Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2010, Article ID 891812, 18 pages
doi:10.1155/2010/891812

Research Article

Analysis of a Nonautonomous Delayed
Predator-Prey System with a Stage Structure for
the Predator in a Polluted Environment

G. P. Samantal-?

I Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 81473 Bratislava, Slovakia
2 Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711103, India

Correspondence should be addressed to G. P. Samanta, g_p_samanta@yahoo.co.uk
Received 3 July 2009; Accepted 7 February 2010
Academic Editor: Harvinder S. Sidhu

Copyright © 2010 G. P. Samanta. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A two-species nonautonomous Lotka-Volterra type model with diffusional migration among the
immature predator population, constant delay among the matured predators, and toxicant effect
on the immature predators in a nonprotective patch is proposed. The scale of the protective zone
among the immature predator population can be regulated through diffusive coefficients D;(t),
i = 1,2. It is proved that this system is uniformly persistent (permanence) under appropriate
conditions. Sufficient conditions are derived to confirm that if this system admits a positive
periodic solution, then it is globally asymptotically stable.

1. Introduction

In recent years, many countries have already realized that the pollution of the environment
is a very serious and urgent problem. It is well known that with the rapid development
of modern industries and agricultures, a large quantity of toxicants and contaminants
enter into ecosystems one after another. One of the most important and meaningful
questions in mathematical ecology is the permanence (uniformly persistent) and extinction
of a population in a polluted environment. Organisms are often exposed to a polluted
environment and take up toxicants. The change in environment is caused by pollution,
affecting the long-term survival of species, humans, and biodiversity of the habitat. The
question of the effects of pollutants and toxicants on ecological communities is of tremendous
important from both environmental and conservational points of view.

Anthropogenically produced toxic substances that enter the aquatic food chain
represent a serious health threats to human beings and to the inhabitants of such polluted
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ecosystems. The ability of an aquatic ecosystem to restore itself to the prepollution
state is directly related to the compartmental retention times and exchange rates among
compartments and the transport rates out of the system. The effect of a toxic substance can be
well understood by measuring its presence throughout an aquatic system and by determining
the rates of its transport betweencompartments and storage within compartments. An
understanding of the compartmental and total system stability of a toxic substance can be
achieved with the use of conceptual models [1-4].

Acid rain results from certain kinds of air pollution that mix with precipitation, such
as rain or fog, then falls to earth as an acidic solution and its major components are oxides of
sulfur and nitrogen that are mainly the by-products of coal-burning power plants, copper
melting, factory, and automobile emissions. These oxides are chemically changed in the
atmosphere and return to the earth as rain, snow, fog, or dust. In the United states, the most
recognized form of acid rain results from sulfur dioxide emissions, which are converted into
sulfuric acid in the atmosphere. When this is mixed with precipitation and falls to earth, the
effect is precisely like pouring a diluted acid solution onto everything it touches. In lakes
also, this acidification process can change ecological structures. In this way toxic substances
are invaded into the ecological communities [5, 6].

Other examples are oil pollution in the seas [7], degradation of forests [8, 9], and
dumping of toxic waste in rivers and lakes [10, 11].

In order to protect environment and regulate the release of toxic substances wisely,
we must assess the harm of the toxicant to the species exposed to it. By using mathematical
models, Hallam and Clark [12], Hallam et al. [13, 14], Hallam and De Luna [15], De Luna and
Hallam [16], Zhien et al. [17], Huaping and Zhien [18], Freedman and Shukla [19], Wang and
Ma [20], Dubey [21], Xiao and Chen [22], Ghosh et al. [23], Buonomo and Lacitignola [24],
Li et al. [25], Samanta and Maiti [26], ]. Wang and K. Wang [27], He and Wang [28, 29], Das
et al. [30], and many others studied the effects of toxic substances on various ecosystems.

The effect of “stage-structure” to the dynamics of predator-prey system is a natural
phenomenon and represents the division of a population into immature and mature
individuals. As is common, the dynamics-eating habitats, susceptibility to toxicants, and
so forth. are often quite different in these two subpopulations. Hence investigation of the
effects of such a subdivision on the interaction of species is very much important from the
ecological point of view. Stage-structured models have already received much attention by
many authors [31, 32]. Many models in mathematical ecology can be formulated as system
of differential equations with time delays. The effect of the past history on the stability of
system is also an important problem in population ecology. Recently uniformly persistent
and stability of a population dynamical system involving time delays have been considered
by many authors [33]. Dispersal is a ubiquitous phenomenon in the natural world. Its
importance in understanding the ecological and evolutionary dynamics of populations is
mirrored by a large number of mathematical models [34]. In order to prevent the destruction
of biological resources and to protect the environment, all kinds of measures have been
proposed. Establishing a protective patch in mathematical ecology is applied widely. The
practical effects of the protective patch on the polluted population is worth investigation.

