x? + y?, —x? —

V2, Y2 —x =13, y*+x*—r1, —y*—-x>+rs, withrs, 75 <0, r4 € R, are not real Hessian
polynomials. On the other hand, the polynomials yz—r6, —y2—1’7, where 14,17 € R*,
are not real Hessian polynomials because the complex polynomial y*+r, r € C*is
not complex Hessian polynomial. To show that the polynomials y? and y? + x are
not real Hessian polynomials, we use the same method of Groebner basis realized
in the complex case.

Proof of Lemma 3.4. =) By hypothesis there exists f(x,y) = ..o arsxy® € AE such that
HE(f) = g. Therefore, consider the totally imaginary polynomial i f (x,y) = 3. o ia,s x"y°,
which satisfies HS (if) = i?HS (f) = —g.
&) By hypothesis there exists f totally imaginary such that H- (f) = —g. Therefore, if
is a real polynomial such that Hx (if) = i?HS (f) = g. Hence, g is a real Hessian polynomial.
O

Proof of Corollary 2.8. Let us consider the map ¢ : Aéc x C? — C% = {(wy, wyp, w3))} given by

(frp) = fux(P), v (P), fyy (P))- (3.35)

If f(x,y) = 300 aijx'y’ € AS and p = (x,y), then
w(f,p) = (6as0x + 2any + 2a0, 2an x + 2a12y + 2a11, 2a12x + 643y +24ap). (3.36)
For each fixed f € AT letus consider ¢ :C? — C; givenby ¢ (p) := ¢(f,p). O

Now, we are interested to describe the conditions in f under which the image under
wp of C?, ¢s(C?),isnota plane.

Lemma 3.5. Theset Sy := {f € AS | ¢s5(C?) is not a plane) is given by the union of the following
sets:

CP, := {f€A§|a3020212012:0}r

ail agl (3.37)
Ch = fEAg: |a30€(C*,a12=3 ,a03 .
asp

3az an
anq an . (338)
arp 3ags

¢ (C?) is not a plane if and only if J¢ has not maximal rank, which is equivalent to solve
the system of equations given by the three minor equal to zero. That is,

Proof. The Jacobian matrix of ¢ is

2 2
3(112[130 - I.121 = 0, 3&21(103 - 1112 = O, 9a03a30 — dp1adip = 0. (339)

The sets CP; and CP, are obtained by solving the last system of equations. O
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Lemma 3.6. Let f(x,y) = 3}, ;g aix'y/ be a complex polynomial such that f € Sp.
Case 1. Suppose f € CP;.

(1) If ag3 #0, then ¢¢(C?) is a parallel line to the ws-axis in C°.
(2) If aps = 0, then ¢¢(C?) is the point (2az0, a11,2ae2).

Case 2. If f € CPy, then ¢¢(C?) is the line

2a3
lf = { <6a30x + 2ap0,2anx + ai, 3721)( + 2a02> | X € C} (340)
30

Proof. Let f(x,y) = Zi—j:O aijx'y/ € A. In virtue of Lemma 3.5 we have the following cases

Case 1. If f € CPy, then, by (3.36), ¢¢(C?) = {(2az, an,6asy +2ag) € C* | y € C}.
(1) If a3 #0, then ¢¢(C?) = {(2az0, a11, 6a0y +2ap2) € C* | y € C}.
(2) If ags = 0, then ¢¢(C?) is the point (2az, a1, 2ap).
Case 2. If f € CP,, then, by (3.36),
242 243

242
C?) = ( 6az0x +2any + 2a20,2a1X + —2y + a11, —2y + —2x +2 . 3.41
(Pf< ) <a30x ay azp, 241X 3a30y an 9a§0y 3a30x aonz ( )

Let v; = (6a30,2a21,2a§1 /3az) be a nonzero vector (by hypothesis) and v, =
(2a21,2a21 /3az, 2a3,/9a%,). Note that v, = (a21/3a30)v;. Therefore, the set I is the same set
of ¢5(C?). O

Let us consider the cone C = {(wy, ws, w3) € C? | wiw; — w% = 0}. We shall describe
the set ¢s(C?)NC when f € Sy.