As species do not exist alone in nature, it is of more biological significance to study
the uniformly persistent-extinction threshold of each population in systems of two or more
interacting species subject to organismal and environmental toxicants. In most of the classical
toxicant-population models it is assumed that each individual has the same dose-response
parameter to the organismal toxicant concentration regardless of the difference between the
mature and immature populations. However, in the natural world, there are many species
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whose individual members have a life history that takes them through two stages, immature
and mature. Moreover, there is a big difference between the immature and mature species in
many aspects. For example, for less concentration of C,Hy in an environment, the immature
cymbidium is so susceptible that it begins to wither, whereas, the mature cymbidium often
has notbeen affected [22, 35]. Therefore, it is important to consider the effect of stage structure
on population growth in a polluted environment. In this paper, we have considered pollution
in a nonautonomous predator-prey system together with diffusional migration among the
immature predator population between protective and nonprotective patches where there is
a constant delay among the matured predators due to the gestation of the predator based on
the assumption that mature adult predators can only contribute to the reproduction of the
predator biomass and that the change rate of predators depends on the number of the preys
and of the predators presented at some previous time. The scale of the protective zone among
the immature predator population can be regulated through diffusive coefficients D;(t), i =
1,2. Here we incorporate stage-structure for the predator and assume that the toxicants have
no effect on the mature species. This seems to be reasonable. The main feature of the present
paper is to study the asymptotical behaviour of the toxicant-population model with stage
structure, diffusional migration, and time delay so as to obtain some conditions under which
the population is uniformly persistent. In addition, by constructing an appropriate Lyapunov
function, we have derived sufficient conditions to confirm that if the system admits a positive
periodic solution, then it is globally asymptotically stable.

2. The Basic Mathematical Model

Our study is based on the hypothesis of a complete spatial homogeneous environment.
We incorporate stage-structure for the predator into a nonautonomous Lotka-Volterra type
predator-prey model. We consider the following delayed model to describe the dynamics of
prey and predator population in a polluted environment. The state variables of the model are
x(t), yi(t), y2(t), and y3(t), the densities of the prey, immature predator in nonprotective
patch (with toxicants), immature predator in protective patch (without toxicants), and
mature predator species at time ¢, respectively, Cy(t) is the concentration of toxicant in the
immature predator organism in nonprotective patch (with toxicants) at time ¢, and C,(f) is
the concentration of toxicant in the environment at time t. Here we assume that the toxicants
have no effect on the mature species and immature predator in protective patch.

Let us consider the two-species nonautonomous Lotka-Volterra type model with
diffusional migration among the immature predator population, constant delay among the
matured predators, and toxicant effect on immature predators in nonprotective patch:

dzy)=xunna)—munxa>—mﬂﬂyﬁ0L
d

yc;t( D by (ya()-01 (D1 (-6 (D1 (- CoO)y (-1 (OY3 O+ D1 (1) (120 -1 1),
dy(t)

= by()ys(t) — O2(Hy2(t) — 62 (2 (t) — B2 (D5 (1) + Do () (y1 (1) — y2(1)),

dt
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dCo(t)
dt

dcC.(t)

dt
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= y3(t) [-12(t) — an(O)ys(B)] + an (D ys(t — T)x(t - T) + 61 (E)y1 () + O2(H)ya(t),
= k(B)Cc(t) +1(t) = g(H)Co(t) — m(t)Co(t),

= —h(t)Co(t) + u(t).
2.1)

The model is derived under following assumptions.

(Al) The prey population: the growth of the species is of a Lotka-Volterra nature. At

any time ¢t > 0, the birth rate is proportional to the existing prey population with
proportional function 7y (f) and aj;(t) is the intraspecific competition rate function
of the prey. r1(t) and ay;(t) are continuous, bounded, and strictly positive functions
in the interval [0, c0).

(A2) The predator population: the predators cannot hunt prey when the predators

are infant (immature). The mature predators feed only on prey; aix(t) is the
capturing rate function of the predator, ay (t)/a(t) is the conversion rate
function of nutrients into the reproduction of the mature predator, and 7 > 0
is a constant delay due to the gestation of the mature predator based on the
assumption that mature adult predators can only contribute to the reproduction
of the predator biomass and that the change rate of predators depends on the
number of the preys and of the predators presented at some previous time. To
protect the immature predator population, the region (¥) of immature predator
population is divided into two patches ¥; and ¥,. Pollution is permitted in ¥;
and is inhibited in ¥,. We call ¥; and ¥, as the nonprotective and protective
patches, respectively. Since the difference of densities between patches ¥; and
¥, exists, the diffusive migration can occur between these two patches, and
D1 (t), Dy(t) are diffusion coefficient functions of nonprotective immature and
protective immature predator species, respectively. At any time ¢ > 0, the rates of
transitions from nonprotective immature and protective immature individuals to
mature individuals are proportional to the existing nonprotective immature and
protective immature populations, respectively, with proportional functions 6, (t)
and 0,(t), respectively, and the death rates of mature, nonprotective immature,
and protective immature population are proportional to the existing mature,
nonprotective immature, and protective immature population, respectively, with
proportional functions rp(t), 61(t), and 6,(t), respectively. The birth rates of
nonprotective immature and protective immature population are proportional
to the existing mature population with proportional functions b;(t) and by(t),
respectively. ax (t), f1(t), and f,(t) are the intraspecific competition rate functions
of the mature, nonprotective immature, and protective immature population,
respectively. aix(t), ax(t), axn(t), Di(t), 6i(t), ra(t), 6i(t), bi(t), and pi(t), (i =
1,2) are continuous, bounded, and strictly positive functions in the interval [0, o).

(A3) Toxicants: d(t) is the dose response parameter of nonprotective immature predator

species v (t) to the organismal toxicant concentration. The first two terms on the
right of the fifth equation in system (2.1) denote the organismal net uptake of
toxicant from the environment (k(t)C,.(t)) and the food chain (I(t)), respectively,
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and the third and fourth terms represent the organismal net loss of toxicant due
to metabolic processing and other causes. k(t) denotes environmental toxicant
uptake rate per unit mass organism, I(t) denotes uptake rate of toxicant in food
per unit mass organism, and —g(#)C,(t) and —m(t)C,(t) represent the egestion
and depuration rates of the toxicant in the organism, respectively. The first term
(—h(t)C.(t)) on the right of the sixth equation in system (2.1) represents the toxicant
loss from the environment itself by biological transformation, chemical hydrolysis,
volatilization, microbial degradation, photosynthetic degradation, and so on and
the exogenous rate of input of toxicant into the environment is represented by
u(t). The capacity of the environment is so large that the change of toxicants in
the environment that comes from uptake and egestion by the organisms can be
neglected [15, 36, 37]. The coefficients d(t), k(t),I(t), g(t), m(t), h(t), and u(t) are
assumed to be nonnegative, continuous, and bounded functions in the interval
[0, 0).

The initial conditions for system (2.1) take the form

x(0)=$1(0),  vi(0) =¢i(0),  Co(0) =¢2(0), Ce(0) =¢3(0), (i=123),
¢l(9) > 0/ ()UI(G) > 0 (l = 1/ 2/ 3)/ 0 € [_T/ 0]/ (22)
x(0)>0,  1(0)>0, 0<GCy(0)<1, 0<C(0)<1 (i=1,23),

where @ = ($1(6), $2(0), 3(6), g1 (), ¢2(0), ¢3(6)) € C([-7,0],RS), the Banach space of
continuous functions mapping the interval [-7, 0] into RS, where RS = {(x1,x2, X3, X4, X5, %) :
x>0,i=1,2,3,4,5,6}.

It is well known by the fundamental theory of functional differential equations [38]
that system (2.1) has a unique solution (x(t), y1(t), y2(t), y3(t), Co(t), C.(t)) satisfying initial
conditions (2.2).

Let f! =infi0 f (), f* = sup,., f (), for a continuous and bounded function f(t) defined
on [0,+c0). -

In this paper, we always assume that the following holds:

. 1plql 11l . I 1 30l gl gl Pl
mm{d,k,l,g,m,h,u}zo, gllll}{ri'aij'bi'ei"sz" i,Di}>0,
(2.3)

wopu U U U LU U U U U AU SU U YU
max{d Lk", 1 , 8 ,m ,hY,u }<OO, gnjze})é{ri’aij’bi’ei’éi’ﬁi’Di } < co.

Each of Cy(t) and C,(t) is a concentration, and thus, these variables cannot be greater
than 1. So we should give some conditions, such that

0<Co(f) <1, 0<Ce(H) <1, VE20. (24)

Theorem 2.1. Every solution of system (2.1) with initial conditions (2.2) exists and is unique in the
interval [0, 00) and x(t) >0, y1(t) >0, y2(t) >0, y3(t) >0, Co(t) 20, C.(t) >0, forall t>0.

Proof. Since the right-hand side of system (2.1) is completely continuous and locally
Lipschitzian on C, the solution (x(t),y1(t), y2(t), y3(t), Co(t), Cc(t)) of (2.1) with initial
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conditions (2.2) exists and is unique on [0, ), where 0 < a < +oo [38, chapter 2]. From
system (2.1) with initial conditions (2.2), we have

¢
x(t) = x(0) exp L [r1(s) — a11(s)x(s) — a1z (s)ys(s)]ds >0, Vt>0. (2.5)

Next, we show that y;(t) > 0 for all ¢ € [0, o0). Otherwise, there exists a t; € (0,o0)
such that y1(t1) = 0, y1(t1) < 0, and vy () > 0 for all ¢ € [0,#;). Hence there must have
y2(t) >0 forall te€ [0,t;). If this statement is not true, then there exists a t, € (0, t1) such that
y2(t2) =0and y»(t) >0 on [0,tp). We claim that y3(t) >0 forall t € [0,t,). If this statement
is not true, then there exists a t3 € (0, t2) such that y3(t3) = 0 and y3(¢) >0 for all t € [T, t3].
Furthermore,

dys(t)
dt

> -n(Hys(t) — an()y5(t), Vte[0,t], (2.6)
then, y5(t) > y3(0) exp jg[—rz(s) —ax(s)ys(s)]ds > 0, for all
t3
t € [0,t3] = ys(t3) > y3(0) exp fo [-72(s) — axn(s)ys(s)]ds > 0, (2.7)

which is a contradiction. Hence, y3(t) > 0 forallt € [0, ;). Integrating the third equation of
system (2.1) from O to t,, we have

ty
ya(t2) = y2(0) eXP{—IO (Da(s) + 02(s) + 62(s) + ﬁz(s)yz(s))ds}

ty u

+ ,[0 (b2 (w)y3(u) + Da(u)y1(u)) exp {J‘ (Dz(s)+92(s)+62(s)+ﬂ2(s)y2(s))ds} du >0,
ty