Lemma 3.7. Let f € S¢.

(1) If ¢(C?) is a parallel line to the ws-axis in C3, then

(@) ¢y (C?)NC is a parallel line to the ws-axis in C* whenever ay = 0;
(b) ¢ (C*)NC is the point (2azo, a, (a%1 —4ayyan)/2ax + 2ay) whenever ayy #0.

(2) If ¢5(C?) is the point (2az, ai1,2am) and 4axap — al; =0, then ¢f(C*) N Cis the
point (2azy, ay1,2a0).

(3) If ¢(C?) is the line Iy, then

(@) ¢f (C?) N C is the point (6azxo + 2az, 2axn X + a1, (2a§1/3a30)x0 +2ap) ifa =
(1/3a30) (36a% a0 + 4ax a3, — 12ax arasy) #0, where xo = (1/a)(al, - 4azxacn);
(b) ¢ (C>)NC is the line ls whenever a = 0.
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Proof. In virtue of Lemma 3.6 we have the following cases.

(1) If ¢¢(C*)NC isa parallel line to the ws-axis, then ¢;(C*)NC = {(2az, a1, 6aopsy +
21.102) eC? | ye C, 2a20(6a03y + 2(102) - a%l = 0}

(a) If ay =0, then qrf((Cz) N C is a parallel line to the ws-axis.
(b) If az #0, then y = (af, — 4axan)/12ax6a0; and ¢;(C*) N C is a point.

(2) If ¢s(C*) N C is the point (2az, a11,2acp), then ¢(C*) N C = (2az, ai1,2ap) if
4(120&02 - a%l =0.

(3) If ¢f(C*)NC isthelinely, then ¢(C*)NC =15 N {(6asx +2ax)((2a3,/3az)x +
2ax) — (2axx + an)* = 0}. It means that

2 2
3651306102 + 45[206121 —12ax1a11a39

ax + 4aryap — a%l =0, where a= (3.42)

36!30

Therefore, if @ = 0, then 4axpagp, — afl = (0 and we obtain a line on C. If a #0, then qrf((Cz) NnC
is a point. O

With this lemma we finish the proof of corollary.

Proof of Proposition 2.9. Let g(x,y) = byx? + biixy + boy?* + byy € AT. Then the expression
HS(f) = g is equivalent, by Lemma 3.1, to the system of equations:

b02 = —4[1%1 +12azpaqz,
bi1 = —4ax aip + 36azaps,
b02 = —451%2 +12a1a03,
(3.43)
0 =12aspap,; +4axai —4anan,

0 =12azaes +4az apx — 4anai,

2
boo =-aj; t 4ayyag;.

Let S be the union of the images of F; and F,. A direct substitution shows that S C (Héc)_1 (8)-
Therefore, to finish the proof it is enough to show that (Héc)_l( g) C S. To check this last
sentence we have used the computer algebra system Maple 9.5. O

Proof of the Theorem 2.12. Real Case

We will proof that the plane curve g(x,y) = 0, where g(x,y) = xy?> — x> + x, is not a real

Hessian curve (the other cases are analogous). To do that, we will prove that there are no
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real cuartic polynomial f in (HY)™'(g); that is, there are no real polynomial satisfying the
system of equations:

24ayaxn —9a3, =0, (3.44)

72a40a13 — 12az1ax» =0, (3.45)

144ayaos + 18az1a13 — 1245, = 0, (3.46)
72az1aps — 12axp a3 =0, (3.47)

24agax —9a3; =0, (3.48)