2.8)

which is a contradiction with y»(t2) = 0. So y»(t) > 0, forall ¢ € [0,#;) and hence y3(t) > 0, for
all t € [0,t;). Integrating the second equation of system (2.1) from 0 to t;, we have

t
yi(t) = y1(0) exp{— . (D1(s) +01(s) + 61(s) + d(s)Co(s) + ,31(5)]/1(5))015}
t u
+ fo (b1 (w)ys3(u) + Dy (u)y2 (1)) exp{ (D1(s) +01(s) + 61(s) (2.9)
5]
+d(s)Co(s) + pl(s)yl(s))ds}du >0,

which is a contradiction with y;(t1) = 0. So y1(t) > 0, forall ¢ > 0and hence y»(t) >0, y5(t) >
0, forall £>0.
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Also,

0

t t S
Co(t) = e holms)+gls)lds [ f {k(5)Ce(s) + I(s) }elolm+s®)ds gg CO(O)] >0, V>0,

(2.10)
t t S
C,(t) = e Joh()ds [J' u(s)eld®dsgg 4 CE(O):I >0 Vt>0.
0

This completes the proof. O

Theorem 2.2. From system (2.1) with initial conditions (2.2), if k* +I* < ¢ +m!, u* < h!, then
0<Co(t) <1, 0 Co(t) <1, forall t > 0.

Proof. According to Theorem 2.1, we have Cy(t) > 0, C.(t) > 0, for all £ > 0. Now we have to
prove that Co(t) <1, C.(t) <1, forallt > 0.

If the conclusion is false, then the maximum interval is [0,T] such that 0 < Cy(t) <
1, 0 < C.(t) <1,for all t € [0, T] and at least one of the following cases will arise:

() Co(T) =1,Ce(T) < 1;
(ii) Co(T) <1,Ce(T) = 1;

(iii) Co(T) = C,(T) = 1.

We will prove that none of these cases is true.
(i) Co(T) =1, C.(T) < 1; using the condition k* + [* < ¢! + m!, we have

dCy(t)
dt  |pr

=k(T)C.(T) + [(T) = g(T)Co(T) = m(T)Co(T)

<k(T) +I(T) - g(T) - m(T) (2.11)

<k'+1"-gl-m <0,

thus there exist t; > 0,s.t. 0 < Co(t) <1, 0< C.(t) <1, forall t € [T, T + t;1]. This contradicts
the definition of the interval [0, T]. So there is no T such that 0 < Cy(t) <1, 0 < C.(f) <1, for
all t € [0, T] with Co(T) =1,C.(T) < 1.

With the same reasoning as in case (i), for cases (ii) and (iii), as far as t which keeps
0 < Co(t) £1and 0 < C,.(t) < 1is concerned, the interval [0, T] can be extended rightwards.
This contradicts the property of T. Therefore, 0 < Co(t) <1, 0 < Co(t) <1, for all t > 0. This
completes the proof. O
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Putting the expression of C,(t) in Co(t), we can express Cy(t) in terms of some bounded
continuous functions; therefore the system (2.1) and (2.2) may be simplified as follows:

B 210 - an@x(0) -~ anvys0)],

dyy(t)
dt

=bi(H)ys(t) — 1)y () -61(t)y1 () —-d(®)Co(yr () =1 (DY () +D1(t) (2 () -1 (1)),

d
y;t( 2 ba(t)ys(t) — 62()y2(t) — S2(Hy2(t) — B2 ()5 (1) + Da(t) (y1 (1) — ya2(t)),

dys(t)
dt

=Y3 (t) [—Tz(t) - (122(1’)]/3(15)] + [121(t)y3 (t - T)x(t - T) + 91 (t)yl(t) + Qz(t)yz(t).
(2.12)

The initial conditions are

x(0) =$1(0),  vi(0) =¢i(0) (i=1,23),
$1(0) >0,  ¢:i(0)>0 (i=1,2,3), 6€[-7,0], (2.13)
x(0)>0,  y(0)>0 (i=1,23),

where ® = (¢1(0), ¢1(0), ¢2(0),¢3(0)) € C([-7,0],R?), the Banach space of continuous
functions mapping the interval [-7,0] into R%, where R = {(x1,x2,x3,%4) : x; > 0,1 =

1,2,3,4}.

3. Uniformly Persistent of System (2.12)

Here we wish to discuss the uniformly persistent of the system (2.12) with initial conditions
(2.13), which demonstrates how this system will be uniformly persistent, is that, the long-
term survival (i.e., will not vanish in time) of all components of the system (2.12) with initial
conditions (2.13), under some conditions.

Definition 3.1. The system (2.12) is said to be uniformly persistent, that is, the long-term
survival (will not vanish in time) of all components of the system (2.12), if there are positive
constants v; and w; (i =1,2,3,4) such that

vy < li¥n infx(t) < limsup x(t) < wy,

t— oo

vy < li¥n infy;(t) <limsup y;(t) < wo,
—® t— o0
(3.1)
v3 < litm inf y(t) < limsup y»(t) < ws,

t— oo

vy < litm inf y3(t) < limsup y3(t) < wy

t— oo
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hold for any solution (x(t), y1(t), y2(t), y3(t)) of (2.12) with initial conditions (2.13). Here v;
and w; (i =1,2,3,4) are independent of (2.13).

Theorem 3.2 (see [39]). Consider the following equation:
x(t) = ax(t - ) — bx(t) — cx*(¢), (3.2)

where a,b,c, 7> 0; x(t) >0, for - <t < 0. One has the following:

I) if a>Db,thenlim;_, ,x(t) =(a-b)/c;
(II) if a<b,then lim;_,,x(t) =0.
Theorem 3.3. Let X(t) = (x(t),yl(t),yz(t),y3(t))T denote any solution of system (2.12) and (2.13).

Suppose that system (2.12) satisfies b > 01 +6! +d'Cl, b% > 04+6}, and a¥ rt > al | (r}—6"-6%) > 0.
Then there exist a Ts > 0 such that

ru

x(t) < M, yi(t) < My (l = 1,2,3), Vt > T3, where Mjp > ——
a11

6l -5 —d'C by, 5l anry -l (ri-6)- %)}

7 l 7
.311 P ‘1111 “lzz

(3.3)

bj
My > M* = max

Proof. Let M > r{‘/a’ll. We have x(t) < x(t)[ri(t) — an(t)x(t)] < x(t)[r} - alllx(t)]. Therefore,
if x(0) < M, then x(t) < My, for all t > 0. If x(0) > My, and let —a; = M (r{' - alan),al >0,
then there existan e; > 0, s.t. if t € [0, €1),x(t) > My, and we have x(t) < —a; < 0. Therefore,
there exista Ty > 0 s.t. x(tf) < M, for all t > Ty, where M; > ri‘/aln. We define V (t) =

max{yi(t), y2(t), y3(t)}. Calculating the upper-right derivative of V (t) along the solution of
system (2.12) and (2.13), we have the followings:

(1) if y1(t) > y2(t) > y3(t), or y1(t) > y3(t) > y2(t), then
D*V(t) = 1 (t)
<Yy (t) - Oy (t) — 8Ly (1) - d'Chya (1) - PLyi () (3.4)

= (by -0} -8, —d'Ch)yi(H) - fiyir), V2 0;

(2) if y2(t) > y1(t) > y3(t), or ya(t) > y3(t) > y1(t), then
DV (t) = i(t)
< bYya(t) = B5ya(t) — 63y (t) = Poy3 (¢) (3.5)

= (b4 -6, - 8} )ya(t) - Py (), W2 0;
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(B) if ys(t) > y1(t) > ya2(t), or, y3(t) > y2(t) > y1(t), then
D™V (t) = y3(t)
< —1yys(t) = ayya () + af Mays(t—7) + (6F + 65) ys (b) (3.6)

= —(ré -0 - 9§‘>y3(t) - ab,y3(t) + ay Miys(t-1), Vt>Ti+r.

Let

(3.7)

b -0 -6 —d'CL bY -6 -6,
M2>M1‘:max{ 1 1 1 0 2 2 21

A CB
From (3.4) and (3.5), we can obtain the followings:

(1) if max{y1(0),v2(0),y3(0)} < My, then max{y:(t), y2(t), y:(t)} < My, forall t > 0;

(ii) if max{y1(0),12(0),y3(0)} > My, and let —a, = max[M,{(b¥ - 6} - & - d'Cl) -
ﬁll My}, Mo (b5 - 6; - 65) - ﬂIZMz}], ay > 0, we consider the following two cases:

(@) V(0) = y1(0) > My,
(b) V(0) = y2(0) > M>.

If (a) holds, then there existan e, > 0, s.t. if t € [0,€2), V(t) = y1(t) > M,, and we have
D*V(t) = y1(t) < —ap < 0.

If (b) holds, then there existan €3 > 0,s.t.if t € [0,€3), V(t) = y2(t) > My, and we have
D+V(t) = :l'/z(t) < —-ap < 0.

If (3.6) holds, then by Theorem 3.2, there exist T, > T; + 7 > 0, s.t.