12azpax + 24aya1p — 12az1a, = -1, (3.49)
36aszpaz + 72as0a93 — 12ax1a,, =0, (3.50)
36agzaz + 72apsaz9 — 12a12a2 =1, (3.51)
12agzax + 24apsa,1 — 12a13a12 = 0, (3.52)
24asag +4axaxn + 12axarn — 6as ar; —4as5, =0, (3.53)
12as1a0; + 12axpa13 + 36azpags — 4ax a1 — 8ayjaxn =0, (3.54)
24agsa +4anaxn + 12aax — 6azar; —4a3, =0, (3.55)
12azpap + 4axa, —4axan =1, (3.56)
12ap3ax0 + 4apaz —4anan =0, (3.57)

dayyap — a3, =0. (3.58)

A Groebner bases for (3.44)-(3.48) with the graded reverse lexicographic monomial
order is

2 2
3ajy — 8axna, axpaiz —6as1aos, 2a;, —3az ais — 24as0aos, asdx —6asais,

(3.59)
3a3, — 8awnaxn, a3as;dos— 16a40as,, azanais — 16a5,aos.
The set of common zeroes of these last 7 polynomials is the union of the sets
{aw = aw, as1 =0, an =0, a13=0, ap =0}, (3.60)

4 3 2
a3 a3 3aj,

= ——+, 031 = ———, Ap = ——, A13=a13, 4 0¢. 3.61
{ 40 = o a34 31 1611(2)4 22 8a0s 13 = a13, Apa # (3.61)
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On the one hand, replacing the solution (3.60) in (3.49)—(3.58), particularly in (3.56) we obtain
0 = 1. On the other hand, replacing the solution (3.61) in (3.49)—(3.58), we obtain the system

2
4a20a02 —a; = 0,
12a30a02 + 4(120&12 - 4(121 ay — 1= 0,

—4(112(,111 + 4(121 app + 12&20&03 = 0,

4 3 2
3aj,ao ) 3aj,ann 3axa, B
12aspa1; + ——— —4a;, — + =0,
a’ A gg? 2404
04 04
3a2,a1 3aj,am
1
36&306103 + 1261206113 - 13 - 4a21a12 + 32 =0,
ao4 dag,
3a%3a02 5
—6a13a11 + 24&20&04 + + 1261216103 —4as, = 0, 3.62
ags 12 .

3 2 4
—3[1131121 9[1301.113 3[1131112

2 3 4
4ag, 2ap4 32ay,

4 2
9a13a03 961216!13
— + 36[130[113 — = 0,

3
32ay, 2a04

3 2
9aj,a0s  9ai;a12

+72azpaps —1 =0,

2
4ag, 2a04
9a2 aps
—-12a3a1, + 13 +24as1a04 = 0.
aops4
From the last equation we obtain that ax = —a13(-8aaps + 3aizae)/ 1611(2)4 and from the

sixth equation,

2 2 2 2 2 2
6[113(1026104 - 24&136111&04 + 24a13a03a12a04 - 9(1136103 - 16(1121104

3.63
96(184 ( )

az) = —

When we replace these expressions in the last four equations of the last system (we do
not write the other equations because we do not need it):

4 5 2 3 4
—18a;,a12a04 + 9aj,a03 + 288azpaj,ay, + 644,

64ag,

=0, (3.64)

3 3
9ay3 (32[130[104 - 2[112[1%35104 + t113[103) _o, (365)

3
8ay,
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3 2 3 2
9ay,a03 — 18apaj,an + 288azpay, — 4ag,

=0, 3.66
4a%4 ( )

0=0. (3.67)

From (3.65) we have that a;3=0 or 32a30a84 —2a12a%3a04 + af3a03 =0.If a3 =0, then (3.64)
becomes -1 =0.

If 32a30ag4—2a12a%3a04+a?_,,aog =0,then azy = (2a12a%3a04—a‘;’3a03)/ 32a84. Substituing
asg in (3.66), we obtain -1 = 0. O

Lemma 3.8. The set, Cv(3), of critical points of the map Hyy : AS, — AY is the union of the
following six sets:

2
S { 9apza1asy — 6agsax ax — apanan +2aj,ax
1=140n =

= ,3anas — a5 #0 ¢,
2(3[112[130 - a%l) 21

Sy ={an =0,ax =0,a, =0},

2a1paz a3
S3=1{an= , 30 saa12#0 ¢,

o 312 (3.68)

Sy={az =0,ax =0,a, =0},

S5 ={ax =0,a3 =0,ax =0},

2 3
Se=qan= azl,a03= % ,a3#0¢.
3azp 27a?