U LU 1 1 u u
Ay’ —any (’"2 -0y - 92)
T 1
a4y (3.8)

y3(t) <Mz, Vt>T,>T;+7>0,where M3 >

1

u
"
<smce M, can be chosen close enough to —1>
a
11

From the above discussions, we conclude that there exist T3 > T, > T; + T > 0, s.t.

ru
x(t) < My, yi(t) <My (i=1,2,3), VYt>T;, where M; > —,
an
(3.9)

MPM*:max{bi‘—@i—ﬁi—dlCé by - 6} - aé‘lri‘—auré-ei‘-%‘)}_

7 7 l Z
ﬂl1 ﬂlz 119

This completes the proof. O
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Theorem 3.4. Suppose that system (2.12) and (2.13) satisfies the following conditions:

1 u u uu 1 u u 1 u u 1l u u ! 1
by > 0] + 6] +d"Cy, b, > 05 + 63, r, > 0] +0;, ayr > an(r2 -0 —62>,

b”—G’—ﬁ’—d’C’ bu_91_6l atrt—ai, (r 6” oY
max{l 179 0 9 "YUy =0y 2171 11<2 2)

i ’ i ' ay, ay, (310)

1l u u 1 !
rl Ayt —ay (Tz -0 - 62) }

<M4<m1n{ s ;

a u
12 ax ay

Then system (2.12) and (2.13) is uniformly persistent.

Proof. Let X(t) = (x(t),yl(t),yz(t),yg(t))T be a solution of (2.12) and (2.13). .. x(t) > x(t) [ri -
aj, x(t) — aj,My], for all t > T3 (using Theorem 3.3 and T; is defined there). Now, M, <
(alﬂr{ —af|(ry - 95 - 95))/a121a1‘2, and 5 > 0 + 05 together imply 0 < (7} - 95 - 95)/[1121 <
(ri - aj,My)/a},. Let us choose m; in such a way that

-6 -6 rl—a% My
O<—l1 2<m1<—1 ulz
a21 11

= abymy > r¥ -6 - 6., (3.11)

If x(T3) > my, then x(t) > my, for all t > Ty. If x(T3) < my and let g = x(T3)(rl — a¥,my -
a,My) > 0, then there exist an e >0, s.t. x(t) < my, and x1(t) > p1 >0, forallt € [T3, T3 +€1).
Therefore, there exist a Ty > T3 > 0, s.t. x(t) > my, for all t > Tj.

Define V(t) = min{y:(t), y»(f), y3(t)}. Then calculating the lower-right derivative of
V (t) along the solution of system (2.12) and (2.13), we obtainthe following.

(1) if y1 () < ya(t) < ys(t), or, yi(t) < ys(t) < ya(t), then

D,V(t) =yi(t)
> by () - 0y (1) = 61y1 (1) — d“Ciiya (1) - Biyi () (3.12)

= (bl - 01 = 81 = d"CY )y (1) - Biy(r), VE20;

(2) if yo(t) Sy (f) < ys(t), or, ya(t) < y3(t) < ya(t), then

D.V(t) = 1a(t)
> bhys(t) — 04 2(t) — 85a(t) — PAy3 (1) (3.13)

= (bh -0 = 82)a(t) - Biy(r), VE20;
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(3) if y3(t) S y1(t) < ya(h), or, y3(t) < y2(f) < yi(t), then
D,V (t) = ys(t)
> ~riya(t) - a3 (1) + b mys(t - ) + (6] +6))ys() (3.14)
= —<r§‘ -6l - Gé>y3(t) —abyi(t) + abymys(t—1), VE>Ty+T
Let us choose m; in such a way that 0 < my < min{ (bl1 -0} - oY —d"Cy)/py, (bl2 -
0y — 65)/p5. From (3.12) and (3.13), we can obtain the followings:

(i) if V(0) = min{y1(0),y2(0), y3(0)} > ma, then min{y: (), ya(t), ye(H)} > ma, for all
t>0;

(ii) if V(0) = min{y1(0), y2(0), y3(0)} < my, and let yp, = min[y;(0) {bl1 -0y -6]-d"Cy -
pimz},y2(0) {bl2 -0y - 65 — pymy}] > 0, we consider the following two cases:

(@) V(0) = y1(0) < my,
(b) V(0) = y2(0) < ms.

If (a) holds, then there exist an e; > 0, s.t. if t € [0,€2), V(t) = y1(t) < my, and we
have D,V(t) = yi(t) > pp > 0.

If (b) holds, then there exist an €3 > 0, s.t. if t € [0,€3), V(t) = y2(t) < my, and we
have D,V(t) = y(t) > po > 0.

If (3.14) holds, then by (3.11) and Theorem 3.2, there exist T5 > Ty + 7 > 0, s.t.

al21m1 - <r§‘ - Gi - 9;) (3.15)
at ’ '
2

y3(t) >mz, Vt>Ts>Ty+7 >0, where,msz <

From above discussions, we conclude that there exist Tg > Ts > T, + T > T3 > 0, s.t. x(t) > my
and y;(t) >my (i=1,2,3), forallt > Tg where

1 1 1 u
r¥—-0. -0 o —at My
0< 2 ll 2< 1< 1 1}2 ,
a21 all

(3.16)

0 <my <min by -0y -6/ - d"Cy by - 05 - 5 a121m1_<r;—95—9é> .
A P ay,

From the above discussions, we conclude that there exist Ty > Ts > Ty + T > T3 > 0 s.t.
every solution of system (2.12) and (2.13) eventually enters and remains in the region Q =
{((x,y1,y2,y3) | m < x, y; < M, i=1,23}, forallt > Ty, where m = min{m;,my} and
M = max{M;i, My}, and M; is defined in Theorem 3.3. This completes the proof. O

The results of Theorem 3.4 reveal the fact that lower values 6:1(t) (instantaneous
per capita death rate function of nonprotective immature predator population), 6,(t)
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(instantaneous per capita death rate function of protective immature predator population),
Co(t) (concentration of toxicant in the immature predator organism in nonprotective patch
at time t), C.(t) (concentration of toxicant in the environment at time t), and d(t) (dose
response parameter of nonprotective immature predator species to the organismal toxicant
concentration at time t) lead to make the underlying system uniformly persistent.

4. Global Asymptotic Stability of Periodic Solution

From our everyday experience we know that the biological and environmental parameters
are subject to fluctuation in time, and the effects of a periodically varying environment have
an important selective forces on systems in a fluctuating environment. To investigate this
kind of phenomenon, in the model, the coefficients should be periodic functions of time.
Suppose that system (2.12) is a periodic system with initial conditions (2.13). Here
we assume that the periodic system (2.12) satisfies all conditions of Theorem 3.4. We derive
sufficient conditions for all solutions of system (2.12) to converge to a periodic solution.

Theorem 4.1 (see [40]). Suppose that the continuous operator A maps the closed and bounded
convex set Q € R"onto itself, then the operator A has at least one fixed point in set Q.

Theorem 4.2. If periodic system (2.12) satisfies conditions of Theorem 3.4, then there is at least one
strictly positive periodic solution of system (2.12)

Proof. From Theorems 3.3, 4.1 and 2 in Teng and Chen [41], it is easy to see that there is at
least one strictly positive periodic solution of system (2.12). O

Theorem 4.3. If system (2.12) has a periodic solution, then it is globally asymptotically stable
provided lim inf; o, A;(t) >0, (i =1,2), 6! +d'C)+2mpl+ D! -D¥ > 0,6, +2mp,+ D, -D¥ > 0,
where A1(t) = ‘1111 — May (t +71), Ax(t) = ré + Zmal22 - aj, — b} = by — May(t + ), m, M are
defined in Theorem 3.4.

Proof. Let (u(t), v1(t), v (), v3(8)  is a periodic solution of system (2.12) and (2.13). Suppose
that (x(t),yl(t),yz(t),yg(t))T is any positive solution of (2.12) and (2.13). Let

3
Li(t) = Inx(t) = Inu(t)| + D, |yi(t) —vi(t)|. (4.1)
i=1

Calculating the upper-right derivative of L;(t) along the positive solution of system (2.12)
and (2.13), it follows that

. . 3
D*Li(h) = (% - %) sgn(x(8) () + 33 (56 ~ 50) sgn () ~1(0)

= sgn(x(t) — u(t)) {-an (t) (x(t) —u(t)) - an(t) (y3(t) - vs(t)) }
+sgn(y1(t) —vi(t)) {bl(t) (y3(t) —v3(t)) = (O1(t) + 61 (1) +d() Co (1)) (y1 () — 1 (1))

A0 (1 (-2} () +Di () (2 ()02()) (11 (D) -21(1))) }
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+5gn(y(t) = 02(8)) {B2(8) (3 () = V5 (1)) = (Ba(8) + 5>(8)) (y2(£) — Vs (1))
P2 (130 =931 +Da(®) (11 () -01(1) = (va()~02(1))) }

+5gn(ys(t) = vs() {-r2(8) (ya () = 03() = an(®) (Y3(1) - D3(H)) + an (ys (t - 7)
x (x(t—7)—u(t-7)) +an(ut-7) (y3(t-7) —0v3(t - 7))
+01(1) (11 (1) — 01(1)) + B:(0) (12(1) - 02 (1) |

< —ajy|x(t) - u(t)| - (8} + d'Cy+ 2mp; + D} - D§ ) [y (5) ~ 01 ()]
— (84 +2mph + DY = D) [ya(t) = va(t)] - (r} + 2mal, - aty=bi-b4 ) [ys(t) -3 (1)

+ax (Hys(t = T)lx(t = 7) —u(t - 7)| + an (Ou(t - 7)[ys(t - 7) — vs3(t - 7)|.