1
a3

Proof. Let f(x,y) = 3}, aijx'y/ € ASy. The Jacobian matrix of Hi is,

/2&02 —ai 2a20 0 0 0 0 \
6[103 —26112 2(121 0 2(102 —26!11 66!20
2[112 —25121 6(130 6[102 —2[111 2(120 0

](Hg?R) = . (3.69)

0 0 0 0 6[103 —4[112 66121

0 0 0 18(103 —2(112 —2[121 18[130

\0 0 0 6an —4ay 6ax 0 /
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Let us denote by My, k = 1,...,7, the 6 x 6 matrix obtained from | (HéCR) by deleting the
column 7 — k + 1. On the other hand, f is a critical point of H;,CR if and only if det(My) = 0 for
allk =1,...,7, that is, if and only if the following system of seven equations is satisfied:

<—9[121£112[103 + 27&30(1%3 + 2[1‘;’2> (F) =0,

<a%2a21 - 6a§1a03 + 96112&306103) (F) =0,
<a§1 ai - 6a3,a3 + 91121!130!103) (F) =0,
<2agl - 9apanas + 27[1%0[103) (F) =0, (370)

/N

2
=3apaz ai + aj,ai — axapdp + 961035130!102) (F)=0,
2 2
<31102l112¢130 + aj,a20 — 3agzd1dzo — Ay, aoz) (F)=0,

2
<a11 ay, — a12a21ax0 + 9axaspaes — 3apan a30> (F)=0,
where
2 2
F = —9apzaqazy + 6agza axy + 6apapasg — 2(1211102 + appaiiax — 2(1126120. (3.71)

Therefore f(x,y) = Z?+j=2 aijx'y’ satisfies the previous system of seven equations if and only
if feS= U,6<=1 Sk, where S is the union of the six solutions S I8 Therefore, the proof is done.

]
Lemma 3.9. Consider f € AS and g = Hs(f). The curve g =0 is singular if and only if
2 2
—2ai,a + 6apamnazy + 6ax agzax + ax aipay — 2a;,ap — 9agzaaz =0,
(3.72)
2 2 2 2 3 3
—ax ap, — 18ax1apazpaps + 27a30a03 + 4a12a30 + 46121 aps #0,
or,
-9a - 2 —apa; 27aza’ 2axas, +1.8
12021003420 — A2141147, — 12051402 + 2/A30A3420 + 242007, + 1.
2 2
+6a5,ap3a11 — 9azpaz ande + 6azana, — 9asapsaian = 01, (3.73)

2 2 2 2 3 3 —
—ay ap, — 18az1a1pa30a03 + 27(1301103 + 4(1121130 + 4(121 apz =0.2.1,
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Proof. Suppose f(x,y) = 32, arsx"y®; then

H; (f) = —a%l + 4(1201102 + (1261306!02 + 46!206112 - 4[121 au)x
+ (12ax0a03 — 4anan +4anap)y + (—411%1 + 12asoalz>x2 (3.74)

+ (—41121 app + 36a30a03)yx + (—4:[1%2 + 12a21a03>y2.

The curve g = Hj (f) is singular if and only if the system g.(p) = g,(p) = g(p) =0 hasa
solution for some p in C. The system formed by g, =0,g, = 0is

2
(611301112 - 2a21>x + (9azpags — axnan)y +3aspae + axpaz — azan =0,
(3.75)
2
(9azpaps — azrann)x + (60211103 - 2a12>y +3axaps — arpan + azag = 0.

The proof concludes by analyzing the system when its determinant is distinct from zero and
when it is zero. O

Proof of Proposition 2.10. Let us consider the sets S,k =1,...,6, of Lemma 3.8. If f € Sy, then

HE(f) = —

3a12a30 — a5
x [xz <36a§0a%2 +4ay, - 24a30a12a§1>
2 2 3 2
+ Xy (108a30a03a12 + 36(130[103[121 + 4[121[112 —12ax a12a30>

2 2 2 3 3
ty <4al2a21 - 12a12a30 + 36&21&03&126130 - 12(121(103)

2 2 3 2
+ x<24a30a12a20 + 54a30a03a11 + 4(121 a] — 4(120(112(121 (3 76)

—36a30a03a21a20 — 18!130a12a111121>

+ y<—12a%2a11 asp + 18ay; dpzaiiazp + 36(120[103(112(130
—24[1%1 aopzay + 2[1%1 apap +4an [1%25120)

- 3a3,anas — 12ag3a21 a3, + 18az0asa11aso

2 2 2 2
—2(120&12&116121 + 4a12a20 +a; a21] .
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Denote by h the polynomial HS (f). Then,

1
hx = EY
3apas — ay,
[ (72a30a12 48&30012&21 + 8021>
+1(10843 +4a3 a; - 36 2 —12aya°
y a3,a03a12 a, aip azpaopsdyg az1a7,as3p
3 2 2 2
+ 4a21 agn + 54a30a03a11 — 4[1201112(121 + 24(13061126120
—36aspap3az a — 18a30a12a11a21],
(3.77)
1
hy = FY
3a12a30 —ay
x [x(10843 -36 2 —12aya%,az + 4a>
X a3ya03a12 aszpaop3dy; a1ay,aso ay 412
3
+ y(8a12a21 2411126130 24(121 aops + 72a21a03a12a30>
2 2 2 2
+ 4(121 aj,ax) — 24a21 apzapo + 2a21 appal — 12[1121111 aso
+18an apainas + 36112000311121130] .
The point (x, y) where the Hessian curve is singular is
_ —2axa; + anan Y= Banazy — 2axnax (3.78)
- 2 7 - = 2 . .
2(3a12a30 - a21) 2(3a12a30 - 021)

If f € Sy, then Héc(f) = (6azox + 2ax)(6any + 2ap), hx = 6az(bapsy + 2a¢;), and hy =
6(6a30x + 2(120)(103.
The point (x, y) where the Hessian curve is singular is x = —axy/3az), y = —ag2/3aps.
If f € S3, then

HC (f) _ 4(a21x +anyapp + (120[112) (]/( 3[121£103 + (121(112) [121[102 + (120[112)
3 ’

2
ap [121

hx = ~4(y(-3a3, a0 + anai,) - a3, an + axaj,)
- 7
an

(3.79)
_4(y(—3a§1a03 +anyal,) — a3 an + axas,)

azi

hy =

2 2 2
4(ayx + anyan + axa) (-3a5,a0 + anas,)

2
ai a21
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The point (x, y) where the Hessian curve is singular is

_ an(=anap +3axap) _ _—(-ajan + axpat,) (3.80)
an (—3(121 aops + 11%2) ’ any (—3(121 aops + a%z)
If —3a1a9; + a%z =0, then Hg (f) is of degree one.
If f € Sy, then Héc (f) = 12axapy +4axap - afl, hx =0, and hy = 12apa0;3.
The Hessian curve in this case has degree one.
Iff € Ss, then Héc(f) = —(Zalzy + a11)2, hx =0, hy = —4(2(112y + all)alz.
The point (x, ) where the Hessian curve is singularis y = —ai1/2az,.
If f € S, then
C 108[120[102 + 12[120(1%1 asp — 36/.121 a§0a11
H3 (f ) = 9 2 X
39
(3.81)
36(121 uozago + 4[120[131 - 12[1%15111 aso 36[120[10251%0 - 9[1%1 a§0
+ + .
9a3, 9a3,
The Hessian curve in this case has degree one. O
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