(4.2)
Let
t t
Ly(t) = f a1 (s + 7)ys(s)|x(s) — u(s)|ds + J ax (s + T)u(s)|ys(s) — vs(s)|ds. (4.3)
t-1 t-1
Then,
D*Ly(t) = an(t+ T)y3(t)|x(t) —u(t)| — an (B)ys(t — 7)|x(t = 7) — u(t — )| 04
¥ az (t+ T)u®)|ys () - v3(t)| - an (Oult - 7)|ys(t ~ ) — v3(t - 7). '
Let
L(t) = Ly (f) + Lo (b). (4.5)
Then,

D*L(t) < —(a’11 — Max (t + T)) Ix(t) — u(t)] - (511 +d'C+2mpl + D! - Dg) lya(t) - o1 (8)|
- (5; +2mpl + Db — D;‘) lya(t) - 0a(1) |
- (ré +2mab, — a¥, — b — b¥ — May (t + T)> lys(t) —vs(t)|
= —Ay(B)x(t) - u(®)] - (8} +d'Cl + 2mp} + D - DY) [y1(5) - o1 (1)]

~ (84 +2mpl + Dy = DY) [ya(t) = 0a(H)| = As(8) |y (1) — ws(8)],
(4.6)
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where Aq(t) = al11 —May (t+71), Ax(t) = ré +2mal22 —ayj,—b}-by— May (t+7). By assumption,
5% +dlC(I)+2mﬂll+Dll—D§‘ >0, 6é+2mﬁ12+Dé—D;‘ > 0,and thereexista; > 0,a, >0, T* > T > 0,
(Ts is defined in Theorem 3.4), such that A;(t) > a1, Ax(t) > ay, forallt > T*. Integrating both
sides of (4.6) on the interval [T*,¢], we get

t t
L(t) + J‘T*A1(5)|x(s) - u(s)|ds + (5§ +d'Ch +2mp| + D} - D;)L* ly1(s) - vi(s)|ds

+ (8 +2mp + D} —D‘f)f |y2(s) —vz(s)|ds+f As(8)|y3(s) - va(s)|ds < L(T")
T+ T+

t

t
= L(t) + alf |x(s) — u(s)|ds + (6§ +d'Ch+2mpl + D! - D‘;)I ly1(s) —v1(s)|ds
T* T*

t t
+ (85 +2mph + D} - D?)IT* |ya(s) — va(s)|ds + azL* |ya(s) - v3(s)|ds < L(T*)

= L(t) is bounded on [T*, o) and also f |x(s) —u(s)|ds < oo
T*

r lyi(s) —vi(s)|ds <0 (i=1,2,3).
' (4.7)

By Theorem 3.3, |x(s) —u(s)|, |yi(s) —vi(s)| (i=1,2,3) are bounded on [T*, o0). On the other
hand, it is easy to see that x(t), u(t), yi(t), and ;(t) (i = 1,2,3) are bounded for t > T*.
Therefore, [x(t) — u(t)|, |yi(t) — vi(t)] (i = 1,2,3) are uniformly continuous on [T*,c0). By
Barbalat’s Lemma [42], we conclude that

lx(t) —u(t)] — 0, |yi(t) —vi(t)] — 0 ast— o0, i=1,2,3. (4.8)

This completes the proof. O

From Theorems 3.4 and 4.3 we observe that the diffusion coefficient functions and time
delay have no effect on the uniformly persistent of the system (2.12) but they have some effect
on the global asymptotic stability of this system.

5. Conclusions

In this paper, we have considered pollution in a nonautonomous Lotka-Volterra type
predator-prey system together with diffusional migration among the immature predator
population between protective and nonprotective patches. A constant delay among the
matured predators due to the gestation of the predators has been incorporated. It is also
assumed that the mature adult predators can only contribute to the reproduction of the
predator biomass and that the change rate of predators depends on the number of the preys
and of the predators presented at some previous time. Here we incorporate a stage-structure
for the predators and assume that the toxicants have no effect on the mature species.
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The toxic of polluted population comes from the environment. Suppose that
environment of patch 1 is polluted nonprotective region, and patch 2 is the protective region
for the immature predator population which is only affected by pollution. In order to protect
the existence of the polluted population, we can use the artificial method, the one’s own
purification function of the population, toxin in the body of the individuals in nonprotective
patch can be removed, and then we will bring them into protective patch. The scale of the
protective zone can be regulated through diffusive coefficients D;(t), i =1,2.

We have obtained the survival threshold of each population of this system. Our
mathematical results reveal the fact that lower values 6;(t) (instantaneous per capita death
rate function of nonprotective immature predator population), 6,(f) (instantaneous per
capita death rate function of protective immature predator population), Co(t) (concentration
of toxicant in the immature predator organism in nonprotective patch at time t), C.(t)
(concentration of toxicant in the environment at time t), and d(t) (dose response parameter of
nonprotective immature predator species to the organismal toxicant concentration at time )
lead to make the underlying system uniformly persistent. By constructing an appropriate
Lyapunov function, we have derived sufficient conditions to confirm that if this system
admits a positive periodic solution, then it is globally asymptotically stable. We have
observed that the diffusion coefficient functions and time delay have no effect on the
uniformly persistent of the system (2.12) but they have some effect on the global asymptotic
stability of this system.

In future work, it would be interesting to expand on simulations by using some current
realistic data to estimate the parameters. The collection of data relevant to key parameters
by ecologists and environmentalists at a global level would be of significant use from an
implementation and policy perspective.
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